Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT (© by Topology Proceedings. All rights reserved.



TOPOLOGY @)\

PROCEEDINGS M

Volume 22, 1997

REMARKS ON CLOSED
RELATIONS AND A THEOREM
OF HUREWICZ

J. Chaber and R. Pol

Abstract

Two topics concerning closed symmetric relations
on metrizable spaces are discussed. Firstly, a refine-
ment of a theorem of Hurewicz is given and some of its
applications presented. Among them is an analogue
for metrizable spaces of a dichotomy of Feng for ana-
lytic sets. Secondly, closed relations on the Baire space
B(X;) are discussed. As an application a dichotomy
involving Lusin-Sierpiniski indices on coanalytic sets is
provided.
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1 Introduction.

We shall consider in this note only metrizable spaces. Our
terminology follows [Ku66]. In particular, by a perfect set in
X we mean a nonempty closed subset of X without relatively
isolated points. Therefore, a perfect set in X may be countable,
i.e., a closed copy of the rationals.

A closed relation R on X is a closed set R C X x X. The
symbol A will denote the diagonal of the square. We say that
A C X is R-homogeneous if A x A C RUA, and that A is
R-independent if A x AN R C A.

The following is one of the main results discussed in this
note.

Theorem 1.1 Let f : X — Y be a continuous mapping be-
tween metrizable spaces and let R C'Y x Y be a closed sym-
metric relation. Then either

(i) X is the union of a o-discrete collection of sets with
R-homogeneous images,
or else

(i1) X contains a perfect set P such that f embeds P home-

omorphically into Y and the closure f(P) is R-independent.

The theorem is a refinement of some results of Hurewicz
[Hu34], cf. [Ku66, §36, V, Remark]. Our proof is in fact a
modification of the original Hurewicz’s arguments. We have
replaced, however, Hurewicz’s “Haufungssysteme” by certain
dyadic systems which we found more handy, cf. also [vD87].

An immediate consequence of Theorem 1.1 is a dichotomy
of Feng [Fe93] that for any closed relation R on an analytic
space X, either X is a countable union of R-homogeneous sets,
or else X contains an R-independent Cantor set.

Another consequence is a result about sets of monotonicity
of arbitrary real-valued functions, which generalizes a theorem
of Filipczak [Fi66] concerning real-valued continuous functions
on perfect sets in the real line.
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Incidentally, Proposition 2.1 on which Theorem 1.1 is based
yields readily another classical result of Hurewicz that a first
category metrizable space contains a closed copy of the ratio-
nals.

We shall discuss these applications in Section 3.

Section 4 is concerned with closed relations on the Baire
space B(XN;). We provide in this case a variation of Theorem
1.1 involving a natural layer structure of B(R;). The proof is
based on somewhat different ideas. We give also an example
indicating limitations of possible further generalizations of our
results.

The theorem concerning B(R;) is then applied to closed
relations on coanalytic sets of irrationals. Feng [Fe93] demon-
strated that the validity for coanalytic sets of his dichotomy for
analytic sets depends on axioms for set theory. A dichotomy
we shall consider is essentially related to stratifications of co-
analytic sets into Lusin’s constituents. It is based on a link
between the constituents and the layer structure of B(Xy), dis-
cussed by G. Gruenhage and the authors in [ChGP95].

2 A refinement of a theorem of
Hurewicz.

Given R C Y x Y, we shall denote by R, the vertical section
{y' €Y :(y,¥') € R} of R.

Proposition 2.1 Let f : X — Y be a continuous mapping be-
tween metrizable spaces and let R C Y XY be a closed symmet-
ric relation containing the diagonal. Assume that there exists

a dense subset D of X such that
(1)

no neighbourhood of z is contained in f~'(Ry()) for x € D.

Then X contains a perfect set P such that f embeds P home-
omorphically into Y and the closure f(P) is R-independent.
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Proof: We define, by induction on n > 0, finite sets Ay C
A, C ... C D with A, of cardinality 2", and collections
{Un(z) : © € An} of pairwise disjoint open sets in X such
that, for n > 1,
(2) z € Up(z), diam(U,(z)) < 1/n
and diam(f(U,(z))) < 1/n for z € A,.

