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ORTHOCOMPACT SUBSPACES
 
IN PRODUCTS OF TWO
 

ORDINALS
 

Nobuyuki Kemoto 

Abstract 

It is known that, for subspaces A and B of an ordi­
nal, normality, orthocompactness and weak subortho­
compactness of X == A X B are equivalent. So it is natu­
ral to ask whether they are equivalent for all subspaces 
of the product of two ordinals. In this paper, we will 
characterize orthocompactness of such subspaces. As 
corollaries, we will show that, for such subspaces, or­
thocompactness and weakly suborthocompactness are 
equivalent, but orthocompactness and normality are 
not. 
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1 Introduction 

It is well known that any ordinal with the order topology is 
hereditarily normal and hereditarily orthocompact. But, in 
general, products of two ordinals are not. In fact, (Wt + 1) X 

Wt is neither normal nor orthocompact. In [KOT], it was 
proved that the normality, collectionwise normality and shrink­
ing property of A x B, where A and Bare subspaces of ordinals, 
are equivalent. It was asked whether these properties are also 
equivalent for all subspaces of products of two ordinals [KOT, 
Problem (i)]. Recently, in [KNSY], this problem was solved 
affirmatively. On the other hand, in [KY], it was proved that 
the normality, orthocompactness and weak suborthocompact­
ness of such A x B's are equivalent. So it is natural to ask 
whether these properties are also equivalent for all subspaces 
of products of two ordinals. 

In this paper, orthocompactness of such subspaces will be 
characterized. As corollaries, it will be shown, in the realm of 
subspaces of products of two ordinals: 

(1)	 Orthocompactness and weak suborthocompactness are 
equivalent. 

(2)	 There is an orthocompact subspace of wi which is not 
normal. 

(3) Normal subspaces of wi are orthocompact. 

(4)	 There is a normal subspace of (Wt + 1)2 which is not 
orthocompact. 

(5) If X is a subspace of Wt X W2 such that X n (a + 1) X W2 

and X n Wt X ({3 + 1) are orthocompact for each a < Wt 

and {3 < W2, then X is orthocompact. 

We recall basic definitions and introduce specific notation from 
[KNSY]. In our discussion, we always assume X C (A +1)2 for 
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some suitably large ordinal A. Moreover, in general, the letters 
fl and v stand for limit ordinals with fl :s; A and v :s; A. For 
each A C A + 1 and B C A + 1 put 

X A = A X (A + 1) n X, X B = (A + 1) X B n X, 

and 
X~ =XA nxB 

. 

For each a :s; A and f3 :s; A, put 

Va(X) = {f3 :s; A : (a, (3) EX}, 

H{3(X) = {a :s; A : (a, (3) EX}. 

cffl denotes the cofinality of the ordinal fl. When WI :s; cffl, a 
subset S of fl is called stationary in Jl if it intersects all cub 
(closed and unbounded) sets in Jl. Moreover for each A C Jl, 
LimJL(A) is the set {a < Jl : a = sup(A n a)}, in other words, 
the set of all cluster points of A in Jl. Where for convenience, 
we consider sup0 = -1 and -1 is the immediate predecessor 
of the ordinal o. Therefore LimJL(A) is cub in fl whenever A is 
unbounded in fl. We will simply denote LimJL(A) by Lim(A) if 
the situation is clear in its context. In particular, assume C is 
a cub set in Jl with W :::; cfJl, then Lim(C) C C. In this case, 
we define Succ(C) = C\Lim(C), a?d pc(a) = sup(C n a) 
for each a E C. Then note that, for each a E C, pc(a) E 
C U {-I}, and pc(a) < a iff a E Succ(C). So pc(a) is the 
immediate predecessor of a E Succ(C) in C U { -I}. Moreover 
observe that Jl\C is covered by the pairwise disjoint collection 
{(pc( a), a] : a E Succ(C)} of clopen intervals of fl. 

