Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

SUBMETACOMPACTNESS OF β -SPACES

Nobuyuki Kemoto and Yukinobu Yajima

Abstract

It is proved that a β -space X is submetacompact if and only if every well-monotone open cover of X has a σ -closure-preserving closed refinement. We also show that this is not true without the assumption of β -spaces.

1 Introduction

Worrell and Wicke [10] introduced the concept of submetacompactness, which is a generalization of metacompactness and

¹⁹⁹¹ Mathematics Subject Classification. 54B10, 54D20

Keywords and phrases. submetacompact, β -space, well-monotone cover, (σ)-closure-preserving, orthocompact.

subparacompactness. First, it seems that submetacompactness had been investigated as a sufficient condition in the study of generalized metric spaces. After that, Junnila [6, 7] gave several nice characterizations for submetacompactness (and metacompactness). In particular, our motivation of this paper comes from the following.

Theorem 1.1 [6, 7] The following are equivalent for a space X.

- (a) X is submetacompact (metacompact).
- (b) Every well-monotone open cover of X has a θ -sequence of open refinements (a point-finite open refinement).
- (c) Every interior-preserving directed open cover of X has a σ -closure-preserving (a closure-preserving) closed refinement.
- (d) Every directed open cover of X has a σ -closure-preserving (a closure-preserving) closed refinement.

Observe that every well-monotone open cover is (interiorpreserving and) directed. However, as is shown in the last section, a space X is not necessarily submetacompact even if every well-monotone open cover of X has a σ -closure-preserving closed refinement. So it seems to be natural to ask the following question:

(†) If every well-monotone open cover of a space X has a σ -closure-preserving closed refinement, when is X submeta-compact?

Considering that submetacompactness plays important roles in the study of generalized metric spaces, we consider the class of β -spaces which is a class of generalized metric spaces containing the classes of Σ -spaces and semi-stratifiable spaces (see [3], Theorem 7.8 (i)). Our main result is to give an answer to the question (†) under the assumption of X being a β -space. Moreover, as another remarkable result for submetacompactness, Jiang [5] proved that strict *p*-spaces are submetacompact. This is called the solution of the strict *p*-space problem, where one observes submetacompactness is a necessary condition different from others. Here we use the technique due to Jiang in the proof of our main result.

In the next section, we consider the following question:

(‡) Characterize spaces whose every well-monotone open cover has a $(\sigma$ -)closure- preserving closed refinement.

We give an answer to the question (\ddagger) by the (sub)orthocompactness of certain products, which is an analogue of a result for \mathcal{B} -property by Yasui [14].

Throughout this paper, no separation axiom is assumed without special mention. We use the following notations: Let A be a set. |A| denotes the cardinality of A. $[A]^{<\omega}([A]^n)$ denotes the collection of finite subsets (of cardinality n) in A. Moreover, $A^{<\omega}$ denotes the collection of finite sequences of members of A. Let X be a space and \mathcal{U} an open cover of X. Top(X) denotes the topology of X. For each $x \in X$, let $\mathcal{U}(x) = \{U \in \mathcal{U} : x \in U\}$. Moreover, let $\operatorname{ord}(x,\mathcal{U}) = |\mathcal{U}(x)|$ and let $\operatorname{St}(x,\mathcal{U}) = \bigcup \mathcal{U}(x)$. For each $Y \subset X$, let $\mathcal{U} \upharpoonright Y =$ $\{U \cap Y : U \in \mathcal{U}\}$. The letter κ denotes an infinite cardinal.

2 Main result

Let X be a space and \mathcal{U} a cover of X. A cover \mathcal{V} of X is a refinement (point-star refinement) of \mathcal{U} if each member of \mathcal{V} (each $\operatorname{St}(x, \mathcal{V}), x \in X$,) is contained in some member of \mathcal{U} . A collection \mathcal{W} of (open) subsets of X is a partial (open) refinement of \mathcal{U} if each member of \mathcal{W} is contained in some member of \mathcal{U} , where \mathcal{W} is not necessarily a cover of X.

Recall that an open cover \mathcal{V} of X is *interior-preserving* if $\bigcap \mathcal{V}'$ is open in X for each $\mathcal{V}' \subset \mathcal{V}$.

Lemma 2.1 [6] An interior-preserving open cover \mathcal{U} of a space X has a closure-preserving closed refinement if and only if \mathcal{U} has an interior-preserving point-star open refinement.

The proof was done in that of ([6], Lemma 2.3).

