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Abstract 

We investigate relationships between confluent, serni­
confluent, weakly confluent, weakly arc-preserving and 
universal mappings between continua, especially onto 
trees and dendrites. 

A continuum means a compact, connected metric space, 
and a mapping means a continuous transformation. A map­
ping f : X --+ Y between topological spaces X and Y is said 
to be universal provided that it has a coincidence with every 
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mapping from X into Y, or - more precisely - provided that 
for every mapping 9 : X ----+ Y there exists a point x E X 
such that f(x) == g(x). Obviously any universal mapping must 
be surjective. The concept of a universal mapping has been 
introduced in [16, p. 603] by W. Holsztynski. 

Questions concerning universal mappings are related to fixed 
point questions. If there exists a universal mapping from X 
onto Y, then for any mapping h : Y ----+ Y defining 9 : X ----+ Y 
by 9 == h 0 f we get, by the universality of f, a point x E X 
such that g(x) == h(f(x)) == f(x). Putting y == f(x) E Y we 
get h(y) == y, so the mapping h has a fixed point. Thus we 
have the following (well known) result. 

1. Statement A universal mapping from X onto Y can exist 
only if Y has the fixed point property. 

Holsztynski has proved that each mapping from a connected 
space onto a chainable continuum is universal [17, Theorem 3, 
p. 437]. Chainability is essential in this result: one can easily 
define a mapping from an arc onto a simple triod which is not 
universal. 

An arc and a simple triod are the simplest examples of 
trees. By a tree is meant a linear graph (i.e., the union of a 
finite collection of arcs) containing no simple closed curve. 

A. D. Wallace has shown that any monotone mapping (i.e., 
a mapping with connected point-inverses) from a continuum 
onto a tree is universal [33, (D), p. 759]. One can ask for 
what (larger) classes of mappings this result is true. Recall 
that a mapping f : X ----+ Y between continua is said to be 
weakly monotone provided that for every subcontinuum Q of 
Y such that int Q =I 0 and for every component C of f- 1 (Q) 
the equality f( C) == Q holds. H. Schirmer (who renamed uni­
versal mappings coincidence producing ones) has generalized 
Wallace's result in [31, Theorem 1, p. 418] proving that if a 
mapping f : X ----+ Y from a continuum X onto a tree Y is 
weakly monotone, then f is universal. 
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Recall that if the domain space X is a locally connected 
continuum, then weakly monotone mappings onto Y coincide 
with quasi-monotone ones as well as with OM-mappings (i.e., 
compositions of monotone and open ones), see e.g. [22, (6.2), 
p. 51]. A wider class of mappings is that of confluent ones. A 
mapping I : X ---t Y between continua X and Y is said to be 
conflue'nt provided that for every subcontinuum Q of Y and for 
every component C of 1-1 (Q) the equality I( C) == Q holds. 
Since for trees Y the only subcontinua with the empty interior 
are singletons, weakly monotone mappings onto trees coincide 
with confluent ones. So, Schirmer's result can be reformulated 
as follows. 

2. Theorem (Schirmer) If a mapping I : X ---t Y from a 
continuum X onto a tree Y is confluent, then I is universal. 

One can try to generalize Theorem 2 extending the class 
of continua to which the range space belongs. Assuming that 
Y is one-dimensional, one can consider the following. A con­
tinuum Y is said to be tree-like provided that it is the inverse 
limit of trees. It is known that each tree-like continuum is 
hereditarily unicoherent, i.e., the intersection of every two of 
its subcontinua is connected. A hereditarily unicoherent and 
hereditarily decomposable continuum'is called a A-dendroid; if 
it is additionally arcwise connected, then it is called a den­
droid. A locally connected continuum containing no simple 
closed curve is named a dendrite. Equivalently, a dendrite is 
a locally connected dendroid. If a dendrite has finitely many 
end points, then it is a tree. A continuum is said to be heredi­
tarily arcwise connected provided that each of its subcontinua 
is arcwise connected. 

3. Questions Let f : X ---t Y be a surjective mapping be­
tween continua. Under what conditions about f and about 
Y the ll1apping f is universal? In particular, is f universal 
if f satisfies some conditions related to confluence and Y is 
a) a dendrite, b) a dendroid, c) a A-dendroid, d) a tree-like 
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continuum having the fixed point property? 

Note that each A-dendroid has the fixed point property [23], 
while tree-like continua are known without this property [1]. 
Thus the restriction in Question 3 d) to tree-like continua Y 
having the fixed point property is necessary by Statement 1. 

Relationships between universality of the mapping and var­
ious conditions expressed in terms associated to confluence of 
the mapping are known from the literature. Some of them are 
recalled in the paper. For new results concerning the implica­
tions mentioned in Questions 3 see below Fact 5, Theorems 25, 
35, 39 and 43, Corollaries 36, 37 and 44, and Examples 15, 33 
and 41. 

Classes of mappings that contain confluent mappings are 
the classes of semi-confluent and of weakly confluent mappings. 
A mapping I : X ---+Y between continua is said to be: 
- semi-confluent provided that for every subcontinuum Q of 
Y and for every two components C1 and C2 of I-I (Q) either 
I(C1 ) C I(C2 ) or I(C2 ) c I(C1 ); 

- weakly confluent (pseud,o-confluent) provided that for every 
(irreducible) subcontinuum Q of Y there is a continuum C in 
X such that I(C) == Q. 

Thus each confluent mapping is semi-confluent, each semi­
confluent is weakly confluent (see [22, Theorem (3.8), p. 13]), 
and each weakly confluent is pseudo-confluent. Properties of 
weakly confluent mappings between continua (on graphs, in 
particular) were investigated e.g. in [10], [26], [32], and in 
many other articles. Relations between universal mappings 
and weakly confluent ones, especially for mappings between 
trees, were studied in [27], [8], [24], [25], and in some other pa­
pers. A characterization of universal mappings between trees 
has been obtained by Eberhart and Fugate in [9]. 

Among other results the following theorem is known [27, 
Corollary 2.6, p. 225]. 

4. Theorem (Nadler) Each universal mapping from a contin­
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uum onto a locally connected continuum is weakly confluent. 

Local connectedness of the range space is essential in the 
result: examples are constructed in [27, (2.14), (2.16) and Re­
mark (2.17), p. 227-229] of universal mappings between plane 
curves that are not pseudo-confluent even. Further, the result 
cannot be strengthened to get semi-confluence in the conclu­
sion, as the next fact shows. 