We start the construction by fixing an arbitrary z € D and
putting Ag = {z}, Up(z) = X. The set A,41 is constructed by
adding for each z € A, a point 7 satisfying

(3) Ze DNUL(2)\ [T (Rsw)-

Since D is dense in X, condition (1) and the fact that R is
closed assure that this can be done. Furthermore, as (f(z),
f(Z)) € R, we can choose open neighbourhoods of z and 7 so
that (2) and the following two conditions hold true:

(4) fUnsa(z)) X f(Una(2)) N R =1,

(5) Unt1(2) U Unt1(2) C Un(z).

Observe that (4) and (5) imply

(6) f(Un(z)) X f(Up(z))NR=0forz# 2" in A,, n > 1.

In particular, since R contains the diagonal of Y,

() f(Un(2))N f(Un(z")) =0 for z # 2" in A, n > 1.

Let P = (,5; U{Un(z) : € A,}. By (5) P is closed in
X. Condition (2) implies that | J_ 5, As is dense in P and (5)
assures that each z € A, is the limit of the sequence of its
duplicates T; € A;41 \ Ai, 2 > n. It follows that P is perfect.

Since f(P) C Voo U{f(Un(z)) : © € A,}, by (7), the
restriction of f to P is a homeomorphism onto f(P). Finally,

by (2), any two different points y,y’ € f(P) with dist(y,y’) >
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1/n belong to disjoint sets f(Uy(z)) and f(Up(z')), and hence
(6) implies (y,y’) ¢ R. Consequently f(P) is R-independent
and the proof is completed. O

Proof of Theorem 1.1. We can assume, without loss of
generality, that A C R. Let Z be the collection of all subsets
X' of X such that the restriction of f to X’ satisfies condition
(i) in Theorem 1.1. We shall find a decomposition

(8) X:X1UX2

with X7 in Z, and X, closed, containing a dense set D satis-
fying (1) in Proposition 2.1 for the map being the restriction
of f to X;. This will complete the proof, because then the
assumption that X, # () yields, by Proposition 2.1, condition
(i1) in Theorem 1.1.

To get the decomposition (8) we apply a standard trans-
finite exhaustion procedure, cf. [Hu34, footnote 1]. At each
stage we remove, from what remains, the union of all relatively
open nonempty subsets belonging to Z. When the procedure
terminates, we are left with a closed set X, such that

9) no nonempty open subset of X; is in Z

and X; = X \ Xy € Z, cf. [St63, Theorem 4’].

Consider the case X, # 0. To simplify the notation, assume
that X, = X. We shall find a dense in X set D satisfying (1).

For n > 0 put F, = {z € X : dist(z, X \ f~Y(Ry(r))) =
1/n}. Since D = X \ U, o Fn clearly satisfies (1), it remains
to prove that this set is dense in X. By (9) it suffices to show
that J,,q Fr is in Z. In fact, since T is closed with respect to
the unions of o-discrete collections, it is enough to show that
each F,, is locally in 7.

To this end, observe that z € F,, and dist(z,z’) < 1/n im-
ply that (f(z), f(z')) € R. Hence f(ANF,) is R-homogeneous
provided diam(A) < 1/n and the proof is completed. O
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The perfect set P constructed in the proof of Proposition
2.1 is separable (in fact, each perfect set in X contains a sepa-
rable perfect set). Example 4.2 shows that we can not demand
the perfect set P in Proposition 2.1 (or in Theorem 1.1) to be
non-separable, even if the space X is not separable.

3 Some applications of Theorem 1.1.

We call a space X hereditarily Baire if all closed subspaces
of X are Baire. The following statement generalizes Feng’s
dichotomy for analytic sets, cited in the introduction.

Corollary 3.1 Let Y be a metrizable space which is the pro-
jection of a hereditarily Baire space X C Y x NN. Then for
any closed symmetric relation R on'Y, either

(i) Y is the union of a o-discrete collection of closed R-
homogeneous sets,
or else

(i1) Y contains an uncountable perfect R-independent set.