A strictly increasing function M : cfJl + 1 --+ fl + 1 is said 
to be normal if Mer) = sup{M(,') : " < ,} for each limit 
ordillal , S; cfJl and M( cffl) = fl. Observe that, if WI :::; cfJl, 
then two Ilormal functions on cfJl + 1 to Jl + 1 coincide on 
a cub set of cfJl. Note that a normal function on cffl + 1 
always exists if cffl ~ w. So we always fix a normal function 
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M : cfJl + 1 --+ Jl + 1 for each ordinal Jl with cfJl ~ w. In 
particular, if Jl is regular, i.e., cfJl = Jl, then we fix the identity 
map on Jl+ 1 as the normal function. For convenience, we define 
M( -1) = -1. Then M carries cfJl + 1 homeomorphically to 
the range ranM of M and ranM is closed in Jl + 1. Note that 
for all S C Jl with WI :::; cfJl, S is stationary in Jl if and only if 
M- I (S) is stationary in cfJl. 

Let Jl and v be two limit ordinals with Jl :::; A and v :::; A, 
moreover M : cfJl + 1 --+ Jl + 1 and N : cfv + 1 --+ v + 1 be 
the fixed normal functions on cfJl + 1 and cfv +1 respectively. 
Furthermore assume (Jl, v) ~ X and WI :::; cfJl = cfv = K. 

Define 

Note that stationarity of 6.MN(X) in K does not depend on 
the choices of the normal functions M and N. 

Let Y be a topological space. Subsets F and G of Yare 
said to be separated if there are disjoint open sets U and V 
containing F and G respectively, of course, separated sets are 
disjoint. A collection V of open sets of a space Y is said to be 
interior preserving if nV'is open for every V' C V. Observe 
that V is interior preserving iff n(V)y is a neighborhood of y 

for each y E UV, where (V)y = {V E V : y E V}. A space 
Y is orthocompact if, for every open cover U of Y, there is 
an interior preserving open refinement V of U which covers Y. 
Where V is said to be an open refinement of U if for each 
V E V, V is open and there is U E U such that V C U. We 
do not require open refinements cover the space. Moreover Y 
is weakly suborthocompact if, for every open cover U, there is 
an open refinement V, which is represented as V = UnEw Vn , 

such that, for each y E Y, there is nEw such that y E UVn 

and n(Vn)y is a neighborhood of y. We call such a V as weak 
t-refinement of U. 
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2 Theorem and Lemmas 

Using the notation described in section 1, we shall show: 

Theorem Assume X C (A + 1)2. The following (1)-(3) are 
equivalent: 

(1)	 X is orthocompact. 

(2)	 X is weakly suborthocompact. 

(3)	 For every (11, v) E (A + 1)2\X with Wt :::; cfll ==cfv == K, 

the following (a)-(c) hold: 

(a)	 If 6MN(X) is not stationary in K, then there is a 
cub set C in K such that X n M(C) X N(C) == 0. 

(b)	 If HII(X) nil is stationary in 11, then there is 11' < 11 
such that Clx XII nX({II/ ] == 0, where Clx XII denotes 

J.l ,J.l 
the closure of XII in X. 

(c) If VJ.l (X) n v is stationary in v, then there is v' < v 

such that Clx X Jl n X~~/l = 0. 

To prove the theorem, we need lemmas. First it is easy to 
show: 

Lemma 1 Assume, for each a E A, Va is an interior preserv­
ing collection of open sets in a space Y. If {U Va : a E A} is 
point finite, then V == UaEA Va is also interior preserving. In 
particular: 

(1)	 If Y is a finite collection of orthocompact open subspaces 
of Y, then UY is also orthocompact. 

(2)	 IfY is a pairwise disjoint collection of orthocompact open 
subspaces of Y, then UY is also orthocompact. 
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Lemma 2 Let K, be a regular uncountable cardinal and X 
a weakly suborthocompact subspace of (K, + 1)2\ {(K" K,)}. If 
6(X) == {, < K, : (",) E X} is not stationary in K" then 
there is a cub set C in K, such that X n C 2 == 0. 
Proof: Assume 6(X) is not stationary in K,. Take a cub set 
D of K, which is disjoint from 6(X). 0 

Claim 1 X == {X(PD(a),a] : a E Succ(D)} covers X n {(~ ~) .
(p D ( a),a] . " I • 

,<K,}. 

Proof: Let (",) E X. Then, E 6(X). Take the minimal 
a E D such that, ::; a. It follows from D n 6(X) == 0 
that PD(a) < , < a and therefore a E Succ(D). So (",) E 
X(PD(a),a] E X

(PD (a),a] . 

Claim 2 A == {a < K, : Va (X) n K, is stationary in K, } is not 
stationary in K,. 

