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FAREY TREE AND
 
DISTRIBUTION OF SMALL
 

DENOMIN-ATORS
 

Doug Baney, Scott Beslin <1nd Valerio De Angelis 

Abstra.ct 

We describe how a Farey tree partitioning of the 
rationals in [0, 1] can be used to find the fraction with 
smallest denominator that lies strictly between two 
given real numbers 0', {3. We then derive the proba­
bility distribution of the smallest denominator when Q 

and (3 are randomly chosen, uniformly from the unit 
interval. A discussion of a naturally associated map is 
also included. 

The Farey Tree 

Let 0 < a :S 1, 0 :S j3 < a. We denote by Q(a, (3) the ratio­
nal number with smallest possible denominator lying strictly 
between a and (3, and by N(a,{3) the denominator of Q(a,{3). 
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An explicit algorithm for computing Q( a, (3) (based on the 
continued fraction expansion of a and (3) is given in [2]. In 
this article, we use a Farey tree partitioning of the rationals in 
[0,1] to describe both Q(a, (3) and the algorithm, and we use 
the same tree to derive the probability distribution of N(a, (3) 
when a and (3 are randomly chosen, uniformly from the triangle 
{(a,(3) : 0 < a ~ 1,0 ~ (3 < a}. 

We begin by describing the Farey tree, an infinite binary 
tree with vertices labeled by the rationals. This construction 
has been used before by several authors, see for example [1], 
or [4]. 

The Farey sequence of order n is the ascending sequence of 
all rational numbers in [0,1] whose denominator is at most n. 
So for example the Farey sequence of order 4 is 

o 1 1 123 1 
1'4'3'2'3'4'1· 

Two fractions aI b, cld are said to be adjacent Farey frac­
tions if they occur in consecutive order in some Farey sequence. 
It is easy to check that alb, cld are adjacent Farey fractions if 
and only if Iad - bcl == 1. For any pair of fractions (in lowest 

dd··· d fi d b a c a + cterms), Farey a ltIon IS e ne y b EEl d = b+ d' 

The Farey tree (like any other binary tree) starts at a ver­
tex e (the root of the tree), and has branches consisting of 
sequences of left and right turns, as in the following picture. 

e 

LLL RRR 

Let En be the set of words of length n over the alphabet 
{L, R}. If U E En and v E Em' we can form uv E En+m by 
concatenation. Denote by e the empty word (we are at the 
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root of the tree when we take no turns). So we == w == ew 
for every word w, and Eo == {e}. We identify wEEn with 
the corresponding vertex of the tree reached by traveling along 
w. The length of a word is denoted by Iwl, and we will write 
Loo for the infinite word consisting of all L's. We also set for 
convenience B_ 1 == {Loo, ROO}. 

Given u E B n , the left [right} child of u is uL [uR] E B n +l . 

We now define left and right ancestors u- , u+ of u inductively 
as follows. Let e- == Loo, e+ == RCKJ, and given u E En' n 2:: 0, 
define 

(uL)- == u-, (uL)+ == u == (uR)-, (uR)+ == u+. 

So we have L- == (eL)- == e- == 1~.J00, L+ == (eL)+ == e, R- == 

(eR)- == e, R+ == (eR)+ == e+ == Roo, and so on. Note that 
u- is obtained by deleting all terminal L's from u, and then 
deleting one R. Similarly for u+. 

Next, we associate a rational nllmber to every vertex in such 
a way that each of (uL,u), (u,ult), (u-,u), (u,u+), (u-,u+) 
correspond to adjacent Farey fractions. 

00 

Define f: U En ~ Z+ X N inductively by f(LOO) = (0,1), 
n=-1 

f(Roo) == (1,1), and for u E En, n 2:: 0, f(u) == j~(u-) + f(u+), 
where addition is coordinate-wise. So j'(e) == j'(e-) + j'(e+) == 
f(Loo) + j~(Roo) == (1,2), and sim.ilarly we find j'(L) == (1,3), 
f(R) == (2,3) and so on. 