Proof: Let us apply Theorem 1.1 with f : X — Y being the
projection parallel to the irrationals. Since f takes o-discrete
collections to collections with o-discrete refinements, and clo-
sures of R-homogeneous sets are R-homogeneous, the first pos-
sibility in Theorem 1.1 gives (i). The second possibility pro-
duces an R-independent set f(P) in Y with P being a perfect
subset of X and f being one-to-one on P. Since X is a hered-

itarily Baire space, P is uncountable and f(P) is a perfect set
witnessing (ii). O

In the next application of Theorem 1.1 we follow closely
Feng’s application of his dichotomy to sets of monotonicity of
real-valued functions, cf. [Fe93, Sec. 5].

Let us consider an antisymmetric total relation L on a space

E ie, LNL'=A,and LUL™! = E x E. A real-valued
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function ¢ : E — R is L-increasing (L-decreasing) on A C E
if for any s, in A, sLt implies ¢(s) < ¢(t) (¢(s) > ¢(t)), and
we say that ¢ is strictly L-increasing, or decreasing, on A if
the inequalities are sharp, whenever s # t¢.

Corollary 3.2 Let L C E x E be a closed antisymmetric and
total relation on a metrizable space E and let ¢ : E — R be a
real-valued function. Then either

(1) E is the union of a o-discrete collection of sets on which
@ s L-decreasing,
or else

(ii) there exists a perfect subspace P of the graph of ¢ such
that ¢ s strictly L-increasing on the projection of P onto E.

Proof: Let X = {(s,¢(s)) : s € E} be the graph of ¢ and
let p(s,p(s)) = s, q(s,¢(s)) = ¢(3) be the projections of X
onto F and R, respectively. Both p and ¢ are continuous,
and therefore F' = {(z,z’) : p(z)Lp(z') and ¢(z) > ¢(z')} is a
closed relation on X.

Define R = F U F~!. Observe that if A C X is R-
homogeneous then ¢ is L-decreasing on p(A) and if A is R-
independent then ¢ is strictly L-increasing on p(A).

Now we apply Theorem 1.1, with f being the identity, to
the relation R. Since the projection p parallel to the real line
takes o-discrete collections to collections with o-discrete refine-
ments, the assertion of Theorem 1.1 translates readily to the
dichotomy in Corollary 3.2. O

Remark 3.3 Condition (ii) in Corollary 3.2 can not be strength-
ened by demanding that ¢ is strictly increasing on a perfect
subset of E. To see this let us split the real line into Bernstein
sets A, B, cf. [Ku66, §40, 1], and let ¢ : R — R be defined by
@(z) =z for z € A and p(z) = —z for z € B.

Remark 3.4 We have included enough of Hurewicz’s argu-
ments in Proposition 2.1 to recover from its assertion yet an-
other celebrated Hurewicz’s result: metrizable spaces of first
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category contain closed copies of the rationals, cf. [Hu28, p.
88].

To see this, let us consider X = Ui>0 F; such that each F;
is a closed subset of X with empty interior. Represent each
F; as the union of a locally finite collection A; of closed sets
with the diameter not greater than 1/:. The relation R =
U{A x A: A € ;5o Ai} is closed and symmetric. Applying
Proposition 2.1, with f being the identity (and D = X), one
gets a perfect R-independent set P in X. One can assume,
without loss of generality, that P is separable, and then P hits
only countably many elements of the collection | J, A;. Since P
is R-independent, each intersection contains exactly one point.
It follows that P is a closed copy of the rationals in X.

A slightly more direct approach, resembling the one from
[Hu28, p. 88], is to modify the proof of Proposition 2.1. If F;
are closed boundary sets in X, then in the proof of Proposi-
tion 2.1, one can choose the points of A,4; \ A, and the cor-
responding neighbourhoods U,41(Z) outside of | J,, Fi. This
construction can be used to show that any regular space of first
category which satisfies the first axiom of countability contains
a closed copy of the rationals, cf. [vD87] and [De88].