Proof: Assume A is stationary in K,. Put Y == [Xn{ (a,,8) : 
a ::; ,8 ::; K,}]\ UX. Then Y is considered as the upper-left 
half of X. By Claim 1, Y is a closed subspace of X which is 
disjoint from {(",) : , < K,}. Observe that, for each a < K" 

Va(X) n K, is stationary in K, iff so is Va(Y) n K,. For each a < K" 

put U(a) = l[~~~]]. Then U = {U (a) : a < K} is an open cover 
of the weakly suborthocompact space Y. So there is a weak 

t-refinement V == UnEw Vn of U. Fix a E A and (3 E Va(Y) n K,. 
Since (a, (3) E UVn and n(Vn )(a,{3) is a neighborhood of (a, (3) 
for some nEw, fix n(a, (3) E w, f( a, (3) < a arid g( a, (3) < (3 
such that 

It follows from (a, (3) E Y that a < (3, so we may assume 
a :::; g(a, (3). Moreover, since Vn (a,{3) is a refinement of U, we 
can fix,( a, (3) < K, such that 
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Then it follows from (a, (3) E UC,(a, (3)) that a ~ ,(a, (3) < 
13. Applying the PDL to Va(Y) n K, we have a stationary set 
T(a) c Va(Y)nK, n(a) E w, f(a) < a, g(a) < K and ,(a) < K 

such that n(a,13) == n(a), f(a,13) == f(a), g(a,13) == g(a) 
and ,(a, (3) == ,(a) for each 13 E T(a). Here the condition 
"f(a) < a" is guaranteed by lal < K. Next again applying the 
PDL to A, we find a stationary set SeA, no E wand ao < K 

such that n(a) == no and f(a) == ao for each a E S. Then for 
each 13 E T(a) with a E S, we have 

Take al E S with ao < aI, and then take 131 E T(al) with 
g(al) < 131. Moreover take a2 E S with 131 < a2, and (32 E 

T( al) with g((2) < 132. Finally take 133 E T( (2) with 132 < (33. 
Then we have 

ao < al ~ g(al) < 131 < a2 ~ g(a2) < 132 < 133. 

It follows from 

that 

so 

n(VnO)(.:lI1,i32) c n(VnO )(.:lI2,i33)' 

Therefore we have 

(at, (31) E Y(~o(~11)1,i321 c n(Vno )(e,l1 ,i32) c n(Vno ) (a2,JJ3) c U(,(a2))' 

It follows from the definition of U(,((2)) that ,((2) < 131. 
This contradicts {3l < a2 ::; ,(a2,{33) == ,(a2). Therefore A is 
not stationary in K. 0 

Considering the lower-right half of X, we can similarly 
show: 
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Claim 3 B == {,8 < K : H(3(X) n K is stationary in K} is not 
stationary in K. 

To complete the proof of Lemma 2, let C' be a cub set 
which is disjoint from A U B U 6(X). For each a E C', since 
a ~ A U B, take a cub set Get in K which is disjoint from 
Vet (X) U Het(X). By the method of [Ku, II 6.14], the diagonal 
intersection 

is a cub set in K. Then G == G'n6etEc,Get is the desired cub set. 
To show this, assume (a,,8) E X n G2 

• Since G c G' and G' is 
disjoint from 6(X), we have a =1= ,8. So we may assume a < ,8. 
Then it follows from a E G c G' and ,B E G C 6 etEc,Get that 
j3 E Get, therefore ,B ~ Vet(X). This contradicts (a,,8) E X. 0 

Lemma 3 Assume X is a weakly suborthocompact subspace of 

(1l+1) x (v+1)\{(Il,V)} and WI ::; cfll == cfv == K. If Hv(X) is 

stationary in J-l, then there is J-l' < J-l s_uch that C1xXII nxf:'~lll = 
0. 

Proof: Assume Clx XII n X&'~Il] f:. 0 for each /1-' < J-l. Then 
A == {a < Il : (a,v) E ClxXV} is unbounded in Il and 

A C HII(X). For each, < /'i" put U(,) = X[~~R{~)}. Then 
U == {U(,) : , < K} U {XV} is an open cover of X. By 
the weak suborthocompactness of X, take a weak L-refinement 
V == UnEw Vn of U. For each, E M- 1 (Hv(X)) n Lim(K), by 
(M(,), v) E X, take n(,) E w, f(,) < " g(,) < K with 
, :::; g(,), and 8(,) < K such that 

(M(,), v) E UVn(-v) and 

(M(,), v) E X((~~j~~/)'.t(-V)l c n(Vn (-v))(M(-v),II) C U(h(,)). 