00 
Lemma 1 [flO E UEn and f(1O-) = (a,b), f(w+) = (c,d), 

n=O 
then be - ad == 1. 

Proof: The lemma is true if w == e. If w == uR, with u E 
En-I, then u- == (w-)-, and w+:= u+ == (w-)+. Let f(u-) == 
(k, l). Since (a, b) == f((w-)-) + j~((w-)+) == (k + c, l + d), we 
find be - ad == Ie - kd == 1, by induction. Similarly if w == uL. 
o 
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In particular, (a, b) and (c, d) above are relatively prime. 
Applying Lemma 1 to wL, we find that every pair (a, b) in the 

00 

image of f is relatively prime. So if we define F: U En -----+ Q 
n=-l 

by F(w) == alb, where f(w) == (a, b), then we have F(w) == 
F(w-) EB F(w+) for all w, where EB is Farey addition, and the 
pairs (F(uL), F(u)), (F(u), F(uR)), (F( u_o), F(u)), 
(F(u),F(u+)), (F(u-),F(u+)) are all adjacent Fareyfrac­
tions. It is clear from the definition of f that the denominator 
of F(w) is strictly greater than that of F(w-) or F(w+), and 

00 

it is easy to check that 0 < F(w) < 1 for all w E UEn. The 
n=O 

figure below shows the values of F on the tree for the first few 
levels. 

1 
2 

1 4 
5" 5" 

~ lfia §.19 

1 2 3 3 4 5 5 4 5 7 8 7 7 8 7 5 6 9 11 10 11 13 12 9 9 12 13 11 10 11 9 6 
7U~~~~U~~~~~U~MUUM~U~~~~~U~~~~U7 

Lemma 2 Let a E Z+, b,c,d E N, 7.vith 0 :::; alb < cld:::; 1, 
00 

and be - ad = 1. Then there is some w E UEn such that 
n=O 

F(w-) == alb and F(w+) == cld. 

Proof: If alb == 0, then c == d == 1 and we let w == e. If 
cld == 1, then b == a + 1, and we let w == Ra-l, (because 
F(Rk 

) == (k + l)/(k + 2) for all k). 
Suppose now that 0 < alb < cld < 1. Note that (a-c)/(b­

d) > O. If a - c is positive, then b+c - a - d == (1 +(a - c) (d ­
c))/c> 0, so that b-d > a-c, and 0 < (a-c)/(b-d) < 1, 
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that is, (a - c)/(b - d) and cld are adjacent Farey fractions in 
[0,1]. By induction (on the sum of the denomi11ators), there 
is a u such that F(u-) = (a - c)/(b - d), F(u+) = cld. Then 
F(u) = F(u-) EB J?( u+) = alb, and if we let w = uR, then 
F(w-) = F(u) = alb, F(w+) = .F(u+) = c/d. The case that 
a - c is negative is similar. D 

We have thus established a bijective correspondence be­
tween the vertices of the Farey tree and the rational numbers 
in (0,1). This correspondence can be extended to infinite paths 
on the tree, as follows. 

Denote by N (w) the denominator of F (w). It is easy to 
check that N(w) 2:: Iwl + 2. Also, N(wR) = N(w) + N(w+), 
by definition, and since F(w) and F(w+) are adjacent Farey 
fractions, we have 

+ (_ 1
F(w ) - F w) - N(w)N(w+)" 

It then follows that 

m 
F(w+) - F(wR ) = N(W+)(N(W~ +mN(w+)) 

for all m. Also note that 

F(w-) < F(wL) < F(w) < F(wR) < F(u+). (1) 

So the sequence F(wRm) increases to F(w+), and similarly 
the sequence F(wLm) decreases to F(w-). 

Suppose now that x = XIX2'" is an infinite path on the 
Farey tree, starting at the root. Let W n = XIX2 ... X n . Using 
the abo·ve, one proves that {F(w n )} is a Cauchy sequence, and 
so there is some Q in [0,1] such that lim F(wn ) = Q. We 

n---+(X) 

extend F to infinite paths by letting F( x) = Q. 
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2 Continued Fractions 

We now summarize the properties of the correspondence be­
tween [0, 1] and finite or infinite patrls on the Farey tree, to­
gether with its connections with continued fractions. Proofs of 
all statements follow easily from the previous results., and from 
elementary properties of continued fractions. 