A space X is called a β -space if there is a function $g : X \times \omega \to \text{Top}(X)$, satisfying

- (i) $x \in \bigcap_{n \in \omega} g(x, n)$,
- (ii) if $x \in g(x_n, n)$ for each $n \in \omega$, then $\{x_n\}$ has a cluster point in X.

Such a function g is called a β -function of X.

A cover $\mathcal{U} = \{U_{\alpha} : \alpha \in A\}$ of X is well-monotone if the index set A is well-ordered by < such that $U_{\beta} \subset U_{\alpha}$ if $\beta < \alpha$.

The following was essentially proved by Jiang. However, we state the proof here for reader's convenience.

Lemma 2.2 [5] Let X be a β -space and \mathcal{U} a well-monotone open cover of X. If \mathcal{H} is an open refinement of \mathcal{U} , there is a sequence $\{\mathcal{G}_{\mathcal{H},s} : s \in \omega^{<\omega}\}$ of partial open refinements of \mathcal{U} , satisfying

- (1) $\mathcal{G}_{\mathcal{H},s} \subset \mathcal{G}_{\mathcal{H},s'}$ for $s \subset s'$,
- (2) if $x \in X$ with $ord(x, \mathcal{H}) \leq n$, then $x \in \bigcup \mathcal{G}_{\mathcal{H},s}$ for each $s \in \omega^{n+1}$,
- (3) for each $x \in X$, there is some $\sigma \in \omega^{\omega}$ such that $ord(x, \mathcal{G}_{\mathcal{H}, (\sigma \upharpoonright n)}) < \omega$ for each $n \in \omega$.

Proof: Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \kappa\}$ be such that $\alpha' < \alpha$ implies $U_{\alpha'} \subset U_{\alpha}$. Let g be a β -function of X. Let $\alpha(x) = \min\{\alpha \in \kappa : x \in U_{\alpha}\}$ for each $x \in X$. Let $U_{x,n} = U_{\alpha(x)} \cap g(x,n)$ for each $x \in X$ and $n \in \omega$. Then each $U_{x,n}$ is an open neighborhood of x in X.

Let $\mathcal{G}_{\mathcal{H},\emptyset} = \emptyset$. Take any $s \in \omega^{n+1}$. Assume that $\mathcal{G}_{\mathcal{H},(s \upharpoonright n)}$ has been already constructed. For each $\eta \in [\mathcal{H}]^n$, let

$$G_{\eta,s} = \bigcup \{ U_{x,s(n)} : \eta = \mathcal{H}(x) \text{ and } x \in X \setminus \bigcup \mathcal{G}_{\mathcal{H},(s \upharpoonright n)} \}.$$

Here we put $\mathcal{G}_{\mathcal{H},s} = \mathcal{G}_{\mathcal{H},(s \upharpoonright n)} \cup \{G_{\eta,s} : \eta \in [\mathcal{H}]^n\}$. Thus we have constructed a sequence $\{\mathcal{G}_{\mathcal{H},s} : s \in \omega^{<\omega}\}$ of collections of open sets in X. We show this is a desired one.

As in ([5], p.312), it is easy to see that each $\mathcal{G}_{\mathcal{H},s}$ is a partial open refinement of \mathcal{U} . Clearly, (1) is satisfied. From the choice of $\mathcal{G}_{\mathcal{H},s}$, it is also easily verified by induction that (2) is satisfied.

Pick $x \in X$. Assume $\sigma \upharpoonright n$ has been defined. Let $s_i = (\sigma \upharpoonright n)^{(i)}$ for each $i \in \omega$. Assume that $\operatorname{ord}(x, \mathcal{G}_{\mathcal{H}, s_i}) \ge \omega$ for each $i \in \omega$. There are distinct members $\eta_0, \eta_1, \dots \in [\mathcal{H}]^n$ such that $x \in G_{\eta_i, s_i}$ for each $i \in \omega$. For each $i \in \omega$, we can choose $x_i \in X \setminus \bigcup \mathcal{G}_{\mathcal{H}, (\sigma \upharpoonright n)}$ such that $\eta_i = \mathcal{H}(x_i)$ and $x \in U_{x_i, i}$. There is a cluster point y of $\{x_i\}$ in X. Now, assume $\operatorname{ord}(y, \mathcal{H}) \ge n$. Take some $\eta^* \in [\mathcal{H}]^n$ with $y \in \bigcap \eta^*$. Find $k, j \in \omega$ with $k \neq j$ and $x_k, x_j \in \bigcap \eta^*$. Since $\eta^* \subset \mathcal{H}(x_k) \cap \mathcal{H}(x_j) = \eta_k \cap \eta_j$, we have $\eta^* = \eta_k = \eta_j$. This contradicts that η_k and η_j are distinct. Hence we obtain $\operatorname{ord}(y, \mathcal{H}) < n$. So it follows from (2) that $y \in \bigcup \mathcal{G}_{\mathcal{H}, (\sigma \upharpoonright n)}$. On other hand, by the choices of x_i 's and y, we have $y \notin \bigcup \mathcal{G}_{\mathcal{H}, (\sigma \upharpoonright n)}$. This is a contradiction. \Box

Recall that a sequence $\{\mathcal{V}_n\}$ of open covers of a space X is a θ -sequence if for each $x \in X$ there is $n \in \omega$ such that \mathcal{V}_n is point-finite at x.

