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Abstract 

Two topics concerning closed symmetric relations 
on metrizable spaces are discussed. Firstly, a refine­
ment of a theorem of Hurewicz is given and some of its 
applications presented. Among them is an analogue 
for metrizable spaces of a dichotomy of Feng for ana­
lytic sets. Secondly, closed relations on the Baire space 
B( N}) are discussed. As an application a dichotomy 
involving Lusin-Sierpinski indices on coanalytic sets is 
provided. 
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1 Introduction. 

We shall consider in this note only metrizable spaces. Our 
terminology follows [Ku66]. In particular, by a perfect set in 
X we mean a nonempty closed subset of X without relatively 
isolated points. Therefore, a perfect set in X may be countable, 
i.e., a closed copy of the rationals. 

A closed relation R on X is a closed set ReX X X. The 
symbol ~ will denote the diagonal of the square. We say that 
A c X is R-homogeneous if Ax A c R U Ll, and that A is 
R-independent if Ax A nRc Ll. 

The following is one of the main results discussed in this 
note. 

Theorem 1.1 Let f : X ~ Y be a continuous mapping be­
tween metrizable spaces and let R C Y x Y be a closed sym­
metric relation. Then either 

(i) X is the union of a a-discrete collection of sets with 
R-homogeneous images} 
or else 

(ii) X contains a perfect set P such that f embeds P home­
omorphically into Y and the closure f(P) is R-independent. 

The theorem is a refinement of some results of Hurewicz 
[Hu34], cf. [Ku66, §36, V, Remark]. Our proof is in fact a 
modification of the original Hurewicz's arguments. We have 
replaced, however, Hurewicz's "Haufungssysteme" by certain 
dyadic systems which we found more handy, cf. also [vD87]. 

An immediate consequence of Theorem 1.1 is a dichotomy 
of Feng [Fe93] that for any closed relation R on an analytic 
space X, either X is a countable union of R-homogeneous sets, 
or else X contains an R-independent Cantor set. 

Another consequence is a result about sets of monotonicity 
of arbitrary real-valued functions, which generalizes a theorem 
of Filipczak [Fi66] concerning real-valued continuous functions 
on perfect sets in the real line. 
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Incidentally, Proposition 2.1 011 which Theorem 1.1 is based 
yields readily another classical result of Hurewicz that a first 
category metrizable 'space contains a closed copy of the ratio­
nals. 

We shall discuss these applications in Section 3. 
Section 4 is concerned with closed relations on the Baire 

space B(N 1 ). We provide in this case a variation of Theorem 
1.1 involving a natural layer structure of B(N1). The proof is 
based on somewhat different ideas. We give also an example 
indicating limitations of possible further generalizations of our 
results. 

The theorem concerning B(N1 ) is then applied to closed 
relations on coanalytic sets of irrationals. Feng [Fe93] demon­
strated that the validity for coanalytic sets of his dichotomy for 
analytic sets depends on axioms for set theory. A dichotomy 
we shall consider is esserltially related to stratifications of co­
analytic sets into Lusin's constitllents. It is based on a link 
between the constituents and the layer structure of B(N1 ), dis­
cussed by G. Gruenhage and the authors in [ChGP95]. 

2	 A refinement of a theorem of 
Hurewicz. 

Given R c Y X Y, we shall denote by Ry the vertical section 
{y' E Y: (y,y') E R} of R. 

Proposition 2.1 Let f : X ---t Y be a continuous mapping be­
tween metrizable spaces and let R c= Y X Y be a closed symmet­
ric relation containing the diagonal. Assume that there exists 

a dense subset D of X such that 

(1) 
no neighbourhood of x is contained in f-l(Rf(x)) for xED. 