It follows from (M(,), v) E U(8(,)) that, :::; 8(,). Applying 
the PDL, we find a stationary set S c M-1 (Hv (X)) n Lim(K) 
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in K, no E wand 10 < K such that n(,) == no and f(,) == ,0 for 
each I E S. Note that T == M(S) n Limtt(A) is stationary in 
J-l. So fix ,1 E M-1 (T) with ,0 < ,1' Since M(,o) < M(,I) E 

Lim(A), we can find a' E A with M(,o) < a' < M(,I)' Then 
by (a', v) E Clx Xv, we can find ordinals a and {3 such that 

(a, {3) E Xv n xt~~~~):l~r]. Take /2 E S with /1 < /2 and 
{3 < N(/2)' Then note {3 < N(,2) ::; N(8('2))' It follows from 

(M('d, v) E X~~~~)~1}~2)] c n(Vno )(M(-r2),V) 

that 

Then, since 

n(V ) U(8( )) X(N(8('Y2))'V]
C no (M('Y2)'V) C ,2 == [0,M(8('Y2))] , 

we have N(8(/2)) < {3. This is a contradiction. 0 

Lemma 4 Assume that X C (/-l + 1) X (v + 1) and that X tt'+l 
and xv'+1 are orthocompact for each J-l' < J-l and v' < v. If 

one of cfJ-l == 1, cfv == 1, (J-l, v) E X or cfJ-l =I- cfv holds, then 
X is orthocompact. 

Proof: First assume cf/-l == 1, that is, /-l == /-l' + 1 for some 
J-l' < J-l. Then since X == X tt'+1 EB X{tt} is the free union of 
two orthocompact subspaces, it is orthocompact. Similarly, if 
cfv == 1, then X is orthocompact. 

Next assume (/-l, v) E X and U is an open cover of X. Fix 
(v; v]

/-l' < /-l, v' < v and U E U such that X(tt':tt] C U. Since, by the 

assunlption and Lemma 1(1), X tt'+1 U xv'+l is orthocompact, 
take an interior preserving open refinement V of U whose union 
is X tt'+1 U xv'+I. Then V U {U} is an interior preserving open 
refinement of U covering X. So X is orthocompact. 



256 Nobuyuki Kemoto 

Therefore we may assume w ::; cfp < cfv and (p, v) t/:. X. 
To show X is orthocompact, let U be an open cover of X. The 
following claims will complete the proof. 

Claim 1 There is an interior preserving open refinement oiU 
which covers X{tl}. 

Proof: Note that WI ::; cfv. There are two cases. 

Case 1. Vtl(X) is not stationary in v. 
Take a cub set D in cfv which is disjoint from N-I(Vtl(X)). 

Then 
{X(N(PD(8)),N(8)] : 8 E Succ(D)} 

is a pairwise disjoint collection of orthocompact clopen sub­
spaces of X which covers X{tl}. Then by Lemma 1(2), we can 
find such an interior preserving open refinement of U. 

Case 2. Vtl (X) is stationary in v. 
For each 8 E N-I(Vtl(X)) n Lim(cfv), fix U(8) E U with 

(/1, N(8)) E U(8). Then take f(8) < cfp and g(8) < 8 such 
(N(g(8)),N(8)] ( ) () {' 1· hthat X(M(!(8)),tl] C U 8 . By, 9 8 < v, app ylng t e PDL, 

we find a stationary set T' C N-I(Vtl(X)) n Lim(cfv) in cfv 
and 80 < cfv such that g(8) == 80 for each 8 E T'. Next by 
cf/1 < cfv, again applying the PDL, we have a stationary set 
T C T' in cfv and ,0 < cf/1 such that f( 8) == ,0 for each 8 E T. 

Then V = {X(~~~~~',~(5)] : 8 E T} is an interior preserving open 

refinement of U whose union is X(N(80 ),v) so it covers X(N(80 ),v) . 
(M (1'0 ) ,tl] , {tl } 

To show this V is interior preserving, let (a, (3) E xg~~~~~',~. 