4 Closed relations in the Baire space

B(R;) and Lusin’s constituents.
The Baire space B(X;) is the countable product of the discrete
space of cardinality X;. We shall consider points of B(X;) as
functions z : N — w;. The restriction of z € B(X;) to the set

{0,...,n — 1} will be denoted by z|n.
We define

(1) k(z) = min{a : z(N) C [0, a)}.

The function £ : B(®;) — w; determines a stratification of
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B(R;) into layers

(2) Be = r7({€}),

cf. [ChGP98, Sec. 2] for a discussion of the stratification.
Let us recall that a set of countable ordinals is stationary
if it intersects each closed unbounded set in w;.

Theorem 4.1 Let M be a closed subset of B(Ny) and let R be
a closed symmetric relation on M. Then either

(i) M is the union of a o-discrete collection of sets which
are either R-homogeneous or separable,
or else

(i1) for all but non-stationary many ¢ the trace B¢ N M
contains an R-independent Cantor set.

Proof: let Z be the collection of all subsets of M which are
either R-homogeneous or separable. By the transfinite exhaus-
tion procedure similar to that described in the proof of The-
orem 1.1, one can write M = J U K, where J is the union of
a o-discrete subcollection of Z, and K is a closed set with no
nonempty relatively open subset in Z.

If K =0, we get (i). Assume otherwise. Then K is non-
separable at each point and by a characterization of Stone
[St62, Sec. 2], there exists a homeomoerphism A of B(X;) onto
K. By [ChGP98, Lemma 2.4],

(3) h(Bg¢) C B for all but non-stationary many ¢&.

Let R = (h x R)"!'(RU A). Then no nonempty open set

in B(Ry) is R-homogeneous, i.e., no point of the diagonal is in
the interior of R.

From [ChGP98, Lemma 2.8] one infers that for all but non-
stationary many ¢, no point of the diagonal of B is in the
interior of R N (Bg x Be) relatively to Be x Be. Therefore,
by a modification of Mycielski’s theorem [My64, Theorem 1]
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indicated in [NP96], cf. [ChGP98, Lemma2.6], for each such

£, there exists an R-independent Cantor set C¢ C Be. This,
together with (3), implies (ii). O

If possibility (i) in Theorem 4.1 fails, (ii) provides us with
a large collection of separable R-independent sets. We can
not expect, however, to get a non-separable independent set,
even if (i) is violated in a strong way. This is illustrated by
the following example, which bears some resemblance to the
example described in [SS??, Theorem 4.3].

Example 4.2 There exists a closed symmetric relation R on

B(Ry) such that

(*) each R-homogeneous set intersects every layer Be in at
most a singleton,
and

(**) each R-independent set is separable.

To see this let, cf. (1),

(4) F = {(z,y): for somen, z|n=y|n and x(z) < y(n)}.
Let us check that

(5) AU F is closed in B(R;) x B(R;).

To this end choose (z,y
number with z(n) # y(n).
an m > n such that z(m)
(z,y) determined by z|(m
Put

) € AUF. Let n be the first
By (4) k(z) > y(n), so there exists
> y(n). Thus the neighbourhood of
+ 1) and y|(n + 1) misses AU F'.

(6) R=AUFUF™

By (5) R is a closed relation. If z # y are in B for some
€, then (4) and (2) show that {z,y} is R-independent, hence
(%) is satisfied. It remains to check (x*).
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Let us consider a non-separable set P in B(X;). We claim
that there exist an n > 0 and a point z in P such that

(7) sup{y(n):y € P and z|n = y|n} = wy.

Otherwise, one could pick inductively ag, o, ... so that z|n is
in [0,ap] X [0,a1] X ...[0,a—q] for all z in P. But then & is
bounded on P, contradicting non-separability of P.

Let z in P be as in (7). Pick y in P with z|n = y|n and
y(n) > k(z). Then (z,y) is in F. a

Now, as promised in the introduction, we shall apply Theo-
rem 4.1 to closed relations on coanalytic sets, or more precisely,
to stratifications of coanalytic sets into Lusin’s constituents.