A basic idea for the proof of the following is also due to Jiang [5].

Lemma 2.3 Let X be a β -space and \mathcal{U} a well-monotone open cover of X. If \mathcal{U} has a closure-preserving closed refinement, then it has a θ -sequence of open refinements.

Proof: Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \kappa\}$ be such that $\alpha < \alpha'$ implies $U_{\alpha} \subset U_{\alpha'}$. Let g be a β -function of X such that $g(x, n+1) \subset$

g(x,n) for each $x \in X$ and $n \in \omega$. It follows from the assumption and Lemma 2.1 that there is an interior-preserving point-star open refinement \mathcal{V} of \mathcal{U} . Let $\beta(x) = \min\{\alpha \in \kappa : \operatorname{St}(x,\mathcal{V}) \subset U_{\alpha}\}$ for each $x \in X$. Let $W_{x,n} = (\bigcap \mathcal{V}(x)) \cap g(x,n)$ for each $x \in X$ and $n \in \omega$. Then each $W_{x,n}$ is an open neighborhood of x in X.

Let $\Theta_0 = \{\mathcal{U}\}$. Assume that we have already constructed a sequence Θ_i of open refinements of \mathcal{U} with $\Theta_{i-1} \subset \Theta_i$ for each $i \leq m$. Take an $\mathcal{H} \in \Theta_m$. It follows from Lemma 2.2 that there is a sequence $\{\mathcal{G}_{\mathcal{H},s} : s \in \omega^{<\omega}\}$ of partial open refinements of \mathcal{U} , satisfying (1), (2) and (3) of Lemma 2.2. Let $\Xi_{m+1} = [\Theta_m \times \omega^{<\omega}]^{<\omega}$. Let $\mathcal{G}_{\xi} = \bigcup \{\mathcal{G}_{\mathcal{H},s} : (\mathcal{H},s) \in \xi\}$ for each $\xi \in \Xi_{m+1}$. Let

$$H_{\xi,\alpha} = \bigcup \{ W_{x,m+1} : x \in X \setminus \bigcup \mathcal{G}_{\xi} \text{and } \beta(x) = \alpha \}$$

for each $\xi \in \Xi_{m+1}$ and $\alpha \in \kappa$. Here we set $\mathcal{H}_{\xi} = \mathcal{G}_{\xi} \cup \{H_{\xi,\alpha} : \alpha \in \kappa\}$ for each $\xi \in \Xi_{m+1}$. Moreover, we set $\Theta_{m+1} = \Theta_m \cup \{\mathcal{H}_{\xi} : \xi \in \Xi_{m+1}\}$. It is easy to verify $H_{\xi,\alpha} \subset U_{\alpha}$ for each $\alpha \in \kappa$. So \mathcal{H}_{ξ} is an open refinement of \mathcal{U} . Thus we have constructed $\{\Theta_m : m \in \omega\}$ by induction. Then $\Theta = \bigcup_{m \in \omega} \Theta_m$ is a sequence of open refinements of \mathcal{U} .

Now, to show that Θ is a θ -sequence, assume the contrary. Let

$$Y = \{x \in X : \operatorname{ord}(x, \mathcal{H}) < \omega \text{ for some } \mathcal{H} \in \Theta\}.$$

