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Abstract

It is proved that a (-space X is submetacompact
if and only if every well-monotone open cover of X
has a o-closure-preserving closed refinement. We also
show that this is not true without the assumption of
[(-spaces.

1 Introduction

Worrell and Wicke [10] introduced the concept of submetacom-
pactness, which is a generalization of metacompactness and
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subparacompactness. First, it seems that submetacompact-
ness had been investigated as a sufficient condition in the study
of generalized metric spaces. After that, Junnila [6, 7] gave
several nice characterizations for submetacompactness (and
metacompactness). In particular, our motivation of this pa-
per comes from the following.

Theorem 1.1 [6, 7] The following are equivalent for a space
X.

(a) X is submetacompact (metacompact).

(b) Every well-monotone open cover of X has a 0-sequence
of open refinements (a point-finite open refinement).

(c) Every interior-preserving directed open cover of X has a
o-closure-preserving (a closure-preserving) closed refine-
ment.

(d) Every directed open cover of X has a o-closure-preserving
(a closure-preserving) closed refinement.

Observe that every well-monotone open cover is (interior-
preserving and) directed. However, as is shown in the last sec-
tion, a space X is not necessarily submetacompact even if ev-
ery well-monotone open cover of X has a o-closure-preserving
closed refinement. So it seems to be natural to ask the follow-
ing question:

(t) If every well-monotone open cover of a space X has
a o-closure-preserving closed refinement, when is X submeta-
compact?

Considering that submetacompactness plays important roles
in the study of generalized metric spaces, we consider the class
of f-spaces which is a class of generalized metric spaces con-
taining the classes of ¥-spaces and semi-stratifiable spaces (see
[3], Theorem 7.8 (i)). Our main result is to give an answer to
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the question (f) under the assumption of X being a S-space.
Moreover, as another remarkable result for submetacompact-
ness, Jiang [5] proved that strict p-spaces are submetacompact.
This is called the solution of the strict p-space problem, where
one observes submetacompactness is a necessary condition dif-
ferent from others. Here we use the technique due to Jiang in
the proof of our main result.

In the next section, we consider the following question:

(1) Characterize spaces whose every well-monotone open
cover has a (o-)closure- preserving closed refinement.

We give an answer to the question (}) by the (sub)orthocom-
pactness of certain products, which is an analogue of a result
for B-property by Yasui [14].

Throughout this paper, no separation axiom is assumed
without special mention. We use the following notations: Let
A be a set. |A| denotes the cardinality of A. [A]<¥([A]")
denotes the collection of finite subsets (of cardinality n) in
A. Moreover, A<“ denotes the collection of finite sequences
of members of A. Let X be a space and U an open cover of
X. Top(X) denotes the topology of X. For each z € X, let
U(z) = {U € U : z € U}. Moreover, let ord(z,U) = |U(z)|
and let St(z,U) = |JU(z). Foreach Y C X, let U [ ¥ =
{UNY : U € U}. The letter k denotes an infinite cardinal.

2 Main result

Let X be a space and U a cover of X. A cover V of X is
a refinement (point-star refinement) of U if each member of
V (each St(z,V),z € X,) is contained in some member of
U. A collection W of (open) subsets of X is a partial (open)
refinement of U if each member of W is contained in some
member of U, where W is not necessarily a cover of X.

Recall that an open cover V of X is interior-preserving if
(V' is open in X for each V' C V.
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Lemma 2.1 [6] An interior-preserving open coverU of a space
X has a closure-preserving closed refinement if and only if U
has an interior-preserving point-star open refinement.

The proof was done in that of ([6], Lemma 2.3).
A space X is called a f-space if there is a function ¢ :
X x w — Top(X), satisfying

(1) z € Mg, 9(2,n),

(i1) if ¢ € g(zn,n) for each n € w, then {z,} has a cluster
point in X.

Such a function g is called a B-function of X.
A cover U = {U, : a« € A} of X is well-monotone if the
index set A is well-ordered by < such that Us C U, if f < a.
The following was essentially proved by Jiang. However,
we state the proof here for reader’s convenience.

Lemma 2.2 [5] Let X be a B-space and U a well-monotone
open cover of X. If H is an open refinement of U, there is a
sequence {Gr,s : s € w<¥} of partial open refinements of U,
satisfying

(1) Gr,s C Gn,er for s C &,

(2) if z € X with ord(z,H) < n, then ¢ € |JGn,s for each

1
s € wttl

(3) for each ¢ € X, there is some 0 € w* such that
ord(z, GH,(otn)) < w for each n € w.

Proof: Let U = {U, : a € k} be such that o/ < «a implies
Uy C Uy. Let g be a B-function of X. Let a(z) = min{a €
k:z € Uy} for each z € X. Let Uy = Uy(z) Ng(2z,n) for each
r € X and n € w. Then each U, , is an open neighborhood of
zin X.
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Let Gy g = 0. Take any s € w™t!. Assume that Gy (s1n) has
been already constructed. For each n € [H]", let

Ghs = U{Uz,s(n) :n="H(z) and z € X\ U gH»(ST”)}‘

Here we put Gy s = Gy, (stn) U {Gn,s : 7 € [H]"}. Thus we have
constructed a sequence {Gy s : s € w<“} of collections of open
sets in X. We show this is a desired one.

Asin ([5], p-312), it is easy to see that each Gy s is a partial
open refinement of Y. Clearly, (1) is satisfied. From the choice
of Gy s, 1t is also easily verified by induction that (2) is satisfied.