Any rational number in [0,1] corresponds to a unique, fi­
nite path on the tree, and it also corresponds to precisely two 
infinite paths, obtained by attaching either LRoo or RLoo to 
the finite path. For example, 

~ = F(LRLLR) = F(LRLLRLRCXJ 
) = F(LRLLRRL CXJ 

).

19 

To obtain the continued fraction expansion corresponding 
to a finite path, first rewrite it as an infinite path. Then the 
first digit of the continued fraction expansion is 1 if the path 
starts with R, and is k + 1 if it starts with k consecutive L's. 
Then the other digits are precisely the number of the following 
consecutive L's and R's. So for example LRLLRLRoo corre­

1 
sponds to [2,1,2,1,1] == 1 and RRLLLRLoo cor­

1 

2+ 1
2 + 1+__ 

V+ 
responds to [1,2,3,1] = 1 1 ,which are the continued 

1 + 2+ 11 
3+ r 

fraction expansions of 7/19 and, 9/13. 
An irrational number in [0,1] corresponds to a unique infi­

nite path that does not terminate with an infinite string or L's 
or R's. 

Given two numbers CY, (3 in [0,1], to find Q(cy, (3) we pro­
ceed as follows. Represent both CY and fJ as infinite paths on 
the Farey tree. If there is more than one choice (that is, if at 
least one of CY, fJ is rational), choose a pair of representations 
that have the longest possible initial overlap. Then Q( CY, fJ) 
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corresponds to the last common vertex on the paths. We il­
lustrate with an example. Let a == 3/8, fJ == 5/13. Then a 
corresponds to LRLRLOCY and LR_LLROCY, and fJ corresponds to 
LRLRR~OCY and LRLRLROCY. The maximum overlap occurs for 
the pairs LRLRLOCY, LRLRLROCY, with initial overlap LRLRL, 
and so Q(3/8,5/13) == F(LRLRll) == 8/21. This procedure is 
essentially equivalent to the algorithm of Section II of [2]. 

To derive the same result using only continued fraction ex­
pansions, suppose that [aI, a2, . . ,.] and [bl, b2, . ..] are expan­
sions for a and fJ. If an expansion is finite, attach 00 at the end. 
So the expansions for 7/19 are [2,1,2,2,00] and [2,1,2,1,1,00]. 
This is to ensure that d and m below are well-defined even if 
one expansion is an initial segment of the other. Let d == 
d( a, fJ) == min{ k : ak i- bk }, m == m(a, (3) == min{ ad, bd }, and 

d-I 
M( (X, (3) = m +L ai (so that M( (x, (3) - 1 is the length of the 

'i==1 
overlap of the corresponding paths on the Farey tree). Choose 
a pair of expansions that maximizes M(a, (3). Then Q(a, /3) is 
given by the continued fraction [al,a2, ... ,ad-l,rn+ 1]. This 
procedure is essentially equivalent to the algorithm of Section 
III of [2]. 

As example, 3/8 has expansions [2,1,1,1,00] arid [2,1,2,00], 
and 5/13 has expansions [2,1,1,2,00] and [2,1,1,1,1,00]. The 
maxin1um value for Mis 6 and occ'urs for the pairs [2,1,1,1,00] 
and [2,1,1,1,1,00]. So we find again 

Q(3/8,5/13) == [2,1,1,1,2] == 8/21. 

3	 Distribution of Smallest Denomi­
nator 

We now derive a formula for the probability that the smallest 
possible denominator of any fraction between a and f3 is n, 
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when (a,;3) is randomly chosen uniformly from the triangle 
{(a,;3): 0 < as 1; 0 S;3 < a}. 

