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Abstract

In this paper we prove that if p and g are relative
prime positive integers and S,, S, are the respective
p-adic and g¢-adic solenoids, the their topological prod-
uct S, X 5y is mutually aposyndetic. This answers a
question by Charles L. Hagopian.
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Introduction

A continuum is a compact connected metric space. A map is
a continuous function. A continuum X is said to be mutually
aposyndetic provided that for any two distinct points z and y
in X there exist two disjoint subcontinua L and M of X such
that = € intx(L) and y € intx(M). A continuum X is said to
be strictly non-mutually aposyndetic if each pair of subcontinua
of X which have interiors intersect. Clearly, a nondegenerate
mutually aposyndetic continuum is not strictly non-mutually
aposyndetic.

The concept of mutual aposyndesis was introduced by Charles
L. Hagopian in [1] where he proved that, the product of two
chainable continua is strictly non-mutually aposyndetic if and
only if each factor is indecomposable. He also asked the ques-
tion ([1, p. 622]): Is the topological product of two indecom-
posable compact metric continua strictly non-mutually aposyn-
detic?

In this paper we answer Hagopian’s question in the negative
by showing that the product S, x S, is mutually aposyndetic,
where for an integer m > 2, S, is the m-adic solenoid and p
and q are relative prime.

For a discussion on the relationship between aposyndesis
and products we refer the interested reader to the paper by

Leland E. Rogers ([3]).

1 S5, xS, is mutually aposyndetic.

For each p = 2,3,..., let f7: S' — S! be given by f7(z) = 2P
for each z € S! (where S! is the unit circle in the plane, and
zP denotes the pth power of z using complex multiplication).
For a given p, let

S, = lim{X,, fn}°2,, where eachX,, = S'and eachf, = f7.
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As usual S, is called the p-adic solenoid.

Theorem If p, ¢ > 2 are relative prime integers, then S, X S,
is mutually aposyndetic.

Proof: We consider S, with the usual group structure, where
the product of two elements u = (uy, us,...) and v = (vy, ve,...)
in S, is defined by u * v = (ujv1,uqvy,...) and u,v, is the
product of u, and v, as complex numbers.

We consider the exponential map e : E! — S! given by
e(t) = (cos(t),sin(t)). We also consider in S' the metric D
defined by D(z,w) = the length of the shortest subarc of S?
which joins z and w. Given z € S* and € > 0, define N(¢, z) =
{we S': D(z,w) < ¢€}.

Define g, : E' — S, by:

Given two points z,w € S?, define:
T(z,w) = {(a*gy(t),b*g,(t)) € S, x S, : t € E',a € p7'(2)

and b € r7!(w)},

where, for each n, p, (resp., r,) is the n-th projection from the
solenoid S, (resp., ;) into S*.

We will prove that:
T(z,w) is a subcontinuum of S, x S;...(1)

In order to prove that T'(z,w) is compact it is enough to
show that T'(z,w) is the image A of the compact set p;'(z) x
ri*(w) x [0,27] under the continuous function F((a,b,t)) =
(a % gp(t), b* gq(t)).

It is clear that A C T'(z,w). For proving the other inclu-
sion, take an element a = (a * g,(t),b* g4(t)) € T(z,w), with
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t € E', pi(a) = z and r1(b) = w. Let k be an integer and let
s € [0,27) be such that ¢t = s+2kw. Then g,(t) = gp(s+2k7) =
9p(8) * gp(2km) and g,(t) = go(s +2km) = gy(s) * g4(2km), Since
p1(a * gp(2km)) = z and r(b * g4(2k7)) = w, we conclude
that o € A. This completes the proof of the compactness of
T(z,w).

Now, we will prove that 7'(z,w) is connected.

Let so,t0 € [0,27) be real numbers such that e(sg) = z and
e(to) = w. Then the set G = {(gy(s0) * gp(2), 8a(to) * 94(t)) €
T(z,w) : t € E'} is a connected subset of T'(z,w). Then, in
order to show that T'(z,w) is connected, it will be enough to
prove that G is dense in T'(z,w).

Take an element a = (a * g,(t),b* g,(t)) € T(z,w), with
t € E', a = (a1,as,...) € p7'(2) and b = (by,bs,...) € r7}(w)
and take a basic open subset W = [(U; X ... x U, X ST x ...) N
Spl X [(Vi X oo X Viu x ST x ... )N S,] of S, X S, containing the
point «, where m > 2 and ane(p,,%l) € U, and bne(qn—t_l—) eV,
for each 1 <n < m.

Since a € Sp, abyyy = @1 = 2, 50 Amyy is a p™-th root of
z. On the other hand, e(%) is another p™-th root of 2. Then
there is a p™-th root = of 1 such that ami1 = e(3%)z. Thus

there exists 7 € {1, ...,p™}, such that a,,41 = e(;J,,;)e‘(z—”). Sim-

pm )
ilarly, there exists j € {1, ...,¢™} such that b,,4; = e(;_&)e(%l)'

Since p™ and g™ are relative prime, there exists integers 2,
and j; such that :—j5 = 2;p™+719q™. Let k = i—i;p™ = j+j1¢™.
Define f = (gp(s0) * gp(t + 27k), g4(to) * g4(t + 27k)) € G.