5. Fact There is a universal mapping f : [0,1] -t [0,1] which 
is not semi-confluent. 

Proof: The mapping f defined by 

1/4 - x, for x E [0,1/4], 
f(x) = 2x - 1/2, for x E (1/4,3/4),

{ 
7/4 - x, for x E [3/4,1] 

has the needed properties. 

Concerning the opposite implication, from weak confluence 
to universality of a mapping onto a locally connected contin­
uum, Nadler constructs in [27, Example 3.3, p. 231] an exam­
ple of a monotone mapping between 3-~ubes that is not univer­
sal, and gives some conditions under which a weakly confluerlt 
mapping onto an n-cube is universal. Further, for mappings 
between trees (i .e., when both domain and range are trees), re­
call the following result, which was announced in [8, Theorem 
3, p. 212], and which has been proved in [25, Theorem 4.9, p. 
808]. 

6. Theorem (Eberhart and Fugate, Marsh) Each weakly con­
fluent self-mapping on a tree is universal. 

Theorems 4 and 6 imply the following result. 

7. Corollary Let X be a tree. A self-mapping f : X -t X 1,S 

universal if and only if it is weakly confluent. 
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An example is constructed in [8, Example 2, p. 213] of 
a weakly confluent mapping between different trees which is 
not universal (see also [24, Example 2, p. 385]. We repeat its 
construction here, because we also will use it later, to describe 
other examples. 

8. Example (Eberhart and Fugate, Marsh) There exists a 
weakly confluent mapping between different trees which is not 
universal. 

Proof: Denote by xy the straight line segment in the plane 
with end points x and y. Take a straight line segment pq, 
and let segments ab and cd be perpendicular to pq so that 
p E ab \ {a, b} and q E cd \ {c, d}. Put H = pq U ab U cd. Let 
T be a triod with the vertex z whose arms are straight line 
segments zu, zv and zw. To describe the needed mappings 
pick up points r, 8 and t in the segment pq C H ordered so 
that p < r < 8 < t < q, and a point y E zw \ {z, w} CT. 
Define f : H ---t T and 9 : H ---t T as piecewise linear mappings 
determined by their values on the mentioned points of H as 
follows. 

f(a) w, f(b) = f(c) = u, f(d) = f(r) = y, 

f(p) f(q) = f(8) = z, f(t) = v; 
g(a) g(b) == g(p) == v, g(c) == g(d) == g(q) == g(t) == w, 

g(8) u, g(r) = z. 

The reader can verify that f is weakly confluent, and that f 
and 9 have no coincidence point. 

Let us mention that, according to the remark in [8, Exam­
ple 2, p. 213], one can modify the above example in such a 
way that both mappings between some trees are weakly con­
fluent, and still not have a coincidence point. The mapping in 
Example 8 is not semi-confluent. A stronger example is shown 
below, in Example 15: there is a semi-confluent mapping be­
tween trees which is not universal. 
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So, as it is observed in [8, p. 213], in the light of Examples 
8 and 15 it is clear that if we wish to conclude that a map­
ping between trees is universal, we need a stronger property 
than weak confluence (ever stronger than semi-confluence). A 
sufficiently strong condition is given by the notion of a weakly 
arc-preserving mapping, [8, p. 213]. 

A mapping f : X ---+ Y between trees is said to be arc­
preserving provided that it is surjective, and for each arc A c 
X its image f(A) is either an arc or a point; it is weakly arc­
preserving provided that there is a subtree X' of X such that 
the restriction fiX' : X' ---+ Y is arc-preserving. 

It is announced in [8, Theorem 5 (a), p. 213] that ev­
ery surjective confluent mapping between trees is weakly arc­
preserving. The result is a consequence of some more general 
one: the same conclusion holds for wider classes of spaces. The 
next theorem show this. However, to formulate it, we have to 
extend the concepts of an arc-preserving and a weakly arc­
preserving mapping to the case when both the domain and 
the range spaces belong to wider classes than one of trees. 
The former extension is known, because the concept of an arc­
preserving mapping has already been considered on arbitrary 
(mainly locally connected) continua, not necessarily on trees, 
see [34], [13], [14], and [15] for example. Thus, as it is used 
in the above quoted papers, a mapping between arcwise con­
nected continua is arc-preserving if it is surjective, and for 
each arc in the domain its image is either an arc or a point. 
Along the same lines of ideas the definition of a weakly arc­
preserving mapping can be extended to be applied to arbitrary 
continua. So, let us accept the following definition. A mapping 
f : X ---+ Y between continua is said to be:
 
- arc-preserving provided that it is surjective, and for each arc
 
A c X its image f(A) is either an arc or a point;
 
- weakly arc-preserving provided that there is an arcwise con­

nected subcontinuum X' of X such that the restriction fiX' :
 
x' ----t Y is arc-preserving.
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Note that a mapping can be arc-preserving and not weakly 
arc-preserving: see an example in Remark 17 b) below. 

The following statement is a consequence of the definitions. 

9. Fact If X is an arcwise connected continuum, then each 
arc-preserving mapping defined on X is weakly arc-preserving. 

A mapping I : X ~ Y is called an OM-mapping provided 
that it is the composition of a monotone and an open mapping, 
i.e., there exist a space Z and mappings 11 : X ~ Z and 12 : 
Z ~ Y such that 11 is monotone, 12 is open, and f == f2 a fl. 
Note that since each monotone as well as each open mapping 
between compact spaces is confluent, and since composition 
of two confluent mappings is confluent (see [5, V, VI and III, 
p. 214]), it follows that each OM-mapping is confluent. The 
inverse implication holds if the range Y is a locally connected 
continuum, [20, Corollary 5.2, p. 109]. 

To show the mentioned theorem we need one more result. 
The result, besides its application in the proof of Theorem 11 
below, is interesting by itself. It resembles a mapping char­
acterization of hereditarily unicoherent continua saying that 
a continuum is hereditarily unicoherent if and only if every 
monotone mapping defined on it is hereditarily monotone, see 
[22, (6.10), p. 53]. 

10. Theorem Every monotone mapping defined on a heredi­
tarily arcwise connected continuum onto a continuum contain­
ing no simple closed curve is hereditarily monotone. 

Proof: Let I : X --+ Y be a monotone mapping from a hered­
itarily arcwise connected continuum onto a continuum Y con­
taining no simple closed curve. Suppose on the contrary that f 
is not hereditarily monotone, i.e., that there exists a subcontin­
uum G of X such that fiG: G --+ f( G) c Y is not monotone. 
Thus there is a point q E f (G) such that C n j-l (q) is not 
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connected. Since C is arcwise connected, one can find an arc 
ACe with end points a, b such that A n C n j-1 (q) == {a, b} 
and a, b belong to two different components of en j-1(q). Fix 
a point pEA \ {a, b} and observe the following. 