We pick some $p \in X \setminus Y$ with $\beta(p) = \min\{\beta(x) : x \in X \setminus Y\}$. Let $\Theta_i = \{\mathcal{H}_{i,j} : j \in \omega\}$ for each $i \in \omega$. Let $\mathcal{H}_{\xi_0} = \mathcal{U} \in \Theta_0$. By (3) in Lemma 2.2, for each $i, j \in \omega$, there is $\sigma_{ij} \in \omega^{\omega}$ such that $\operatorname{ord}(p, \mathcal{G}_{\mathcal{H}_{ij},(\sigma_{ij} \restriction n)}) < \omega$ for each $n \in \omega$. Take $m \in \mathbb{N}$, where $\mathbb{N} = \omega \setminus \{0\}$. Let $\xi_m = \{(\mathcal{H}_{ij}, \sigma_{ij} \restriction m) : i, j < m\}$. Then $\mathcal{H}_{\xi_m} = \mathcal{G}_{\xi_m} \cup \{H_{\xi_m,\alpha} : \alpha \in \kappa\} \in \Theta_m$. By the choice of p, we have $\operatorname{ord}(p, \{H_{\xi_m,\alpha} : \alpha \in \kappa\}) \geq \omega$. By $\mathcal{G}_{\xi_m} \subset \mathcal{G}_{\xi_{m+1}}$ and $W_{x,m+1} \subset W_{x,m}$, note that $H_{\xi_{m+1},\alpha} \subset H_{\xi_m,\alpha}$ for each $\alpha \in \kappa$. So we can choose $\beta_1 < \beta_2 < \cdots < \kappa$ such that $p \in H_{\xi_m,\beta_m}$ for each $m \in \mathbf{N}$. For each $m \in \mathbf{N}$, we can pick $x_m \in X \setminus \bigcup \mathcal{G}_{\xi_m}$ such that $\beta(x_m) = \beta_m$ and $p \in W_{x_m,m}$. Then there is a cluster point y of $\{x_m\}$ in X.

Claim. $\beta(y) < \beta(p)$.

Proof: First, assume that there is $k \in \mathbf{N}$ with $\beta_k > \beta(p)$. Since $\operatorname{St}(x_k, \mathcal{V}) \not\subset U_{\beta(p)}$, we can find $V_0 \in \mathcal{V}$ such that $x_k \in V_0$ and $V_0 \not\subset U_{\beta(p)}$. Then we have

$$p \in W_{x_k,k} \subset \bigcap \mathcal{V}(x_k) \subset V_0 \subset \operatorname{St}(p,\mathcal{V}) \subset U_{\beta(p)}$$

This is a contradiction. Hence $\beta_m < \beta(p)$ for each $m \in \mathbb{N}$. Since $\bigcap \mathcal{V}(y)$ is an open neighborhood of y, it contains some x_{ℓ} . By $\mathcal{V}(y) \subset \mathcal{V}(x_{\ell})$, we have $\operatorname{St}(y, \mathcal{V}) \subset \operatorname{St}(x_{\ell}, \mathcal{V}) \subset U_{\beta_{\ell}}$. Therefore, $\beta(y) \leq \beta_{\ell} < \beta(p)$.

By Claim, we have $y \in Y$. There is $\mathcal{H}^* \in \Theta$ with $\operatorname{ord}(y, \mathcal{H}^*) < \omega$. There is some $i_0, j_0, n_0 \in \omega$ such that $\mathcal{H}^* = \mathcal{H}_{i_0, j_0}$ and $\operatorname{ord}(y, \mathcal{H}^*) = n_0$. Let $m_0 = \max\{i_0, j_0, n_0\} + 1$. Let $s^* = \sigma_{i_0, j_0} \upharpoonright m_0$. Since $(\mathcal{H}^*, s^*) \in \xi_{m_0}$, it follows from (1) and (2) in Lemma 2.2 that $y \in \bigcup \mathcal{G}_{\mathcal{H}^*, s^*} \subset \bigcup \mathcal{G}_{\xi_{m_0}}$. So we can find $k_0 \in \omega$ with $k_0 \geq m_0$ and $x_{k_0} \in \bigcup \mathcal{G}_{\xi_{m_0}}$. Then we have $x_{k_0} \in \bigcup \mathcal{G}_{\xi_{k_0}}$. This contradicts the choice of x_{k_0} . \Box

Recall that a space X is submetacompact if every open cover of X has a θ -sequence of open refinements.

Now, we obtain a main result.

Theorem 2.4 A β -space X is submetacompact if and only if every well-monotone open cover of X has a σ -closure-preserving closed refinement.