Then xg~~~~))'~] is an neighborhood of (a, (3) which is contained 
in n(V)(a,{3). 

Moreover, since, by the assumption, X N (80 )+1 is orthocom­
pact, there is an interior preserving open refinement of U whose 
union is X N (80 )+I. Then the union of the both open refine­
ments is an interior preserving open refinement of U which 
covers X {tl}. 0 
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Claim 2 There is an interior preserving open refinement 01 U 
which covers X{lI} . 

Proof: If cfJl == W holds, then X{lI} is covered by the pairwise 
disjoint collection {X(M(n-I),M(n)] : nEw} of orthocompact 
clopen subspaces. So we may assume WI ~ cfJl. There are two 
cases. 

Case 1. HlI(X) is not stationary in Jl. 
This case is similar to Claim I-Case 1. 

Case 2. HlI(X) is stationary in Jl. 
This case is also similar to Claim I-Case 2, but there is a 

technical difference. So we give its abstract proof. For each 
, E M-I(HlI(X)) n Lim(cfJl), fix U(,) E U, Ie,) < , and 

g(,) < cfv such that X~~~\~/)',t(-Y)l C U('). By the PDL, 
we find a stationary set S C M-I(HlI(X)) n Lim(cfJl) in cfJl 
and ,0 < cfJl such that 1(,) == ,0 for each , E S. Put 
80 == sup{g(,) : , E S}. It follows from cfJl < cfv that 
{' f Th {X(N(8o),1I] S} · · · Vo < c v. en (M(~o),M(~)]:' E IS an InterIor pre­

serving open refinement of U which covers X1;kyo),/l)' Since 
XM(~o)+1 is orthocompact, we can find an interior preserving 
open refinement of U which covers X{lI}. This completes the 
proof of Claim 2. 0 

Claim 3 There is an interior preserving open refinement ofU 
which covers X~. 

Proof: If cfJl == w holds, then X~ is covered by the pairwise 
disjoint collection {X(M(n-I),M(n)] : nEw} of orthocompact 
clopen subspaces. So, as in Claim 2, we may assume WI ~ cfJl. 
Put A == {a < Jl : Va(X) n v is stationary inv}. There are two 
cases. 

Case 1. A is not stationary in Jl. 
Take a cub set C in cfJl which is disjoint from M- 1 (A). For 

each, E C, since VM(~)(X) n v is not stationary in v, we find a 
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cub set D--y in cfv which is ,disjoint from N-1 (VM (--y)(X)). Then 
it follows from cf/l < cfv that D = n"EC D" is a cub set in cfv. 
It is straightforward to show XnM( C) x N(D) == 0. Put Xc == 
{X(M(pc(--y)),M(--y)] : , E Succ(C)} and X D == {X(N(PD(6)),N(6)] : 

8 E Succ(D)}. Then they are pairwise disjoint collections of 
orthocompact clopen subspaces of X. So by Lemma 1, UXc U 
UX D is an orthocompact open subspace. It suffices to show 
X~ c UXc U UX D . To show this, let (a, (3) E X~. Since 
X n M(C) x N(D) == 0, first assume a ~ M(C). Take the 
minimal , E C such that a ~ M (, ). Assume, E Lim(C). 
Then, E Lim(cfJi). It follows from the normality of M and 
the minimality of, that a == M(,) E M(C), a contradiction. 
So we have, E Succ(C). Therefore we have M(pc(,)) < a ~ 

M(,). This implies (a, (3) E UXc . 

UX
Next assume (3 ~ N(D). Then similarly we have (a, (3) E 

D . This shows X~ c UXc U UXD 
. 

Case 2. A is stationary in Ji. 
First fix , E A n Lim(cfJi). For each 8 E N-1 (VM (--y)(X)) n 

Lim(cfv), as (M(,), N(8)) E X, fix U(,,8) E U, f(,,8) < , 
and g(" 8) < 8 such that 

X	 
(N(g(--y,6)),N(6)] U( C) 
(M(j(--y,6)),M(--y)] C " u • 

By the PDL, there are a stationary set T(,) C N- 1 (VM (--y)(X))n 

Lim(cfv) in cfv, f(,) < , and g(,) < cfv such that f(,,8) == 
f(,) and g(,,8) == g(,) for each 8 E T(,). 