CLAIM. There exists a sequence of points {qn} in Y \ {q} 
such that lim qn == q and 

where ap and bp are subarcs of A with the respective end points. 
Indeed, otherwise one could find points r1 E ap and r2 E bp 

such that j (r1) == j (r2) and that for each pair of points Xl 
and X2 with Xl Earl \ {a,r1} C A and X2 E br2 \ {b,r2} C A 
we have f(X1) =f f(X2). Hence the set f( ar1) U f(br2) would 
contain a simple closed curve, a contradiction. Thus the claim 
is shown. 

Let the symbol ~ stand for the ordering of the arc ap from 
p to a and for the ordering of the arc bp from p to b. Further, 
for each n E N, let an be the first (a~ be the last) point of 
ap n j-1 (qn) with respect to this ordering on ape Similarly, 
let bn be the first (b~ be the last) point of bp n j-1(qn) with 
respect to ~ on bp. We obviously have lim an == lim a~ == a 
and lim bn == lim b~ == b. Replacing the sequence {qn} by some 
of its subsequences we can additionally assume that 

and qi =f qj for i =f j. 

For each n E N let An C j-1 (qn) be an arc irreducible with 
respect to intersecting both ana~ n j-1 (qn) and bnb~ n j-1 (qn), 
and denote by a~ and b~ the respective end points of An. Then 
the union 

b"b" 2 U a2a3 U b"b" U AU" "uU == A1 U 1 2 U A "" U A3 3 4 4 a4 aS • •• 

is homeomorphic to the closed half line [0, 00 ), and its compact­
ification cl U has the nondegenerate remainder LsAn C /-1 (q) 
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disjoint with U. Hence clU C X is not arcwise connected, a 
contradiction. The proof is complete. 

Now we are able to formulate and prove the above men­
tioned result. 

11. Theorem Every confluent mapping from a hereditarily 
arcwise connected continuum onto a dendrite is 1veakly arc­
preservzng. 

Proof: Let a continuum X be hereditarily arcwise connected, 
Y be a dendrite, and a mapping f : X ~ Y be a confluent 
surjection. Since each confluent mapping onto a locally con­
nected continuum is an OM-mapping, [20, Corollary 5.2, p. 
109], there exists a continuum Z and mappings f1 : X ~ Z 
and f2 : Z ~ Y such that f1 is monotone, f2 is open, and 
f == f2 0 fl. Note that (by Whyburn's monotone-light fac­
torization· theorem, [35, (4.2), p. 143]) the open mapping f2 
is light. Recall that for every dendrite D, for every compact 
space Z and for every light open mapping f2 : Z ~ f2 (Z) == Y 
with DeY there exists a homeomorphic copy Z' of D in Z 
such that the restriction f21 Z' : Z' ~ f (Z') == D is a home­
omorphism, [35, (2.4), p. 188]. Taking D == Y we find a 
subcontinuum Z' of Z such that the restriction f21Z' : Z' ~ Y 
is a homeomorphism. Let X' == 11- 1 (Z'). By monotoneity of 11 
the set X' is a subcontinuum of X, and since X is hereditarily 
arcwise connected, X' is arcwise connected. By Theorem 10 
the restriction II IX' : X' ~ II (X') == Z' is monotone. There­
fore fiX' == (f2IZ') 0 (f1IX'); thus the restriction fiX' is the 
composition of a monotone mapping and a homeomorphism, 
so it is monotone. Further, it is a surjection and, by Theorem 
10, it is hereditarily monotone. Since the monotone image of 
an arc is an arc, [35, (1.1), p. 165], the restriction fiX' is 
arc-preserving, and thus I is weakly arc-preserving, as needed. 
The proof is complete. 

12. Corollary Every confluent mapping from a dendroid onto 
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a locally connected continuum is weakly arc-preserving. 

Proof: Let X be a dendroid, Y be a locally connected con­
tinuum, and a mapping f : X ~ Y be a confluent surjection. 
Since each subcontinuum of a dendroid is a dendroid, [3, (49), 
p. 240], each dendroid is hereditarily arcwise connected. Since 
each confluent image of a dendroid is a dendroid, [5, Corollary 
1, p. 219], and since Y is locally connected, we infer that Y is 
a dendrite. Now the conclusion follows from Theorem 11. 

The heredity of the arcwise connectedness of the domain is 
an essential assumption in Theorem 11, as is shown in the next 
example. In its formulation the concept of an arc of pseudo­
arcs is used as defined in [2, p. 173], where this continuum is 
named "a continuous snake-like arc of pseudo-arcs". 

13. Example There exists a monotone and not weakly arc­

preserving mapping from the cone over an arc of pseudo-arcs 
onto a simple triode ' 

Proof: Let P stand for an arc of pseudo-arcs, and let 1r : P ~ 

[0, 1] be the natural projection. Thus 1r is a monotone and 
open mapping whose point-inverses are pseudo-arcs. Consider 
the mapping 

cone(1r): cone(P) ~ cone ([0, 1]). 

Put X == cone (P), T == cone ([0, 1]),11 == cone (1r), and note 
that the continuum X is uniquely arcwise connected (since P 
does not contain any arc) and unicoherent (since each cone is 
contractible, and thus unicoherent, see [19, §54, VI, Theorem 
3, p. 375; §57, I, Theorem 9, p. 435 and II, Theorem 2, p. 
437]). Note further that T is a triangular disk with the base 
[0,1] (we denote the vertex of T by v), and that the mapping 
11 : X -+ T is monotone by its definition. Further, denote by 
Y the simple triod contained in T being the union of the base 
[0, 1] of T and the straight line segment joining the vertex v of 
T with the middle point 1/2 of the base. Let 12 : T ~ Y be a 
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monotone retraction such that f2 1 (0) == 0 and f2 1 (1) == 1 (i.e., 
the point-inverses of the two end points of Y distinct from v 

are singletons). Then the composition f == f2 0 11 : X ----r Y is 
monotone. We will show that it is not weakly arc-preserving. 

To this goal suppose that there is an arcwise connected 
subcontinuum X' of X such that f(X') == Y and that fiX' 
is arc-preserving. Choose points a E X' n f- 1 (0) and b E 
X' n f- 1 (1), and observe that the only arc A joining a with 
b in X is the union of two segments: from the vertex of X to 
a and to b, respectively. By its uniqueness, A is contained in 
X'. However, f(A) == Y by the definition of f, so fiX' is not 
arc-preserving. The argument is complete. 