Lemma 3 Let n 2: 2, and 0 < k < n, lvith gcd(n, k) == 1. 
Then there are unique integers a, b such that 0 < a < n, a S 
b < k and ak - bn == 1 

Pro of: Let a be the unique integer in {I, ... , n - I} such that 
ak 1 (mod n). Then we have ak == 1 + bn for some b, and 
since 0 S b == k(a/n) - l/n S k - 1, the lemma is proved. 0 

As in Section 1, we denote by Bn the set of all words of 
length n over the alphabet {L, R}, and we identify the vertices 
of the tree with the elements of U:=o Bn . 

Letw E U~=oBn. DefineR(w) == (F(w),F(w+)]x[F(w-), 
F(w)). So R(w) is a subset of the triangle {(a,;3) : 0 < a S 
1,0 ::; ;3 < a}. 

Lemma 4 If w =I- u, then R(w) n ~(u) == 0. 

Proof: From Lemma 1, we have for any word w 

F(w-) == lim F(wLn
) == F(wL OO 

) < 
n---+oo 

F(wL) < F(w) < F(wR) < F(wROO 
) == 

lim F(wRn
) == F(w+). 

n---+oo 

Assume without losing generality that F(w) < F(u). Suppose 
first that w is not a subword of u and u is not a subword of 
w. Then there are (possibly empty) words v, s, t such that 
w == vLs, u == vRt, and we find 

F(w+) == F(vLsROO 
) ::; F(vLROO 

) == F(v) < F(u), 

so that (F(w), F(w+)] n (F(u), F(u+)] == 0. 
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Suppose now that u is a subword of w. Then we have 
w == uLv for some (possibly empt:v) word v, and so 

F( w+) == F(uLvROO ) :::; .F(uLROO ) == F(u), 

and again we find (F(w), F(w+)]n(F(u), F(u+)] == 0. The case 
that w is a subword of u is similar, and gives [F( w-), F( w)) n 
[F(u-), F(u)) == 0. 0 

Lemma 5 Let (a,(3) E R 2 ) with 0 < a:::; 1) 0 :::; (3 < a. Then 
there is some w E U:=o En such that (a, (3) E R( w)) and F( w) 
is the fraction with l011Jest denomi'nator bet11Jeen a and (:J. 

Proof: Let u,v be words such that F(u) == a, F(v) == (3. 
If u is not a subword of v and v is not a subword of u, let w 
be the first common ancestor of 7.1. and v. Then we can write 
u == wRs, v == wLt for some words s, t that do not end in 
Loo or Roo, and we have F(w-) < F(w) < F(w), F(w) < 
F(u) < F(w+), so that (a,(3) == (F(u),F(v)) E R(w). If v 
is a subword of u, then v must be a finite word. Choose an 
infinite word v' such that F(v') == F(v) and the words v', u 
have maximum possible overlap 11), say. Since F(u) > F(v), 
we must have u == wRt and v == wLs for some words t and 
s. Then F(w) < F(wRt) :::; F(wROO) == F(w+), and F(w-) == 
F(wLOO) :::; F(wLs) < F(w), i.e. (a,(3) == (F(u),F(v)) E 
R(w). The case that u is a subword of v is similar, and the 
last assertion follows from the algorithm described in Section 
2.0 

Lemmas 4 and (5 show that {J:~(w) : wEEn, n 2:: O} is a 
partition of the triangle {(a, (3) : 0 < a :::; 1,0 :::; (3 < a}. 

There is a bijection () : {(n, k) : n 2: 2, 0 < k < n, 
gcd(n, k) == I} ~ U~o En given by ()(n, k) == w, where 
F(w) == a/n, F(w-) == b/k and a, b are such that ak - bn == 1, 
o < a < n, 0 ::; b < k < n, as provided by Lemma 3 (see also 
the comments following Lemma 1). 
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Proposition 6 Let n ~ 2, 0 < k < n with gcd(n, k) == 1 be 
given, let w == ()( n, k), and let a, b be such that ak - bn == 1, as 
in Lemma 3. Then for any a, 13 with 0 < a :::; 1,0 :::; 13 < a; 

the fraction with lowest denominator bet11Jeen a and 13 is a/ n 
if and only if (a, 13) E R(w). 