Proof: The "only if" part immediately follows from Theorem 1.1. We show the "if" part. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \kappa\}$ be a wellmonotone open cover of X such that $\alpha' < \alpha$ implies $U_{\alpha'} \subset U_{\alpha}$. There is a σ -closure-preserving closed refinement $\bigcup_{n \in \omega} \mathcal{F}_n$ of \mathcal{U} . Let $X_n = \bigcup \mathcal{F}_n$ for each $n \in \omega$. Pick $n \in \omega$. Then X_n is a closed set in X and \mathcal{F}_n is a closure-preserving closed refinement of $\mathcal{U} \upharpoonright X_n$. Since $\mathcal{U} \upharpoonright X_n$ is a well-monotone open cover of the β -space X_n , it follows from Lemma 2.3 that there is a θ -sequence $\{\mathcal{V}_{n,k}\}$ of open refinements of $\mathcal{U} \upharpoonright X_n$. For each $V \in \mathcal{V}_{n,k}$, choose $\alpha(V) \in \kappa$ with $V \subset U_{\alpha(V)} \cap X_n$, and let $V^* = (V \cup (X \setminus X_n)) \cap U_{\alpha(V)}$. Then V^* is an open set in X with $V^* \cap X_n = V$ and $V^* \subset U_{\alpha(V)}$. Here we set $\mathcal{V}_{n,k}^* = \{V^* : V \in \mathcal{V}_{n,k}\} \cup \mathcal{U} \upharpoonright (X \setminus X_n)$ for each $n, k \in \omega$. Then it is easy to see that $\mathcal{V}_{n,k}^*$ is a θ -sequence of open refinements of \mathcal{U} . Hence it follows from Theorem 1.1 that X is submetacompact. \Box

Remark. It follows from ([13], Theorem 3.3) that each regular space whose every well-monotone open cover has a σ -closurepreserving closed refinement is isocompact (that is, each countably compact closed subspace in it is compact). So, if every well-monotone open cover of a regular Σ -space X has such a refinement, then X is a strong Σ -space, hence X is subparacompact (see [3], Theorem 4.14). On the other hand, each semi-stratifiable space is always subparacompact (see [3], Theorem 5.11).

3 Another result

Here we discuss the property of such a space that every wellmonotone open cover has a $(\sigma$ -)closure-preserving closed refinement.

Lemma 3.1 [4, 13] For a space X, the following are equivalent.

- (a) For every well-monotone open cover $\{U_{\alpha} : \alpha \in \kappa\}$ of X, there is a well-monotone closed cover $\{F_{\alpha} : \alpha \in \kappa\}$ of X such that $F_{\alpha} \subset U_{\alpha}$ for each $\alpha \in \kappa$.
- (b) Every well-monotone open cover of X has a cushioned refinement.

(c) Every infinite open cover \mathcal{U} of X has an open refinement \mathcal{V} with $ord(x, \mathcal{V}) < |\mathcal{U}|$ for each $x \in X$.

This was first proved in ([4], Theorem 3.1), and after that, it was restated in ([13], Theorem 2.4).

Lemma 3.2 [9] Assume that a space Y has a sequence $\{y_{\alpha} : \alpha \in \kappa\}$ of length κ and its cluster point z such that $z \notin \operatorname{Cl}\{y_{\beta} : \beta < \alpha\}$ for each $\alpha \in \kappa$. If $X \times Y$ is orthocompact, then every open cover \mathcal{U} of X with $|\mathcal{U}| = \kappa$ has an open refinement \mathcal{V} such that $\operatorname{ord}(x, \mathcal{V}) < \kappa$ for each $x \in X$.

The proof is similar to that of ([9], Lemma 1.3).

Recall that a space X is orthocompact if every open cover of X has an interior-preserving open refinement.

Lemma 3.3 [5, 6, 7] Let X be an orthocompact space and let \mathcal{U} be an open cover of X. Then \mathcal{U} has a $(\sigma$ -)closure-preserving closed refinement if and only if it has a $(\sigma$ -)cushioned refinement.

For a space X, we denote by L(X) the Lindelöf degree of X. For an ordinal λ , we denote by $(\lambda + 1)'$ the space of all ordinals $\leq \lambda$ with the topology such that the point λ has a neighborhood base in the usual order topology and all other points are isolated.

Using the product $X \times (\lambda + 1)'$, we can obtain an analogue of ([14], Theorem) as follows.

Theorem 3.4 For an orthocompact space X, the following are equivalent.

- (a) Every well-monotone open cover of X has a closurepreserving closed refinement.
- (b) $X \times (\kappa + 1)'$ is orthocompact for each cardinal $\kappa \leq L(X)$.

(c) $X \times (\lambda + 1)'$ is orthocompact for each ordinal λ .

Proof: (b) \Rightarrow (a): Let \mathcal{U} be an open cover of X with $|\mathcal{U}| = \kappa$. We may assume $\omega \leq \kappa \leq L(X)$. Since the space $(\kappa + 1)'$ satisfies the condition of Y in Lemma 3.2, it follows that \mathcal{U} has an open refinement \mathcal{V} such that $\operatorname{ord}(x, \mathcal{V}) < \kappa$ for each $x \in X$. So Lemmas 3.1 and 3.3 assure this implication.