14. Example There are dendroids X and Y and an open 

(thus confluent) surjective mapping f : X ----r Y which is not 

weakly arc-preserving. 

Proof: The dendroid X will be constructed in the plane }R2. 

Let the set B == cl{(2,1/n) : n E N} stand for the base of 
the cone C with the vertex v == (-1,0), let A denote the 
straight line segment with end points (-2,0) and (-1,0), and 
put X+ == A U C. Thus X+ is a dendroid lying in the upper 
(closed) half-plane. Let s : }R2 ----r }R2 be the central symmetry 
with respect to the origin c == (0,0), i.e., s((x,y)) == (-x, -y). 
Define X == X+ U s(X+). Consider an equivalence relation * 
on X that identifies each point p E X with its image s(p) EX. 
Let Y stand for the quotient space X / * and let f : X ~ Y be 
the quotient mapping. Then f is open, thus confluent, [5, VI, 
p. 214], whence it follows that Y is a dendroid, [5, Corollary 1, 
p. 219]. Note that Y has the arc from f((2, 0)) to f((O, 0)) as 
a continuum of convergence. Thus Y is not locally connected. 
To verify that f is not weakly arc-preserving take an arbitrary 
subcontinuum X' of X with f(X') == Y. Thus X' contains 
either infinitely many points of B or infinitely many points of 
s(B). Without loss of generality we can assume the former 
possibility. Then the limit point a == (2,0) of B is in X', and 
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taking a point b E B \ {a} we see that the arc ab is mapped 
under f onto the triad with vertex f( v) whose arms are the 
arcs f(v)f(a), f(v)f(b) and f(v)f(c). Therefore there is no 
subcontinuum X' of X with f(X') == Y and such that the 
restriction fiX' is arc-preserving. 

Example 8 shows that weak confluence of a mapping be­
tween trees does not imply its universality. However, an ex­
ample can be constructed that shows much more: the univer­
sality of a mapping between trees cannot be achieved even if 
the mapping is semi-confluent. The needed mapping is de­
scribed in [24, Example 2, p. 385], where it is shown that it 
is weakly confluent and not universal. We will show that it is 
semi-confluent and not weakly arc-preserving. To this end we 
start with recalling the definition of the mapping. 

15. Example (Marsh) There exists a semi-confluent map­

ping between trees which is neither universal nor weakly arc­
preservzng. 

Proof: As in the proof of Example 8, denote by xy the straight 
line segment in the plane with end points x and y. Take a 
straight line segment pq, choose points PI and ql in pq such 
that P < PI < ql < q in an order < of pq from P t~ q, and 
let segments ab and cd be perpendicular to pq at PI and ql, 
respectively, so that PI E ab \ {a, b} and ql E cd \ {c, d}. Put 
H == pq U ab U cd. Let T be a simple triod with the vertex 
z whose arms are straight line segments zu, zv and ZW. To 
describe the needed mapping pick up points r, sand t in the 
segment PI ql C pq C H ordered so that PI < r < s < t < ql, 
and points VI E ZV \ {z, v} and WI E ZW \ {z, w}. Define 
f : H ~ T as a piecewise linear mapping with respect to the 
triangulation of H described above, determined by its values 
on the mentioned points of H as follows. 

f(a) == f(c) == u, f(b) == f(t) == WI, f(d) == f(r) == VI, 

f (p) == v, f (q) == w, f (PI) == f (s) == f (ql) == Z. 
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It is shown in [24, Example 2, p. 385] that I is not univer­
sal. We will show tllat it is semi-confluent. So, let Q be a 
subcontinuum of Y. Consider four cases. 

1) If {VI, WI} c Q, then 1-1 (Q) is connected. 
2) If z E Q and exactly one of the two points VI, WI is in 

Q, then f- 1 (Q) has two components, one of which is mapped 
onto Q. 

3) If z E Q and neither VI nor WI is in Q, then /-1 (Q) has 
three components, two of which are mapped onto Q. 

4) If z ft. Q, then f-l(Q) has at most four components. At 
least one of them is mapped onto Q, and images of any other 
two are equal. 

Therefore, in any case, the condition of semi-confluence of I 
is satisfied. To see that f is not weakly arc-preserving suppose 
the contrary. Thus there exists an arcwise connected subset X' 
of X such that fIX' : x' ~ Y is an arc-preserving surjection. 
Since f-l(V) == {p} and 1-1(w) == {q}, we infer that p,q E X', 
whence pq C X'. Further 1-1 (u) == {a, c}, so either a E X' or 
c E X' (or both). If a E X', then the arc apl U PI q is contained 
in X'; however, its image I( apl U PI q) is the triod in Y with 
the end points u, VI and w. If c E X', then the arc Cql U qlP 
lies in X', while its image is the triad with the end points u, 
V and Wt. Therefore in both cases fIX' is not arc-preserving. 
The argument is complete. 

16. Remark The statement that the mapping I of Example 
15 is not weakly arc-preserving can also be derived from its 
non-universality. Namely it is known that each weakly arc­
preserving mapping between trees is universal, [24, Theorems 
1 and 3, p. 376 and 383]. 

17. Remarks a) Confluence of the considered mapping in 
Theorem 11 and Corollary 12 is an essential assumption, and 
it cannot be weakened to semi-confluence, even if both the 
domain and the range are trees. This is shown in Example 15. 

b) To see that arcwise connectedness of the domain is in­
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dispensable in Corollary 12 take as X an arc of pseudo-arcs. 
It is well known that X is a hereditarily unicoherent and not 
arcwise connected continuum. The natural projection f of X 
onto an arc is a monotone and open (thus confluent) mapping 
which is not weakly arc-preserving. 

c) Hereditary unicoherence of the domain is necessary in 
Corollary 12. In fact, take as X the unit circle in the complex 
plane, and define f : X --t X by f(z) == Z2. Then f is an open 
(thus confluent) mapping which is not weakly arc-preserving. 

d) Example 14 shows that local connectedness of the range 
space is an essential assumption in Theorem 11 and Corollary 
12. 

e) The inverse implications to that of Theorem 11 and 
Corollary 12 are not true, even under an additional assump­
tion that both domain and range are trees. Moreover, not 
only confluence, but even semi-confluence does not follow if 
the mapping between trees is weakly arc-preserving. Indeed, 
consider the following example. In the plane ~2 denote by pq 
the straight line segment with end points p and q. Put 

v == (0,0), a == (-1,0), b == (1,0), c == (0, -1), d == (0,1), 

v' == (0,2), b' == (1,2), c' == (0,3), 

v" == (0,4), a" == (-1,4), d" == (0,5). 
Let 

X == ab U cd" U v'b' U v"a" and Y == ab U cd. 