Then X contains a perfect set P such that f embeds P home­
omorphically into Y and the closure f(P) is R-independent. 
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Proof: We define, by induction on n ~ 0, finite sets Ao C 

A1 C ... C D with An of cardinality 2n, and collections 
{Un(x) : x E An} of pairwise disjoint open sets in X such 
that, for n ~ 1, 
(2)	 x E Un(x), diam(Un(x)) < lin 

and diam(f(Un(x))) < lin for x E An. 
We start the construction by fixing an arbitrary xED and 

putting Ao == {x}, Uo(x) == X. The set An+1 is constructed by 
adding for each x E An a point x satisfying 

(3)
 

Since D is dense in X, condition (1) and the fact that R is 
closed assure that this can be done. Furthermore, as (j'(x), 
f(x)) tJ. R, we can choose open neighbourhoods of x and x so 
that (2) and the following two conditions hold true: 

(4) 

(5)
 

Observe that (4) and (5) imply 

(6) f(Un(x)) X f(Un(x ' )) n R == 0 for x =I- x' in An, n ~ 1. 

In particular, since R contains the diagonal of Y, 

(7) f(Un(x)) n f(Un(x ' )) == 0 for x # x' in An' n 2: 1. 

Let P == nn>l U{Un(x) : x E An}. By (5) P is closed in 
X. Condition (2) implies that Un>O An is dense in P and (5) 
assures that each x E An is the umit of the sequence of its 
duplicates Xi E Ai+1 \ Ai, i 2: n. It follows that P is perfect. 

Since f(P) c nn>l U{f(Un(x)) : x E An}, by (7), the 
restriction of f to P is a homeomorphism onto f (P). Finally, 
by (2), any two different points y, y' E f(P) with dist(y, y') > 
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lin belong to disjoint sets f(Un(;L:)) and f(Un(x')), and hence 
(6) implies (y, y') tf. R. Consequently f(P) is R-independent 
and the proof is completed. 0 

Proof of Theorem 1.1. We can assume, without loss of 
generality, that ~ c R. Let I be the collection of all subsets 
X' of X such that the restriction of f to X' satisfies condition 
(i) in Theorem 1.1. We shall find a decomposition 

(8) 

with Xl in I, and X 2 closed, containing a dense set D satis­
fying (1) in Proposition 2.1 for the map being the restriction 
of f to X 2 • This will complete the proof, because then the 
assumption that X 2 =I- 0 yields, b~l Proposition 2.1, condition 
(ii) in Theorem 1.1. 

To get the decomposition (8) 'we apply a standard trans­
finite exhaustion procedure, cf. [IIu34, footnote 1]. At each 
stage we remove, from what remains, the union of all relatively 
open nonempty subsets belonging to I. When the procedure 
terminates, we are left with a closed set X 2 such that 

(9) no nonempty open subset of X 2 is in I 

and Xl == X \ X 2 E I, cf. [St63, TJheorem 4']. 
Consider the case X 2 #- 0. To si:mplify the notation, assume 

that X 2 == X. We shall find a dense in X set D satisfying (1). 
For n > 0 put Fn == {x EX: dist(x, X \ f-l(Rf (x))) 2: 

lin}. Since D == X \ Un>o Fn clearly satisfies (1), it remains 
to prove that this set is dense in X·. By (9) it suffices to show 
that Un>O Fn is in I. In fact, since I is closed with respect to 
the unions of a-discrete collections, it is enough to show that 
each Fn is locally in I. 

To this end, observe that x E F"'n and dist(x, x') < lin im­
ply that (f(x), f(x')) E R. Hence f(AnFn ) is R-homogeneous 
provided diam(A) < lin and the proof is completed. 0 
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The perfect set P constructed in the proof of Proposition 
2.1 is separable (in fact, each perfect set in X contains a sepa­
rable perfect set). Example 4.2 sllows that we can not demand 
the perfect set P in Proposition 2.1 (or in Theorem 1.1) to be 
non-separable, even if the space X is not separable. 

3 Some applications of Theorem 1.1. 

We call a space X hereditarily Baire if all closed subspaces 
of X are Baire. The following statement generalizes Feng's 
dichotomy for analytic sets, cited in the introduction. 

Corollary 3.1 Let Y be a metrizable space which is the pro­
jection of a hereditarily Ba1:re space X c Y X NN. Then for 
any closed symmetric relation R on Y) either 

(i) Y is the union of a a-discrete collection of closed R­
homogeneous sets) 
or else 

(ii) Y contains an uncountable perfect R-independent set. 