 $(c) \Rightarrow (b)$: Obvious.

(a) \Rightarrow (c): Let $\mathcal{G} = \{G_{\xi} : \xi \in \Xi\}$ be an open cover of $X \times (\lambda + 1)'$. We show that there is an interior-preserving (in $X \times (\lambda + 1)'$) partial open refinement \mathcal{H} of \mathcal{G} , covering $X \times \{\lambda\}$. For each $\mu < \lambda$ and $\xi \in \Xi$, let

$$U_{\mu,\xi} = \bigcup \{ U : U \text{ is open in } X \text{ with } U \times (\mu, \lambda] \subset G_{\xi} \}.$$

Then $\{U_{\mu,\xi} : \langle \mu, \xi \rangle \in \lambda \times \Xi\}$ is an open cover of X. Since X is orthocompact, there is an interior-preserving open cover $\{V_{\mu\xi}:$ $\langle \mu, \xi \rangle \in \lambda \times \Xi$ of X such that $V_{\mu,\xi} \subset U_{\mu,\xi}$ for each $\langle \mu, \xi \rangle \in$ $\lambda \times \Xi$. Well-order $\lambda \times \Xi$ by \prec such that, for each $\langle \mu', \xi' \rangle, \langle \mu, \xi \rangle \in$ $\lambda \times \Xi, \mu' < \mu \text{ implies } \langle \mu', \xi' \rangle \prec \langle \mu, \xi \rangle.$ Since $\{\bigcup_{\langle \mu', \xi' \rangle \prec \langle \mu, \xi \rangle} V_{\mu', \xi'} : U_{\mu', \xi'} \}$ $\langle \mu, \xi \rangle \in \lambda \times \Xi$ is a well-monotone open cover of X, there is a closure-preserving closed cover $\{F_{\mu,\xi}: \langle \mu, \xi \rangle \in \lambda \times \Xi\}$ of X such that $F_{\mu,\xi} \subset \bigcup_{\langle \mu',\xi' \rangle \prec \langle \mu,\xi \rangle} V_{\mu',\xi'}$ for each $\langle \mu,\xi \rangle \in \lambda \times \Xi$. We may assume that $\{F_{\mu,\xi} : \langle \mu,\xi \rangle \in \lambda \times \Xi\}$ is well-monotone by \prec on $\lambda \times \Xi$. Let $W_{\mu,\xi} = V_{\mu,\xi} \setminus F_{\mu,\xi}$ for each $\langle \mu, \xi \rangle \in \lambda \times \Xi$, and let $\mathcal{W} = \{W_{\mu,\xi} : \langle \mu, \xi \rangle \in \lambda \times \Xi\}$. Then it is easy to see that \mathcal{W} is an interior-preserving open cover of X. Let $\mathcal{H} = \{W_{\mu,\xi} \times (\mu, \lambda] : \langle \mu, \xi \rangle \in \lambda \times \Xi\}$. Then \mathcal{H} is a partial open refinement of \mathcal{G} , covering $X \times \{\lambda\}$. For each $\langle x, \eta \rangle \in X \times (\lambda+1)'$ with $\eta < \lambda$, $\bigcap \mathcal{H}(x, \eta)$ contains $(\bigcap \mathcal{W}(x)) \times \{\eta\}$. Pick $x \in X$. Take a $\langle \mu_0, \xi_0 \rangle \in \lambda \times \Xi$ with $x \in F_{\mu_0, \xi_0}$. By the choice of $W_{\mu, \xi}$'s, we have $x \notin \bigcup_{(\mu,\xi) \succ (\mu_0,\xi_0)} W_{\mu,\xi}$. Then we have

$$\bigcap \mathcal{H}(x,\lambda) = \bigcap \{ W_{\mu,\xi} \times (\mu,\lambda] : x \in W_{\mu,\xi} \text{ and } \langle \mu,\xi \rangle \preceq \langle \mu_0,\xi_0 \rangle \},$$

$$\supset \bigcap \{ W_{\mu,\xi} \times (\mu_0,\lambda] : x \in W_{\mu,\xi} \},$$

$$= (\bigcap \mathcal{W}(x)) \times (\mu_0, \lambda].$$

Since \mathcal{W} is an interior-preserving open cover of X, we have shown $z \in \text{Int}(\bigcap \mathcal{H}(z))$ for each $z \in X \times (\lambda + 1)'$. Hence \mathcal{H} is interior-preserving in $X \times (\lambda + 1)'$.