Thus both X and Yare trees, and Y eX. Define f : X --+ Y 
as a piecewise linear retraction determined by f( v') == f( v") == 

v, f(b') == b, f(c') == c, f(a") == a and f(d") == d. Then f is 
weakly arc-preserving (since flY is the identity), but it is not 
semi-confluent. 

f) Neither Theorem 11 nor Corollary 12 can be sharpened to 
obtain "arc-preserving" in the conclusion, even if openness of 
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the mapping is additionally assumed. Indeed, keeping notation 
of the previous example, let X = cc'UvbUv'b' and Y = cdUvb c 
X. Define f : X ~ Y as a piecewise linear open retraction 
determined by f( v') = v, f(b') = band f( c') == c. Then the 
arc from b to c' in X is mapped onto the whole Y. 

In connection with the example of Remark 17 c) it would be 
interesting to know if hereditary unicoherence of the domain 
continuum X in Corollary 12 can be replaced by its unico­
herence and one-dimensionality. In other words we have the 
following question. 

18. Question Does there exist an arcwise connected, uni­
coherent and one-dimensional continuum X and a confluent 
mapping from X onto a locally connected continuum Y which 
is not weakly arc-preserving? 

Observe that if such a continuum X does exist, then it 
cannot be locally connected, because every locally connected, 
unicoherent and one-dimensional continuum is a dendrite, [19, 
§57, III, Corollary 8, p. 442]. If we neglect the condition 
dim X = 1 in Question 18, then Example 13 shows even a. 
monotone mapping from a two-dimensional continuum X onto 
a simple triod that is not weakly arc-preserving. 

In connection with Example 14 and Remark 17 d) let us 
comment that, in Corollary 12, under an additional assumption 
concerning the domain X the local connectedness of the range 
space Y can be omitted. To formulate and prove this result 
we need two definitions. A dendroid X is said to be smooth 
provided there is a point p E X such that for each point x E 
X and for each sequence of points {xn } converging to x the 
sequence of arcs {px n } converges to the arc px. A mapping 
f : X ~ Y between continua X and Y is said to be monotone 
relative to a point p E X provided that for each subcontinuum 
Q of Y such that f(p) E Q the preimage f- 1 (Q) is connected. 
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19. Theorem Every confluent mapping from a smooth den­
droid is weakly arc-preserving. 

Proof: Let f : X ---+ Y be a confluent surjection defined on 
a smooth dendroid X. By [21, Proposition 3.1, p. 722] there 
exists a subcontinuum X' of X such that fiX' is a confluent 
mapping of X' onto Yand X' is minimal with respect to this 
property. Note that X', as a subcontinuum of a dendroid, is 
arcwise connected. By [21, Theorem 3.2, p. 722] the map­
ping fiX' : X' ---+ Y is monotone relative to a point p EX'. 
Then every arc ab in X' that does not contain p is the union 
of two arcs: ca U cb, where c E ab is such that pc n ab = {c}. 
Thus the partial mappings flea and flcb are monotone, and 
therefore f(ab) is the union of two arcs f(ca) and f(cb). As­
sume on the contrary that f( ab) is not an arc. Then it is 
a triode Denote its vertex by v, and observe that f(a), f(b) 
and f (c) are the end points of the triode Consider the arc 
f(a)f(b) = vf(a) Uvf(b) in Y and note that the component of 
its preimage f-l(f(a)f(b)) that contains the point a is mapped 
under f onto vf(a) only, contrary to confluence of f. This fin­
ishes the proof. 

20. Remarks a) Smoothness of the domain dendroid is es­
sential in Theorem 19 by Example 14" where X is not smooth. 

b) Example 15 shows that Theorem 19 cannot be general­
ized to semi-confluent mappings. 

Now the following result, [8, Theorem 5 (a), p. 213], is a 
consequence of either Theorem 11, or Corollary 12, or Theorem 
19. 

21. Corollary (Eberhart and Fugate) Every surjective con­
fluent mapping between trees is weakly arc-preserving. 

Another result that was announced in [8, p. 213] as Theo­
rem 5 (b) concerns the converse implication, i.e. from weak arc­
preservation to weak confluence, for mappings between trees. 
Again the result can be drawn from a stronger statement. 
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22. Theorem Let f : X ~ Y be a weakly arc-preserving 
mapping from a continuum X onto a tree Y. Then for each 
subcontinuum Q of Y there exists a tree T C X such that the 
restriction fiT : T ~ Q is arc-preserving, and f(T) == Q. 
Consequently, f is weakly confluent. 

Proof: Since f is weakly arc-preserving, there is an arcwise 
connected subcontinuum X' of X such that the restriction 
fiX' : X' ~ Y is arc-preserving. Let Q be a subcontinuum of 
Y. We will find a tree T C X' such that f(T) == Q. Since Q 
is a tree, it is the union of a finite number, say n, of arcs. We 
apply the induction with respect to n. 

If n == 1, then Q is an arc pq. Choose a E f-l(p) n X' 
and bE f-l(q)nx'. Then there is an arc ab c X', and 
since fiX' is arc-preserving, the image f( ab) is an arc in Y 
containing both p and q. Then the restriction flab: ab ~ f (ab) 
is a weakly confluent mapping as a mapping onto an arc, [30, 
Lemma, p. 236], and thus there exists a subarc T of ab with 
f(T) == pq == Q. 

Now let Q be the union of some n + 1 arcs (which is not 
an arc). Then there are a tree P and an arc pq such that P 
is the union of some narcs, Q == P U pq and P n pq == {p}. 
By the inductive assumption there is a tree A c X' such that 
f(A) == P. Let a E A n f-l(p). Take b E X' n f-l(q) and 
choose an arc ab c X'. Since fiX' is arc-preserving, we infer 
that f (ab) is an arc. Order the arc ab from a to b. Let a' be the 
last point of ab such that a' E A, and let b' be the first one in 
f-l(q). Take the arc a'b' cab. Then AUa'b' is a tree. We will 
show that f(a'b') == pq. To this aim suppose on the contrary 
that there is a point x E a'b' such that f(x) tt. pq. Since f(a'b') 
is an arc, the points f (x), p and q lie in one arc, and then 
f(x) t/:. pq implies that either q E pf(x), or p E f(x)q. Since 
f(a') E f(A) == P, we see that f-l(q) n a'x -# 0, and thus the 
former possibility contradicts to the choice of b'. So f(x)q is an 
arc to which p belongs. Since by assumption Q == P U pq is not 
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an arc, there is a point y E P\f(x)q. Choose x' E Anf-l(y). 
By the definition of a' the union x'a'Ua'b' is an arc in X' whose 
image contains the triod yp U f(x)q (having p as its vertex), 
contrary to the assumption that fiX' is arc-preserving. So, we 
have proved that f( a'b') == pq. Putting T == A U a'b' we see 
that T is a tree such that f(T) == f(A U a'b') == P U pq == Q as 
needed. This finishes the proof. 