Proof: Let us apply Theorem 1.1 with f : X --t Y being the 
projection parallel to the irrationals. Since f takes a-discrete 
collections to collections with a-discrete refinements, and clo­
sures of R-homogeneous sets are R-homogeneous, the first pos­
sibility in Theorem 1.1 gives (i). The second possibility pro­
duces an R-independent set f(P) in Y with P being a perfect 
subset of X and f being one-to-one on P. Since X is a hered­
itarily Baire space, P is uncountable and f(P) is a perfect set 
witnessing (ii). 0 

In the next application of Theorem 1.1 we follow closely 
Feng's application of his dichotomy to sets of monotonicity of 
real-valued functions, cf. [Fe93, Sec. 5]. 

Let us consider an antisymmetric total relation L on a space 
E, i.e., L n L-1 == ~, and L U L-1 == E x E. A real-valued 
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function 'P : E --+ R is L-increasing (L-decreasing) on ACE 
if for any s, t in A, sLt implies 'P(s) ~ 'P(t) ('P(s) ~ 'P(t)), and 
we say that 'P is strictly L-increasing, or decreasing, on A if 
the inequalities are sharp, whenever s =I t. 
Corollary 3.2 Let LeE x E be a closed antisymmetric and 
total relation on a metrizable space E and let 'P : E --+ R be a 
real-valued function. Then either 

(i) E is the union of a a-discrete collection of sets on which 

'P is L-decreasing, 
or else 

(ii) there exists a perfect subspace P of the graph of <.p such 
that <.p is strictly L-increasing on the projection of Ponto E. 

Proof: Let X == {(s,'P(s)): sEE} be the graph of'P and 
let p(s,'P(s)) == s, q(s,'P(s)) == 'P(s) be the projections of X 
onto E and R, respectively. Both p and q are continuous, 
and therefore F == {(x, x') : p(x )Lp(x') and q(x) ~ q(x')} is a 
closed relation on X. 

Define R == F U F- 1
. Observe that if A c X is R­

homogeneous then 'P is L-decreasing on p( A) and if A is R­
independent then 'P is strictly L-increasing on p(A). 

Now we apply Theorem 1.1, with f being the identity, to 
the relation R. Since the projection p parallel to the real line 
takes a-discrete collections to collections with a-discrete refine­
ments, the assertion of Theorem 1.1 translates readily to the 
dichotomy in Corollary 3.2. D 

Remark 3.3 Condition (ii) in Corollary 3.2 can not be strength­
ened by demanding that 'P is strictly increasing on a perfect 
subset of E. To see this let us split the real line into Bernstein 
sets A, B, cf. [Ku66, §40, I], and let 'P : R --+ R be defined by 
<p(x) == x for x E A and <p(x) == -x for x E B. 

Remark 3.4 We have included enough of Hurewicz's argu­
ments in Proposition 2.1 to recover from its assertion yet an­
other celebrated Hurewicz's result: metrizable spaces of first 
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category contain closed copies of the rationals, cf. [Hu28, p. 
88]. 

To see this, let us consider X == Ui>O Fi such that each Fi 

is a closed subset of X with empty interior. Represent each 
Fi as the union of a locally finite collection Ai of closed sets 
with the diameter not greater than Iii. The relation R == 
U{A x A : A E Ui>O Ai} is closed and symmetric. Applying 
Proposition 2.1, with f being the identity (and D == X), one 
gets a perfect R-independent set P in X. One can assume, 
without loss of generality, that P is separable, and then P hits 
only countably many elements of the collection Ui Ai. Since P 
is R-independent, each intersection contains exactly one point. 
It follows that P is a closed copy of the rationals in X. 

A slightly more direct approach, resembling the one from 
[Hu28, p. 88], is to modify the proof of Proposition 2.1. If Fi 

are closed boundary sets in X, then in the proof of Proposi­
tion 2.1, one can choose the points of An+1 \ An and the cor­
responding neighbourhoods Un +1(x) outside of Ui<n Fi . This 
construction can be used to show that any regular space of first 
category which satisfies the first axiom of countability contains 
a closed copy of the rationals, cf. [vD87] and [De88]. 

4 Closed relations in the Baire space 
B(N1) and Lusin's constituents. 

The Baire space B(~I) is the countable product of the discrete 
space of cardinality ~I. We shall consider points of B(~I) as 
functions x : N --t WI. The restriction of x E B(~I) to the set 
{a, ... ,n - 1} will be denoted by xln. 