Note that $X \times \{\mu\}$ is closed-open in $X \times (\lambda + 1)'$ for each $\mu \in \lambda$. Since X is orthocompact, there is an interior-preserving open refinement \mathcal{H}_{μ} of $\mathcal{G} \upharpoonright (X \times \{\mu\})$. Let $\mathcal{O} = \mathcal{H} \cup (\bigcup_{\mu \in \lambda} \mathcal{H}_{\lambda})$. It is easy to check that \mathcal{O} is an interior-preserving open refinement of \mathcal{G} . Hence $X \times (\lambda + 1)'$ is orthocompact. \Box

A space X is suborthocompact [12] if every open cover \mathcal{U} of X has a sequence $\{\mathcal{V}_n\}$ of open refinements such that, for each $x \in X$, there is $n \in \omega$ with $x \in \operatorname{Int} \bigcap \mathcal{V}_n(x)$.

Using this, we can obtain

Theorem 3.5 Let X be a suborthocompact space.

- (1) If every well-monotone open cover of X has a σ -closurepreserving closed refinement, then $X \times (\lambda + 1)'$ is suborthocompact for each ordinal λ .
- (2) If $X \times (\lambda + 1)'$ is suborthocompact for each cardinal $\kappa \leq L(X)$, then every well-monotone open cover of X has a σ -cushioned refinement.

The proof of (1) in the above is similar to that of $(a) \Rightarrow (c)$ in Theorem 3.4. However, the former is more complicated than the latter. Modifying Lemmas 3.1 and 3.2, we can easily get (2) in the above as well as $(b) \Rightarrow (a)$ in Theorem 3.4.

By Lemma 3.3 and Theorem 3.5, we immediately have

Corollary 3.6 For an orthocompact space X, the following are equivalent.

(a) Every well-monotone open cover of X has a σ -closurepreserving closed refinement.

- (b) $X \times (\kappa + 1)'$ is suborthocompact for each cardinal $\kappa \leq L(X)$.
- (c) $X \times (\lambda + 1)'$ is suborthocompact for each ordinal λ .

4 Example

A function V from a space X into Top(X) is a *neighbornet* if $x \in V(x)$ for each $x \in X$. A neighbornet V of X is *co-countable* (*co-finite*) if $\{y \in X : x \in V(y)\}$ is at most countable (finite) for each $x \in X$.

Lemma 4.1 [8, 11] A space X has a closure-preserving closed cover by countable (finite) sets if and only if X has a cocountable (co-finite) neighbornet.

The following example shows that our Theorem 2.4 is not true without the assumption of X being a β -space.

Example 4.2 There is a normal orthocompact space X which is not submetacompact, but which is such that every well-monotone open cover has a closure-preserving closed refinement.

The example is a modification of Bing's example in [1], which is seen in ([2], Example 4.9 (iii)). We restate it here for the reader's convenience.

Let $\mathcal{P}(\omega_1)$ be the family of all subsets of ω_1 . Let $\mathcal{P}(\omega_1)^2$ be the set of all functions from $\mathcal{P}(\omega_1)$ into $\{0,1\}$. For each $\alpha \in \omega_1$, we define $\hat{\alpha} \in \mathcal{P}^{(\omega_1)} 2$ by $\hat{\alpha}(Q) = 1$ for $\alpha \in Q$ and $\hat{\alpha}(Q) =$ 0 for $\alpha \notin Q$. Let $E = \{\hat{\alpha} : \alpha \in \omega_1\}$. For each $\alpha \in \omega_1$ and each $r \in [\mathcal{P}(\omega_1)]^{<\omega}$, let $U(\hat{\alpha}, r) = \{f \in \mathcal{P}^{(\omega_1)} 2 : f(Q) =$ $\hat{\alpha}(Q)$ for each $Q \in r\}$. Let Y be the space $\mathcal{P}^{(\omega_1)}^2$ with the topology defined such that each $\hat{\alpha} \in E$ has a neighborhood base $\{U(\hat{\alpha}, r) : r \in [\mathcal{P}(\omega_1)]^{<\omega}\}$ and each $f \in \mathcal{P}^{(\omega_1)} 2 \setminus E$ is an isolated point. Now, we take the subspace X of Y defined by

$$X = E \cup \{x \in Y : \{Q \in \mathcal{P}(\omega_1) : x(Q) = 1\} \text{ is at most countable}\}.$$

Then it is known that X is normal, but not submetacompact (see [2], Example 4.9 (iii)). Since E is closed discrete in X and $X \setminus E$ is open discrete in X, it is easy to check that X is orthocompact. For each $x \in X$, we take the neighbornet V of X defined by $V(\hat{\alpha}) = U(\hat{\alpha}, \{\{\alpha\}\})$ for each $\alpha \in \omega_1$ and V(x) = $\{x\}$ for each $x \in X \setminus E$. Then $V(\hat{\alpha}) \cap E = \{\hat{\alpha}\}$ for each $\alpha \in \omega_1$. Now, we need to verify the following two facts. Fact 1. V is a co-countable neighbornet of X.