Next again applying the PDL to A n Lim(cfJi), we find a 
stationary set SeA n Lim(cfJi) in cfJi and ,0 < cfJi such 
that !(,) ==,0 for each, ES. Put 80 == sup{g(,):, E S}. 
Then we have Xf~~~~))',~f~~] C U(-y,8) for ea~h 8 E T(-y) with 

{X (N(h'o),N(h')] C T() ·th S} · , E S . S0 V == (M(--Yo),M(--y)]: v E , WI , E IS an 

open refinement of U whose union is Xf~~~~))',~). Moreover, as 
(N(h'o),,6] n(V) f h ( (3) X(N(h'o),lI) V· · t .X (M(--Yo),a] C (a,,6) or eac a, E (M(--yo),J.L) , IS In erIor 
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preserving. Finally, since XM(1'o)+1 U XN(h"o)+1 is an orthocom­
pact clopen subspace, we can find an interior preserving open 
refinement which covers X~. 0 

3 Proof of the Theorem. 

In this section, we prove the Theorem. 
The implication (1) ~ (2) of the Theorem is evident. 
(2) ~ (3) : Assume X is a weakly suborthocompact sub­

space of (,\ + 1)2 and (p, v) E (,\ + 1)2\X with WI ~ cfp == 
cfv == K. Since x~ti is clopen in X, we may assume X C 

(p + 1) x (v + 1). 
To show (a), assume 6MN(X) is not stationary in K. As 

the closed subspace X n ranM x ranN is homeomorphic to 
Y == {(,,8) E (K + 1)2 : (M(,),N(8)) EX}, Y is also weakly 
suborthocompact. By the assumption, 6(Y) == {, < K : 

(" ,) E Y} == 6MN(X) is not stationary in K. SO, by Lemma 
2, there is a cub set C in K such that Y n C2 == 0. Then it is 
easy to show X n M(C) X N(C) == 0. 

(b) follows from Lemma 3. (c) also follows from a Lemma 
similar to Lemma 3. 

(3) ~ (1): Assume (3) holds, but X is not orthocompact. 
Put 

p == min{ ( ~ ,\ : X'+I is not orthocompact }, 

v == min{17 ~ ,\ : x~t: is not orthocompact }. 

Note that x;tI is not orthocompact, but x~~\ and X;~~l are 
orthocompact for each p' < p and v' < v. Since x~t~ is a 
clopen subspace of X, we may assume X == x~ti. Then again 
note that X is not orthocompact, but Xt-t'+1 and XII'+1 are 
orthocompact for each p' < p and v' < v. So there is an 
open cover U of X which does not have an interior preserving 
open refinement which covers X. It follows from Lemma 4 that 
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(Jl, y) ~ X and w ::; cfJl == cfy. If w == cfJl == cfy, then X is cov­
ered by the two pairwise disjoint collections {X(M(n-l),M(n)] : 

nEw} and {x(N(n-I),N(n)] : nEw} of orthocompact clopen 

subspaces. Therefore X is orthocompact, a contradiction. So 
we have WI ::; cfJl == cfy. Put K == cfJl == cfy. 

Claim 1 There is an interior preserving open refinement ofU 
which covers X~. 

Proof: There are two cases. 

Case 1. ~MN(X) is not stationary in K. 

In this case, by the condition (a), there is a cub set C in K 

such that X n M(C) x N(C) == 0. Then, as in Lemma 4-Claim 
3-Case 1, we can find an interior preserving open refinement of 
U which covers X~. 

Case 2. ~MN(X) is stationary in K. 

For each, E ~MN(X)nLim(K), fix U(,) E U and !(,) < , 
such that Xf~~~~~n:~(~]] C U(,). By the PDL, there is a sta­
tionary set S C ~MN(X) n Lim(K) in K and,o < K such 
that f("'V) == "'V for each "'V E S Then {X(N('Yo),N('Y)] · "'V E S},,0 ,. (M('Yo),M('Y)] · , 
is an interior preserving open refinement of U whose union is 

NXf~~~~t;). Since, moreover, XM (-Yo)+l U X (-Yo)+l is an ortho­
compact clopen subspace, we can find an interior preserving 
open refinement of U which covers X~. 0 

Claim 2 There is an interior preserving open refinement ofU 
which covers X{v} . 

Proof: There are two cases. 

Case 1. Hv(X) n Jl is not stationary in Jl. 
In this case, as in Lemma 4-Claim 2-Case 1, we can find 

such an interior preserving open refinement. 