The following example, which is well known, will be used 
several times in the sequel. We exhibit some additional prop­
erties of the mapping described in this example. Recall that 
the Cantor fan is the cone over the Cantor ternary set C in 
[0,1] . 

23. Example There exists an arc-preserving and not weakly 
confluent (consequently not universa0 mapping from the Can­
tor fan onto the two-cell. 

Proof: Let C be the Cantor ternary set lying in the standard 
way in [0, 1], and let 9 : C --+ [0, 1] be the well known Cantor­
Lebesgue step function (see e.g.[18, §16, II, (8), p. 150]; com­
pare [35, Chapter II, §4, p. 35]). Consider the Cantor fan X 
as the cone over C with the vertex v, and the two-cell Y as 
the cone over [0, 1] with the vertex v'. For each point c E C 
map linearly the segment vc onto the segment v'g(c), and let 
f : X --+ Y be the resulting mapping. Observe that any arc A 
in X is contained either in one segment of the form vc (where 
c E C) or in the union of two such segments, and therefore, 
by the definitions of 9 and f, its image f(A) is a segment in 
Y. Thus f is arc-preserving. It is not weakly confluent since 
components of the preimage of the base segment [0,1] of Yare 
singletons in C which form the base ofX. Applying Theorem 
4 we see that f is not universal. The argument is complete. 

24. Remarks a) The example in Remark 17 e) shows that 
Theorem 22 cannot be sharpened to get the semi-confluence of 
f in the conclusion. 
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b) For a related result, with a dendrite as the range space 
Y see below Theorem 25 and Corollary 26. 

c) For a related result, with a dendroid as the range space 
Y see below Theorem 30. 

d) Example 23 shows that even if the mapping f is arc­
preserving and Y is assumed to be a locally connected con­
tinuum, (instead of being a tree as in Theorem 22), the weak 
confluence of f cannot be achieved. 

It is announced in [8, Theorem 6, p. 214] that each weakly 
arc-preserving mapping between trees is universal. This can 
be shown with help of some results from [24] in the following 
way. Let a weakly arc-preserving mapping f : X ---t Y between 
trees X and Y be given. Then there exists a subtree X' of X 
such that the restriction flX' : X' ---t Y is a surjective u­

mapping (see [24, Theorem 3, p. 383]; since the definition of a 
u-mapping consists of five rather technical conditions, each of 
which needs some additionally defined auxiliary concepts, the 
reader is referred to the source paper [24, p. 374] to see the 
details). Further, Theorem 1 of [24, p. 376] says that if there 
exists a subtree X' of X having the above mentioned property, 
then f is universal. So, the argument is complete. 

However, the above mentioned statement (i.e., Theorem 6 
of [8, p. 214]) is again a direct consequence of a more general 
result, formulated below. Namely the assumption concerning 
the domain (of being a tree) has been deleted, and the as­
sumption concerning the range (also of being a tree) has been 
replaced by a less restrictive one, of being a dendrite. 

25. Theorem Each 1veakly arc-preserving mapping from a 
continuum onto a dendrite is universal. 

Proof: Let a mapping f : X ---t Y from a continuum X onto 
a dendrite Y be weakly arc-preserving, and suppose on the 
contrary that it is not universal. Then there exists a mapping 
9 : X ---t Y such that f(x) # g(x) for each x E X. Then by 
compactness of X there exists an c > 0 with d(f(x),g(x)) > c 
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(here d stands for the metric on Y). Further, by compactness 
of Y, there exists a finite c-net S in Y. Denote by ~ the 
smallest continuum in Y containing S. Then ~ is a tree, and 
there exists the unique monotone retraction r : Y -+ ~ (see 
[12, Theorem, p. 157]). This retraction is an c-mapping (i.e., 
the diameters of point-inverses are less than c). Further, the 
composition r 0 f : X -+ ~ is weakly arc-preserving. Applying 
Theorem 22 to this mapping we infer that there exists a tree 
T C X' such that (r 0 f)IT : T -+ ~ is an arc-preserving sur­
jection. Since by [24, Theorems 1 and 3, p. 376 and 383] each 
arc-preserving mapping between trees is universal, we conclude 
that (r a f)IT is universal. Thus there exists a point x E T 
such that (r 0 f)(x) = (r 0 g)(x). Since r is an c-mapping, we 
have d(f(x),g(x)) < c, contrary to the definition of c. 

The next result is a consequence of Theorems 25 and 4. 

26. Corollary Each 1veakly arc-preserving mapping from a 
continuum onto a dendrite is weakly confluent. 

Corollary 26 cannot be sharpened to get semi-confluence in 
the conclusion even if the mapping is arc-preserving (see Fact 
5 and compare Remark 17 e). 

As a consequence of either Theorem 22 or Corollary 26 we 
get the above mentioned result formulated in [8, p. 213] as 
Theorem 5 (b). 

27. Corollary (Eberhart and Fugate) Each 'lveakly arc-preserving 
mapping between trees is weakly confluent. 

It follows from Corollaries 21 and 27 that for mappings be­
tween trees weakly arc-preserving mappings form a class that 
is intermediate between confluent and weakly confluent map­
pings. The next question is related to this statement. 

28. Questions For what continua X and Y a) is each con­
fluent mapping f : X -+ Y weakly arc-preserving? b) is each 
weakly arc-preserving mapping f : X -+ Y weakly confluent? 
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Some contributions to these questions will be presented in 
the sequel. 

29. Remarks a) The assumption concerning the mapping (of 
being weakly arc-preserving) is necessary in Theorem 25 by 
Example 15. 

b) The assumption that the range space is a dendrite is 
essential in Theorem 25 because of Example 23. 

c) An example is constructed in [24, Example 1, p. 384] 
of a u-mapping between trees (which is universal according to 
[24, Theorem 1, p. 376]) that is not weakly arc-preserving. 
Therefore the converse to Theorem 25 is not true. 