Let Q be the set of rational numbers, let 29 be the Can-
tor space of all subsets of Q with the topology of pointwise
convergence and let

WO = {A €29 Ais well-ordered}.

Let E C N be a coanalytic set of irrationals. Each Borel
map ¢ : NN — 29 such that ¢~'(WO) = E (which can be
identified with a Borel Lusin sieve through which NN \ E is
sifted, cf. [ChGP95, 6.1]) determines a Lusin-Sierpinski index
§: E — wq, where 6(z) is the order type of ¢(z), and

Ee=67'({¢})

is the (th constituent of E corresponding to the index.

Our application will be based on a link between the con-
stituents and the stratification of the Baire space B(X;) into
layers (2). The link is provided by the following Proposition
which can be derived, with some minor adjustments, from
[ChGP95], Lemma 2.1, Remark 5.1 and Comment 6.1.

Proposition 4.3 Let E be a coanalytic subset of NN and let
E¢ be the constituents of E corresponding to a Lusin-Sierpinsk:
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indez on E. Then there exists a closed set M in B(R;) and a
continuous map m: M — E such that

(8) 71'_1(E§) = Bg nM f07°€ 2 w.

We shall say that a pairwise disjoint collection £ of subsets
of E is é-dissipated if each selector for £ intersects only non-
stationary many constituents, each in at most countable set.

Any selector of a o-discrete collection A of subsets of B(R)
intersects only non-stationary many layers B, each in at most
countable set, cf. [ChGP98, Lemma 2.1], [Po77, Theorem 1].
Thus the map 7 from Proposition 4.3 transfers o-discrete col-
lections of subsets of B(X;) to é-dissipated collections of sub-
sets of ' (one has to shrink the images to make them pairwise
disjoint, and this can be done without altering the union of the
collection).

Corollary 4.4 Let R be a closed symmetric relation on a co-
analytic set E C NN, Then for any Lusin-Sierpinski indez &
on E, either

(1) there is a 6-dissipated collection of R-homogeneous sets
which covers all but non-stationary many constituents Fg,
or else

(i1) all but non-stationary many constituents E¢ contain
an R-independent Cantor set.

Proof: Let 7 and M be as in Proposition 4.3. Define
R=(rx7) ' (RUA)

and let us apply Theorem 4.1 to the relation R. Since 7 is one-
to-one on any R-independent set, condition (ii) in Theorem 4.1
implies (i), cf. (8).

Assume that (i) in Theorem 4.1 is satisfied. Then there
exists a o-discrete collection A of ﬁ-homogeneous sets which
covers all but non-stationary many traces BeNM, cf. [ChGP98,
Lemma 2.2], [Po77, Theorem 1]. Thus the observation follow-
ing the definition of é-dissipated collections gives (i). O
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Remark 4.5 The Feng’s result concerning analytic spaces,
cited in the introduction, can be formally derived from Corol-
lary 4.4.

Indeed, let £ = NN x WO and let p, q be the projections
of E onto NN and WO, respectively. Define a Lusin-Sierpiriski
index § on E by putting §(z) = type(q(z)) for z € E.

If R is a closed symmetric relation on NN, then Corollary
4.4 applied to the relation R = (p x p)”'(RU A) on E gives
Feng’s dichotomy for R.

Remark 4.6 As pointed out by Feng [Fe93], in any model of
set theory with an uncountable coanalytic set not containing
any Cantor subset, his dichotomy fails for C' and R being the
diagonal. For any Lusin-Sierpinski index é on such C, the range
§(C) is non-stationary, cf. [ChGP95, 6.1]. One can, however,
use C' to define C and a Lusin-Sierpinski index §on C so that
6(C) is stationary, and still Feng’s dichotomy is not true for C'.

To see this, let é be a Lusin-Sierpinski index on C. Set

Q = C x WO and notice that the rank é : C' — w; defined by

8(z, A) = 6(z) + type(A) is a Lusin-Sierpiniski index on C.
Let p denote the projection of C onto C. The relation A =

(p X p)~'(A) on C witnesses the failure of Feng’s dichotomy

for C.
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