Case 2. Hv(X) n /-1 is stationary in /-1. 
In this case, by the condition (b), there is /-1' < /-1 such that 

Clx XV n X({v,l ] = 0. This means X({v,l ] is a clopen subspace 
~,~ ~,~ 
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of X. Since X({v/ ] is homeomorphic to some subspace of an
!J-,!J­

ordinal, it is orthocompact. So there is an interior preserving 
open (of course, open in X) refinement of U whose union is 

X&'~Jl]. Since X Jl'+l is an orthocompact clopen subspace of X, 
we can easily find an interior preserving open refinement of U 
which covers X{v}. 0 

Similarly we have: 

Claim 3 There is an interior preserving open refinement ofU 

which covers X{!J-}. 

Then Claims 1, 2 and 3 yield a contradiction. This com­
pletes the proof of the Theorem. 

4 Corollaries and examples 

Considering the normal functions M and N as the identity 
map on Wl in the Theorem, we have: 

Corollary 1 Let X C (Wl + 1)2. Then X is orthocompact iff, 
if (Wl,Wl) ~ X, then the following (a)-(c) hold: 

(a)	 If 6(X) == {, < Wl : (",) E X} is not stationary in Wl, 

then there is a cub set C in Wl such that X n C2 == 0. 

(b)	 If H W1 (X) is stationary in Wl, then there is Ji' < Wl such 
that Clx x wl n X{w1

} == 0.
(J.l',Wl] 

(c)	 If VW1 (X) is stationary in Wl, then there is v' < Wl such 

that Clx X W1 n X~:Sll = 0. 

In particular, note that all subspaces of (Wl + 1)2 which 
contain the point (Wl, Wl) are orthocompact. Moreover: 

Corollary 2 Let X C wi. Then X is orthocompact iff, if 
6(X) is not stationary in Wl, then there is a cub set C in Wl 

such that X n C2 = 0. 
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According to (2-2) of the Corollary in [KNSY, p 295], if 
X c wi is normal and 6 (X) is not stationary in WI, then 
there is a cub set C in WI such that Xc and XC are separated. 
As separated sets are disjoint, Corollary 2 yields: 

Corollary 3 For every subspace X of wi, normality of X im­
plies its orthocompactness. 

Example 4 Put X == W X WI U {w} X SUCC(WI). Then X is 
not normal, in fact, X{w} and xLim(wl) cannot be separated, 
see [KNSY, Example 1]. 

On the other hand, by putting C = (W, WI) in Corollary 
2, we see X is orthocompact. So the reverse implication of 
Corollary 3 is not true. 

Example 5 Put X == SUCC(WI)2 UWI X {WI}. Then X is a 
subspace of (WI + 1)2 

• First we give a direct proof that X 
is normal. Let F and G be disjoint closed sets in X. Since 
HW1(F) and HW1(G) are disjoint closed sets of WI, they are 
separated by disjoint open sets U and V, respectively, in WI. 

As each point of SUCC(WI)2 is isolated in X, [Xuu(FnXWl )]\G 
and [Xv U (G n XWI )]\F are open and separate F and G. So 
X is normal. 

Next, since SUCC(WI) C {a < WI : (a,wI) E ClxXWl}, 
the condition (b) of Corollary 1 is not satisfied. So X is not 
orthocompact. Therefore Corollary 3 cannot be extended for 
subspaces of (WI + 1)2. 

It is not known the existence of a non-normal subspace X 
of WI x W2 such that X a +1 and X,B+I are normal for each a < WI 
and (3 < W2, see the Question 1 in [KNSY, p296]. But Lemma 
4 yields: 
Corollary 6 Let X C WI X W2. If X a+I and X,B+I are ortho­

compact for each a < WI and f3 < W2, then X is orthocompact. 

Finally as a-orthocgmpactness and suborthocmpactness (see 
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[KY] for definitions) ,are weaker than orthocompactnesss but 
stronger than weak suborthocompactness, we have: 

Corollary 7 For every X c (,\ + 1)2, orthocompactness, (j­

orthocompactness, suborthocompactness and weak suborthocom­
pactness of X are all equivalent. 

We would like to ask: 

Problem Characterize orthocompactness of subspaces of the 
finite power wf as in Corollary 2. 
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