We define 

(1) K(X) == min{a : x(N) c [0, a)}. 

: ----7The function K B(~I) WI determines a stratification of 
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B(N I ) into layers 

(2) 

cf. [ChGP98, Sec. 2] for a discussion of the stratification. 
Let us recall that a set of coulltable ordinals is stationary 

if it intersects each closed unbounded set in WI. 

Theorem 4.1 Let M be a closed .subset of B(N I ) and let R be 
a closed symmetric relation on M. Then either 

(i) M is the union of a a-discrete collection of sets which 
are either R-homogeneous or separable) 
or else 

(ii) for all but non-stationary many ~ the trace Be n M 
contains an R-independent Cantor' set. 

Proof: let I be the collection of all subsets of M which are 
either R-homogeneous or separable. By the transfinite exhaus­
tion procedure similar to that described in the proof of The­
orem 1.1, one can write M == J U !{, where J is the union of 
a a-discrete subcollection of I, and !{ is a closed set with no 
nonempty relatively open subset ill I. 

If !{ == 0, we get (i). Assume otherwise. Then!{ is non­
separable at each point and by a characterization of Stone 
[St62, Sec. 2], there exists a homeom0rphism h of B(N I ) onto 
!{. By [ChGP98, Lemma 2.4], 

(3) h(Be) c Be for all but non·-stationary many ~. 

Let R =jh x ht1 (R U L}.). Then no nonempty open set 

in B(N I ) is R-h~mogeneous, i.e., no point of the diagonal is in 
the interior of R. 

From [ChGP98, Lemma 2.8] one infers that for all but non­
stationary many ~, no point of the diagonal of Be is in the 

interior of Rn (Be x Be) relatively to Be x Be. Therefore, 
by a modification of Mycielski's theorem [My64, Theorem 1] 
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indicated in [NP961 cf. [ChGP98, Lemma2.6], for each such 
~, there exists an R-independent Cantor set Ce C Be. This, 
together with (3), implies (ii). D 

If possibility (i) in Theorem 4.1 fails, (ii) provides us with 
a large collection of separable R-independent sets. We can 
not expect, however, to get a non-separable independent set, 
even if (i) is violated in a strong way. This is illustrated by 
the following example, which bears some resemblance to the 
example described in [SS??, Theorem 4.3]. 

Example 4.2 There exists a closed symmetric relation R on 
_B('N 1 ) such that 

(*) each R-homogeneous set intersects every layer Be in at 

most a singleton, 

and 

(**) each R-independent set is separable. 

To see this let, cf. (1), 

(4) F == {(x,y): for some n, xln ==-Yln and K(X)::; y(n)}. 

Let us check that 

(5) 

To this end choose (x, y) t/. ~ U F. Let n be the first 
number with x(n) =I- y(n). By (4) K(X) > y(n), so there exists 
an m 2: n such that x(m) 2: y(n). Thus the neighbourhood of 
(x, y) determined by x I(rr~ + 1) and y I(n + 1) misses ~ U F. 

Put 

(6) R == ~ U F U F-1 

By (5) R is a closed relation. If x =/: yare in Be for some 
~,then (4) and (2) show that {x,y} is R-independent, hence 
(*) is satisfied. It remains to check (**). 
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Let us consider a non-separable set P in B(~I). We claim 
that there exist an n 2 °and a point x in P such that 

(7) sup{y(n) : yEP and J~ln == Yin} == WI· 

Otherwise, one could pick inducti"vely ao, aI, ... so that xln is 
in [0, ao] X [0, aI] X ... [0, an-I] for all x in P. But then'" is 
bounded on P, contradicting non-separability of P. 

Let x in P be as in (7). Pick y in P with xln == Yin and 
y(n) > ",(x). Then (x,y) is in F. D 

Now, as promised in the introdllction, we shall apply Theo­
rem 4.1 to closed relations on coanalytic sets, or more precisely, 
to stratifications of coanalytic sets into Lusin's constituents. 

Let Q be the set of rational nl1mbers, let 2Q be the Can­
tor space of all subsets of Q witrL the topology of pointwise 
convergence and let 

WO == {A E 2Q 
: A is well-ordered}. 