If $\hat{\alpha} \in V(y)$, then y must be $\hat{\alpha}$. If $x \in V(y)$ and $y \in X \setminus E$, then y = x. Pick $x \in X \setminus E$. Let $A = \{\alpha \in \omega_1 : x \in V(\hat{\alpha})\}$. Then $x(\{\alpha\}) = \hat{\alpha}(\{\alpha\}) = 1$ for each $\alpha \in A$. Hence we have $|\{Q \in \mathcal{P}(\omega_1) : x(Q) = 1\}| \ge |A|$. However, by $x \in X \setminus E$, we also have $|\{Q \in \mathcal{P}(\omega_1) : x(Q) = 1\}| \le \omega$. Hence $\{y \in X : x \in V(y)\}$ is at most countable.

Fact 2. X is countably metacompact.

Let $\{U_n : n \in \omega\}$ be a well-monotone countable open cover of X. Let $E_n = E \cap (U_n \setminus U_{n-1})$ for each $n \in \omega$, where $U_{-1} = \emptyset$. Then $\{E_n : n \in \omega\}$ is a discrete collection of closed sets in X. Since X is normal, there is a discrete collection $\{V_n : n \in \omega\}$ of open sets in X such that $E_n \subset V_n \subset U_n$ for each $n \in \omega$. Then $\{V_n : n \in \omega\} \cup \{\{x\} : x \in X \setminus \bigcup_{n \in \omega} V_n\}$ is a point-finite open refinement of $\{U_n : n \in \omega\}$.

It follows from Fact 1 and Lemma 4.1 that X has a closurepreserving closed cover by countable sets. So, when $cf(\kappa) > \omega$, every well-monotone open cover of X with cardinality κ has a closure-preserving closed refinement (by countable sets). Moreover, by Fact 2, every well-monotone countable open cover of X has a well-monotone countable closed refinement. Therefore, every well-monotone open cover of X has a closure-preserving closed refinement. \Box

References

- R. H. Bing, Metrization of topological spaces, Canad. J. Math., 3 (1951), 175-186.
- [2] D. K. Burke, Covering properties Handbook of Set-theoretic Topology (K. Kunen and J. E. Vaughan, eds), North-Holland, Amsterdam 1984, 347-422.
- G. Gruenhage, Generalized metric spaces Handbook of Settheoretic Topology (K. Kunen and J.E. Vaughan, eds), North-Holland, Amsterdam, 1984, 423-501.
- R. E. Hodel and J. E. Vaughan, A note on [a, b]compactness, General Topology and Appl., 4 (1974), 179-189.
- [5] S. Jiang, Every strict p-space is θ -refinable, Topology Proc., 11 (1986), 309-316.
- [6] H. J. K. Junnila, Metacompactness, paracompactness and interior-preserving open covers, Trans. Amer. Math. Soc., 249 (1979), 373-385.
- [7] H. J. K. Junnila, On submetacompactness, Topology Proc. 3 (1978), 375-405.
- [8] H. J. K. Junnila, Stratifiable pre-images of topological spaces, Colloq. Math. Soc., János Bolyai, 23 North-Holland (Amsterdam), (1980), Budapest, 1978 II 689-703.
- B. M. Scott, Toward a product theory of orthocompactness, Studies in Topology (N. M. Stavrakas and K. R. Allen eds), Academic Press, New York, 1975, 517-537.
- [10] J. M. Worrell and H. H. Wicke, Characterizations of developable spaces, Canad. J. Math., 17 (1965), 820-830.
- [11] Y. Yajima, On spaces which have a closure-preserving cover by finite sets, Pacific J. Math., 69 (1977), 571-578.
- Y. Yajima, A characterization of submetacompactness in terms of products, Proc. Amer. Math. Soc., 112 (1991), 291– 296.

- [13] L. Yang, A class of countably metacompact spaces, Math. Japonica, 37 (1992), 275-281.
- Y. Yasui, On the characterization of the B-property by the normality of product spaces, Topology and Appl., 15 (1983), 323-326.

Kanagawa University Yokohama 221, Japan *e-mail address:* yuki@cc.kanagawa-u.ac.jp

Faculty of Education Oita University Dannoharu, Oita 870-11, Japan *e-mail address:* nkemoto@oita-cc.oita-u.ac.jp