In connection with Theorem 22, and as an application of 
Theorem 25, we have the following result. 

30. Theorem Each weakly arc-preserving mapping from a 
continuum onto a dendroid is weakly confluent. 

Proof: Let I : X ~ Y be such a mapping, and let Q be a sub­
continuum of Y. Choose a countable dense subset 
{d1,d2, ... ,dn, ... } of Q, and let Qn be the unique subcon­
tinuum of Q irreducible with respect to containing the set 
{d1 , d2 , •.. , dn} (i.e., such that Qn contains this set and no 
proper subcontinuum of Qn contains it; see [4, Tl, p. 187] for 
existence and uniqueness in any hereditarily unicoherent con­
tinuum). Then Qn C Qn+l for each n E N, and Q =LimQn. 
Let X' be a subset of X as in the definition of a weakly arc-
preserving mapping. For each i E N choose a point ei E 
X' n 1-1 (di ) and let Ai be an arc in X' joining el with ei. 

Define L n = U{A i : i E {I, ... , n}} for each n E N. Then L n 

is a locally connected (so arcwise connected) continuum con­
tained in X', and thus the restriction IILn : Ln ~ f(Ln) ~ Qn 
is arc-preserving by the definition of X'. Hence f(L n ) is a lo­
cally connected subcontinuum of the dendroid Y, so it is a 
dendrite. Therefore flLn : Ln ~ f(Ln) is an arc-preserving 
mapping onto a dendrite, whence it follows by Theorem 25 that 
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it is universal, and consequently weakly confluent by Theorem 
4. Thus for each n E N there exists a subcontinuum !{n of Ln 
such that f(Kn) == Qn. Choosing a convergent subsequence of 
the sequence {!{n} if necessary, we can consider a continuum 
!{ ==Lim!{n. Then f(!{) == Q by continuity of f. So, f is 
weakly confluent, and the proof is finished. 

31. Remarks a) The assumption that the range Y is a den­
droid is indispensable in Theorem 30 by Example 23. 

b) Example 15 shows that the converse implication to that 
of Theorem 30 does not hold, even if the assumption is strength­
ened to semi-confluence of the mapping. 

One can ask if, in Theorem 25, the assumption concerning 
Y of being a dendrite can be relaxed to being a dendroid. In 
other words, we have the following question, which is related 
to Remark 29 c) and to Theorem 30. 

32. Question Is every weakly arc-preserving mapping from a 
continuum onto a dendroid universal? 

The next example shows that Theorem 25 cannot be sharp­
ened replacing weakly arc-preserving mappings by weakly con­
fluent ones. To this aim a definition is needed. By the Gehman 
dendrite G we mean a dendrite having the set E( G) of its end 
points homeomorphic to the Cantor set, and such that all its 
ramification points are of order 3 (see [11, the example, p. 42]; 
also [28, p. 422-423] for a detailed description, and [29, Fig. 1, 
p. 203] for a picture). 

33. Example There exists a weakly confluent surjective self­
mapping on the Gehman dendrite which is not universal. 

Proof: First we consider two trees, Hand T, as defined in 
Example 8. To the tree H add an arc tt' so that H n tt' == 

{t}, and put H' == H U tt'. Thus H' is a tree with E(H') == 

{a, b, c, d, t'}. In the Gehman dendrite G we fix a point e' such 
that ord(e', G) == 2. With each end point e of H' we associate 
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a (pointed) copy Ge of the Gehman dendrite G in such a way 
that the copies are pairwise disjoint and in each of them we 
identify e E E(H') with e' E Ge so that H n Ge == {e} (i.e., 
Hand Ge have one point e == e' in common only). We do the 
same with the tree T. Recall that E(T) == {u, v, w}. Then we 
define 

x = H'UU{Ge : e E E(H')} and Y = TUU{Ge : e E E(T)}. 

Note that both X and Y have ramification points of order 
3 only, and that E(X) and E(Y) are homeomorphic to the 
Cantor set. Thus X and Yare homeomorphic to the Gehman 
dendrite. 

We extend the mapping f : H ~ T (defined in Example 8) 
to a mapping f* : X ~ Y so that the restrictions f* Itt' : tt' ~ 

{v} and f* IGd : Gd ~ {y} are constant mappings, and f* IGe : 

Ge ~ G f(e) are homeomorphisms for e E {a, b, c, t'}. Thus f* 
is defined. The reader can verify, considering all possible kinds 
of subcontinua of Y, that f* is weakly confluent. To see that 
f* is not universal, recall that f : H ~ T is not universal, i.e., 
there is a mapping 9 : H ~ T (defined in Example 8) such 
that f( x) -=I g( x) for each x E H. To extend 9 to a mapping 
g* : X ~ Y such that f*(x') -=I g*(x) for each x E X we 
consider the (unique) monotone retraction m : X '---+ Hand 
put g* == 9 0 m. Then g(X) == T. Consider four cases. First 
we see that if x E H, then since f*IH == flH and g*IH == glH, 
and since f and 9 have no coincidence point on H, we get 
f*(x) -=I g*(x). Second, if x E U{Ge : e E {a,b,c,t'}} \ H, 
then f*(x) t/-: T while g*(x) E T. Third, if x E Gd , then 
f*(x) == f(d) -=I g(d) == g*(d). Fourth, if x E tt', then f*(x) == 
f(t) -=I g(t) == g*(t). The proof is complete. 

34. Remark Example 33 shows that Theorem 6 cannot be 
generalized to self-mappings between dendrites. 

Our next result generalizes Theorem 2 of Schirmer. 
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35. Theorem Let a continuum Y be the inverse limit of an 
inverse sequence of trees Yn with confluent bonding mappings. 
Then each confluent mapping f : X ---+ Y from a continuum X 
onto Y is universal. 

Proof: For each n E N let 1rn : Y ---+ Yn denote the projection 
from the inverse limit space Y into the n-th factor space Yn . 

Since the bonding mappings are confluent, the projections 1rn 

also are confluent, [6, Corollary 7, p. 5]. 
Suppose on the contrary that there exists a mapping 9 : 

X ---+ Y that misses f. Then by compactness of X there is 
an c > 0 such that d(f( x ),-g(x)) > c for each point x E X 
(here d stands for the metric in Y). Let n be great enough 
so that the projection 1rn is an c-mapping. The composition 
1rn 0 f : X ---+ Yn is a confluent mapping onto a tree, so it is 
universal by Theorem 2. Thus there is a point Xo E X such that 
1rn(f(xo)) == 1rn(g(xo)). Consequently the set 1r~l(1rn(f(xo))) 

contains both f(xo) and g(xo) whose distance is greater than 
c, contrary to the choice of n. The proof is complete. 