Proof: Suppose that the fraction with lowest denominator 

between a and 13 is a/no If (b - a)/(n - k) < a, then we would 
have (3 < a/n < (b - a)/(n - k) < a, a contradiction. So 
we must have a/n == F(w) < a :::; (b - a)/(n - k) == F(w+), 
and in a similar fashion we find F(w-) < 13 < F(w), i.e. 
(a,j3) E R(w). The converse is Lemma 5. 0 

Theorem 7 If the point (a, (3) is randomly chosen uniformly 
from the triangle {(a,f3) : 0 < a :::; 1,0 ::; 13 < a}, then the 
probab1:lity that the l011Jest possible denominator of any fraction 
between a and 13 is n is given by 

n

43L k' 
1 

k<n' 
gcd(k,n)=l 

Proof: Since the area of the triangle {(a, (3) : 0 < a :::; 1,0 ::; 
13 < a} is 1/2, by Proposition 6 the probability in question is 

2 L area of R(w) = 2 2:)F(w+) - F(w))(F(w) - F(w-)), 

where the sum is over all words w such that F(w) == a/n 
for some a relatively prime to n. Using the bijective corre­
spondence described after Lemma 5, we have F(w-) == b/k, 
where 0 ::; b < k < n, ak - bn == 1, and then by definition 
F(w+) == (a - b)/(n - k). We then find 
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L (~-~) (~- ~) == 
1 1 

n-k n n k L n(n-k)nk
k<n; k<n;
 

gcd(k,n)=l gcd(k,n)=l
 

1 (1 1 ~ 2 1 
n3 = n3L k + n - k) L k' 

k<n; k<n; 
gcd(k,n)=l gcd(k,n)=l 

D 

Corollary 8 
()() 4 1

L n3L k; (2)= 1. 
n=2 k<n; 

gcd(k,n)=l 

The question arises: what is the expected value of N( 0:, (3)7 
That is, what is 

~~ "'!? (3)L.....J n 2 L.....J k' 
n=2 k<n; 

gcd(k,n)=l 

Computer estimates suggest it is close to 4. It is also natural 
to ask whether there is a simpler.) more direct proof of (2). 
Both questions have been answered by Sam Northshield [3], 
who made use of the formula 

1 1 ()() ()() 1()() 

--"''''­nmk - ((m + 1) ~~ nmk 
n=l 1<k<n;
 

gcd(k,n)=l
 



34 Baney, Beslin and De Angelis 

(where ( is the Riemann Zeta function) to show that (2) is 

equivalent to the identity t ~ n~k = (~3)' while the iden­

tity t ~ n;k = 4(~4) is used to show that the sum in (3) 

is indeed 4. 

4 The Shift Map on the Farey Tree 

The natural shift map a on {L, R}N (defined by (a(x))'i == Xi+I) 
induces a map T on [0,1] \ {1/2} via the correspondence pro­
vided by the map F defined in section 1. So T is a map 
such that T(F(x)) == F(a(x)) holds for infinite sequences x 
in {L, R}N (except for the two sequences LROO and RLoo, cor­
responding to 1/2). 

It is easy to check that if the continued fraction expansion 
of x is [aI, a2, a3, . ..], then 

It then follows that 

X if 0::; x < 1/2 
T(x) = 1-1 

{ 2 - - if 1/2 < x :::; 1 
x 

From the above formula for T we see that if a / b is a ratio­
nal number in lowest terms, then T(a/b) is a rational number 
with denominator strictly less than b. So it is evident that 
iteration of T on a rational number eventually produces one of 
the two boundary points 0, 1. Iteration on the irrationals is 
more interesting. There is a T - invariant absolutely continuous 
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measure, with density given by p(t) = t (see [4, p.93]).l + 1 ~ 
We are currently investigating hovl the map T transforms sets 
with constant N(a,j3) (the rectangles R(w) of Section 3). 

Acknowledgments: We thank Sam Northshield and Selim 
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