For each 1 <n < m,

t m—n+1 t
ane(pn—_l) = afn+l e(pn_l)
m—n+1 2 m—n+1 t
= e )e( e
p™ pm Pt
S0 t+ 27

= e(pn—l Je( pr—1

).
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On the other hand,

So t+ 27k So t+2m,  —2mup™
e(pn—l Je( p-1 ) = e(pn—l Je( p-1 Je( pr-1 )
t
= ane(F).
Thus 6(1)—30_—1)6(%) = ane(;,—f_—l).
Similarly, for each 1 < n < m, e(q,f"_,)e(%) = bne(q,f_l ).

This proves that € W N G. Thus G is dense in T'(z,w).
Therefore, T'(z,w) is connected
Hence, T'(z,w) is a subcontinuum of S, x S;.

Now, we will show that there is a homeomorphism 4 : S, —
S, such that, for each b € S, — p7'(1), p1(b) # p1(h(b)).

Fix a homeomorphism v : ST — S! such that y(1) = 1,
z # 7(z) for each z € S? — {1} and D(z,7v(z)) < = for every
z € S*. Consider a continuous fold § : S* —{-1} — S*'—{-1}
of the p-th root function.

Define h : S, — S, by:

() = (180, b8 S), bs(8( L), masas Wy, ),

where b, = p,(b).
Clearly, h has the desired properties.

We are ready to prove that S, x S, is mutually aposyn-
detic. Let (a,b) and (c,d) be two distinct points of S, x S,.
Since S, and S, are topological groups, applying a transla-
tion if necessary, we may assume that a = (1,1,...) € S, and
c=(1,1,...) € Sp. Since b # a or c # d, we may also assume
that ¢ # d. Then there exists n > 1 such that ¢, # d,. Since
S, is homeomorphic to {(un, Unt1,...) € Sq : (u1,uz,...) € Sy},
we may assume that ¢; # dy, that is d; # 1. Finally, if b; = d;,
applying the homeomorphism constructed in the paragraph
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above, we may assume that b; # di. Let ¢ = D(dy,b)/3.

Define
L =[pi"(N(e, 1)) x 171 (N (€, b1))] UT(1,b1)and
M = [ (N(e, 1)) x i (N (e, ) UT(L, di).

Clearly L and M are closed subsets of S, x Sy, (a,b) €
Int(L) and (c,d) € Int(M).

Since N(e,b) N N(e,d;) = B, we have [p7'(N(e, 1)) X
r7Y(N(e, b))] does not intersect [p7" (N (e,1)) x 77 (N (e, d1))]-

If there is a point (u * g,(s),v * g,(s)) in T'(1,b)N
[pT'(N(e,1)) x r7'(N(e,dy))], with s € E, py(u) = 1 and
r1(v) = by, then e(s) = p1(u * go(s)) € N(e,1) and bie(s) =
r1(vxgy(s)) € N(e,dq). Since D(e(s),1) < ¢, then D(bre(s),by) <
€. Thus bie(s) € N(e b1) N N(e,dy1), which contradicts the
choice of €. Therefore, T'(1, b;) does not intersect [p; ' (N (e, 1)) x
rit (N(e, dr))].

Similarly, T(1,d;) does not intersect [p7'(N(e,1)) X
rit (N(e b1))].

Finally, if there is a point (u*g,(s),v*ge(s)) = (z*g,(t),y*
9,(t)) in T(1,6:)NT(1,dy), where s,t € E*, p1(u) =1 = p1(z),
r1(v) = by and ri(y) = di, then e(s) = p1(u * g,(s)) = p1(z *
95(t)) = e(t). Thus bre(s) = r1(v * go(s)) = r1(y * g,(t)) =
die(t). This implies that b, = dy. This contradiction proves
that T'(1,b6,) N T(1,d;) = 0.

Therefore, LN M = (.

In order to prove that L is connected, take any point (u,v)
in p7'(N(e,1)) x r7"(N(e,b1)). Then D(u;,1) < € and
D(vy,b1) < €, where u; = p1(u) and v; = r1(v). Let A\,np :
[0,1] — S be maps such that A(0) = uy, 7(0) = vy, A(1) =1,
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n(l) = b and D(A(t),1), D(A(t),u1), D(n(t),b1), and
D(n(t),v1) < € for every t € [0,1]. Consider the continuous
fold

6p: S'—{=1} = S'—{—1}(resp., 8, : S'—{—1} = S'—{-1})

of the p-th root (resp., ¢-th root) function such that §,(1) =1
(resp., 8,(1) = 1).
Define ¢ : [0,1] — S, x S, by: o(t)
[(A(t), uabp(3D), uabp(6,(32)), o),
(7(8), 0284 (52, v384(8 (), )]
Then o is continuous, o(t) € p; ' (N(e,1)) xri (N(e, b)) C
L for every t € [0,1], 0(0) = (u,v) and o(1) € T(1,b;).
Hence (u,v) can be connected with T'(1,5;) by a connected

subset of L. Since T'(1,b,) is connected, we conclude that L is
connected.

=g

Similarly, M is connected.

Therefore, S, x S, is mutually aposyndetic.

Questions

QUESTION 1. (C. L. Hagopian) Are there two tree-like inde-
composable continua X and Y such that X x Y is mutually
aposyndetic?

QUESTION 2. ([2, p. 87]) If M is an indecomposable plane
continuum, must the product M x M be strictly non-mutually
aposyndetic?

QUESTION 3. Is there an indecomposable continuum X such
that X x X is mutually aposyndetic?
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