Since every dendrite Y can be represented as the inverse 
limit of an inverse (increasing) sequence of trees Yn C Y with 
monotone (thus confluent) retractions as bonding mappings, 
we get the following corollary. 

36. Corollary Each confluent mapping from a continuum 
onto a dendrite is universal. 

To formulate the next corollary to Theorem 35 recall that 
a continuum Y is said to have the property of J<elley provided 
that for each point y E Y, for each sequence of points Yn con~' 

verging to y and for each subcontinuum !{ of Y containing the 
point y there is a sequence of subcontinua !{n with Yn E !{n 
that has !{ as its limit. A dendroid is called a fan if it has only 
one ramification point. A fan is said to be finite provided it 
has finitely many end points. Thus each finite fan is a tree. 

37. Corollary Each confluent mapping from a continuum 
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onto a fan having the property of J<elley is universal. 

Proof: Since a fan has the property of Kelley if and only 
if it is the inverse limit of an inverse sequence of finite fans 
with confluent bonding mappings, [7, Theorem 3, equivalence 
of conditions (a) and (d), p. 75], the conclusion follows from 
Theorem 35. 

I 

38. Questions Is any confluent mapping from a continuum 
(from a dendroid) onto a dendroid universal? 

As it has been recalled in Theorem 4, each universal map­
ping from a continuum onto a locally connected continuum 
is weakly confluent. Thus arc-preserving mappings, and (more 
general) u-mappings between trees (see [24, p. 374] for the def­
inition) are weakly confluent (apply [24, Theorem 1, p. 376; 
compare a remark on p. 380]), but not conversely. To find more 
close relations between universal mappings and mappings re­
lated to (or defined by) some confluence conditions, let us recall 
the concepts on n-weakly confluent and of inductively weakly 
confluent mappings (see [26, p. 236]). 

Let I : X ---+ Y be a mapping between continua X and 
Y. We apply an inductive definition. The mapping f is said 
to be O-weakly confluent provided that it is a surjection. Let 
a nonnegative integer n be fixed. We say that f is (n + 1)­
weakly confluent provided that for each subcontinuum Q of Y 
there exists a component of 1-1 (Q) such that the restriction 
It!{ : !{ ---+ Q is n-weakly confluent. The mapping I is said 
to be inductively weakly confluent provided that it is n-weakly 
confluent for each nonnegative integer n. Each semi-confluent 
mapping between continua is inductively weakly confluent, [26, 
Theorem 1, p. 236]. 

The next result is related to Nadler's Theorem 4 above. 

39. Theorem Each universal mapping from a continuum onto 
a hereditarily locally connected continuum is inductively weakly 
confluent. 
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Proof: We will use induction to prove that each universal map­
ping from a continuum onto a hereditarily locally connected 
continuum is n-weakly confluent for each nonnegative integer 
n. For n == 0 the assertion holds by assumption. Assume that 
every mapping from a continuum onto a hereditarily locally 
connected continuum is n-weakly confluent for some n ~ o. 
Let X and Y be continua, with Y hereditarily locally con­
nected, and let a mapping f : X --t Y be universal. Consider a 
subcontinuum Q of Y. By Theorem 4 of Nadler there is a com­
ponent G of f- 1 (Q) such that f( G) == Q. Then the restriction 
fiG: G --t Q is n-weakly confluent by the assumption. This 
proves (n + I)-weak confluence of f, and so finishes the proof. 

Note that Theorem 39 cannot be strengthened to get semi­
confluence in the conclusion as it follows from Fact 5. 

40. Remark As the reader already observed, semi-confluent 
mappings as well as universal mappings between trees are situ­
ated between confluent and inductively weakly confluent map­
pings: the implication from confluence to semi-confluence is 
obvious, from semi-confluence to inductive weak confluence is 
proved in Theorem 1 of [26, p. 236]; the two corresponding 
implications for universal mappings are given by Theorems 2 
and 39, respectively. So, it is natural to ask if there is any 
implication between classes of semi-confluent and of universal 
mappings (onto trees). The answer is negative for both cases. 
Fact 5 shows that universality does not imply semi-confluence 
even for mappings between arcs, while the opposite implication 
does not hold by Example 15. 

A mapping f : X --t Y between continua X and Y is 
said to be hereditarily weakly confluent provided that for each 
subcontinuum !< of X the restriction fl!< : !< --t f(!<) c Y is 
weakly confluent. Obviously each hereditarily weakly confluent 
is inductively weakly confluent, [26, Theorem 2, p. 237]. The 
next example shows that Theorem 39 cannot be sharpened by 
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replacing "inductively" by "hereditarily" in the conclusion. 

41. Example There is a universal mapping between simple 
triods which is not hereditarily weakly confluent. 

Proof: Denote by pq the straight line segment in the plane 
with end points p and q. Put v == (0,0), a == (1,0), b == (0, -1), 
e == (0,1), d == (0,2) and e == (0,3). Let X == be U va and 
Y == be U va. Thus Y eX. Define f : X ~ Y as a piecewise 
linear retraction determined by f( d) == v and f( e) == a. Then 
J is universal. Consider the restriction Jibe: be ~ Y, and 
observe that if Q is a small connected neighborhood of v, then 
(Jlbe)-l(Q) has two components, no one of which is mapped 
onto Q. Thus JIbe is not weakly confluent, and consequently 
J is not hereditarily weakly confluent. 

42. Theorem Each hereditarily weakly confluent mapping is 
arc-preservzng. 

Proof: Let a mapping J : X ~ Y between continua be hered­
itarily weakly confluent. Then for each arc A c X the restric­
tion JIA : A ~ J(A) C Y is hereditarily weakly confluent, so 
J(A) is an arc by [22, (8.21), p. 74]. The argument is complete. 

43. Theorem Each hereditarily weakly confluent mapping 
from an arcwise connected continuum onto a dendrite is uni­
versal. 

Proof: Let f : X ~ Y be such a mapping. Then it is arc­
preserving by Theorem 42, so it is weakly arc-preserving by 
Fact 9, and the conclusion follows from Theorem 25. 

44. Corollary Each hereditarily weakly confluent mapping 
between trees is universal. 

Acknowledgement. The authors thank Dr Janusz R. Prajs 
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