Let E C NN be a coanalytic set of irrationals. Each Borel 
map c/J : NN ~ 2Q such that c/J-l(WO) == E (which can be 
identified with a Borel Lusin sieve through which NN \ E is 
sifted, cf. [ChGP95, 6.1]) determines a Lusin-Sierpinski index 
8 : E ---t WI, where 8(x) is the order type of ¢(x), and 

is the eth constituent of E corresponding to the index. 
Our application will be based on a link between the con­

stituents and the stratification of the Baire space B(~I) into 
layers (2). The link is provided b~{ the following Proposition 
which can be derived, with some minor adjustments, from 
[ChGP95], Lemma 2.1, Remark 5.1. and Comment 6.1. 

Proposition 4.3 Let E be a coanalytic subset of NN and let 
Ee be the constituents of E corresponding to a Lusin-Sierpiriskl: 
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index on E. Then there exists a closed set M in B(N1 ) and a 
continuous map 7r : M --+ E such that 

(8)
 

We shall say that a pairwise disjoint collection [, of subsets 
of E is 8-dissipated if each selector for [, intersects only non­
stationary many constituents, each in at most countable set. 

Any selector of a a-discrete collection A of subsets of B(~l) 

intersects only non-stationary many layers Be, each in at most 
countable set, cf. [ChGP98, Lemma 2.1], [Po77, Theorem 1]. 
Thus the map 7r from Proposition 4.3 transfers a-discrete col­
lections of subsets of B(N 1 ) to 8-dissipated collections of sub­
sets of E (one has to shrink the images to make them pairwise 
disjoint, and this can be done without altering the union of the 
collection) . 

Corollary 4.4 Let R be a closed symmetric relation on a co­
a'nalytic set E C NN. Then for any Lusin-Sierpiriski index 8 
on E 

J 
either 

(i) there is a 8-dissipated collection of R-homogeneous sets 
which covers all but non-stationary many constituents EeJ 

or else 
(ii) all but non-stationary many constituents Ee contain 

an R-i'ndependent Cantor set. 

Proof: Let 1r and M be as in Proposition 4.3. Define 

R== (1r x 1r)-l(R u ~) 

and let us apply Theorem 4.1 to the relation R. Since 7r is one­
to-one on any R-independent set, condition (ii) in Theorem 4.1 
implies (ii), cf. (8). 

Assume that (i) in Theorem 4.~ is satisfied. Then there 
exists a a-discrete collection A of R-homogeneous sets which 
covers all but non-stationary many traces BenM, cf. [ChGP98, 
Lemma 2.2], [Po77, Theorem 1]. Thus the observation follow­
ing the definition of 8-dissipated collections gives (i). 0 
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Remark 4.5 The Feng's result concerning analytic spaces, 
cited in the introduction, can be formally derived from Corol­
lary 4.4. 

Indeed, let E == NN X WO and let p, q be the projections 
of E onto NN and WO, respectively. Define a Lusin-Sierpinski 
index 8 on E by putting 8(x) == t:ype(q(x)) for x E E. 

If R is a closed symmetric relation on NN, then Corollary 
4.4 applied to the relation R == (p X p)-I(R U ~) on E gives 
Feng's dichotomy for R. 

Remark 4.6 As pointed out by Feng [Fe93], in any model of 
set theory with an uncountable coanalytic set not containing 
any Cantor subset, his dichotomy fails for C and R being the 
diagonal. For any Lusin-Sierpinski index 8 on such C, the range 

8(C) is non-stat~nary, cf. [ChGP95, 6.1]. one can , however, 

~s~ C to define C and a Lusin-Sierpinski index 8 on C so th~t 

8(C) is stationary, and still Feng's dichotomy is not true for C. 
___ To see this, let 8 be a Lusin-SierpiJiski index on C. Set 
C == C X WO and notice that the rank 8 : C --+ WI defined by 
8(x, A) = 8(x) + type(A) is a Lusi~-Sierpinski index on C:.-.­

Let p denote the projection of (7 onto C. The relation ~ == 
(p x~ptl(b.) on C witnesses the failure of Feng's dichotomy 

for C. 
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