Pick z € X. Assume o | n has been defined. Let s; =
(o [ n)~(2) for each 1 € w. Assume that ord(z,Gy,,;) > w for
each ¢ € w. There are distinct members 7o, 71, - - € [H]™ such
that ¢ € G, 5, for each 7 € w. For each ¢ € w, we can choose
z; € X\ UG, (o) such that n; = H(z;) and z € Uy, ;. There
is a cluster point y of {z;} in X. Now, assume ord(y, H) > n.
Take some n* € [H]™ with y € (n*. Find k,j € w with
k # j and z,z; € (n*. Since n* C H(zx) N H(z;) = e N j,
we have n* = np = n;. This contradicts that n; and 75; are
distinct. Hence we obtain ord(y,H) < n. So it follows from
(2) that y € JG#,(o1n)- On other hand, by the choices of z;’s
and y, we have y € | J Gy, (s1n). This is a contradiction. O

Recall that a sequence {V,} of open covers of a space X is
a 0-sequence if for each z € X there is n € w such that V), is
point-finite at x.

A basic idea for the proof of the following is also due to
Jiang [5].

Lemma 2.3 Let X be a B-space and U a well-monotone open
cover of X. IfU has a closure-preserving closed refinement,
then it has a 0-sequence of open refinements.

Proof: Let U = {U, : @ € £} be such that a < o implies
U, C U,. Let g be a B-function of X such that g(z,n+ 1) C
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g(z,n) for each ¢ € X and n € w. It follows from the as-
sumption and Lemma 2.1 that there is an interior-preserving
point-star open refinement V of Y. Let f(z) = min{a € & :
St(z,V) C Uy} for each z € X. Let W, = (N V(z))Ng(z,n)
for each z € X and n € w. Then each W, , is an open neigh-
borhood of z in X.

Let ©g = {{}. Assume that we have already constructed
a sequence O; of open refinements of Y with ©,_; C ©; for
each 1 < m. Take an H € 0,,. It follows from Lemma 2.2
that there is a sequence {Gy, : s € w<“} of partial open
refinements of U, satisfying (1), (2) and (3) of Lemma 2.2. Let
Zm41 = [Om X w<¥]<¥. Let Ge = |J{Gn,s : (H,s) € &} for each
£ €=41. Let

He, = U{Wx,m+1 1T € X\U Geand f(z) = a}

for each ¢ € =41 and o € k. Here weset He = GeU{He o : @ €
k} for each £ € Z,,41. Moreover, we set ©,,41 = O, U {He :
¢ € Ept1). It is easy to verify He, C U, for each a € k.
So H¢ is an open refinement of &. Thus we have constructed
{0,, : m € w} by induction. Then © = |J
of open refinements of U.

Now, to show that © is a #-sequence, assume the contrary.
Let

mew Om 15 a sequence

Y ={z € X :ord(z,H) < w for some H € O}.

We pick some p € X\Y with §(p) = min{f(z) : ¢ € X\Y}.
Let ©;, = {H,; : j € w} for each 1 € w. Let He, = U € Oy.
By (3) in Lemma 2.2, for each ¢,j € w, there is 0;; € w* such
that ord(p, Gu,; (oi;1n)) < w for each n € w. Take m € N,
where N = w\{0}. Let & = {(Hij, 0 [ m) : 1,7 < m}. Then
He,, = Ge,, U{H¢ o : @ € K} € O,,. By the choice of p,
we have ord(p, {H,.« : @ € £}) > w. By G, C G,.,, and
Wemt1 C Wem, note that He . o C He, o for each a € &«.
So we can choose f; < B2 < -+ < k such that p € H,, g,, for
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each m € N. For each m € N, we can pick z., € X\ Gt
such that 8(z,) = Bm and p € W, m. Then there is a cluster
point y of {z,} in X.

Claim. B(y) < B(p).-

Proof: First, assume that there is £ € N with x> S(p). Since
St(zk, V) ¢ Up(p), we can find V5 € V such that z; € Vo and
Vo & Upp). Then we have

pE War C [\ V(zk) C Vo CSt(p,V) C Upg):

This is a contradiction. Hence 8,, < B(p) for each m € N.
Since () V(y) is an open neighborhood of y, it contains some
zs. By V(y) C V(z:), we have St(y,V) C St(ze, V) C Usg,.
Therefore, B(y) < Be < B(p).
By Claim, we have y € Y. There is H* € O with ord(y, H*) <

w. There is some ig, jo,n0 € w such that H* = H,, j, and
ord(y, H*) = no. Let mo = max{io,jo,n0} + 1. Let s* =
Tiojo | Mo. Since (H*,s*) € &m,, it follows from (1) and (2) in
Lemma 2.2 that y € |G+ s+ C |JGep,- So we can find ko € w
with ko > mo and zx, € |JGe,,. Then we have z, € Uggko.
This contradicts the choice of zy,. O

Recall that a space X is submetacompact if every open cover
of X has a #-sequence of open refinements.
Now, we obtain a main result.

Theorem 2.4 A (B-space X is submetacompact if and only if
every well-monotone open cover of X has a o-closure-preserving
closed refinement.

Proof: The “only if” part immediately follows from Theorem
1.1. We show the “if” part. Let U = {U, : @ € £} be a well-
monotone open cover of X such that o/ < « implies U, C U,.
There is a o-closure-preserving closed refinement | J, ., Fn of
U. Let X, = |JF, for each n € w. Pick n € w. Then

X, is a closed set in X and F, is a closure-preserving closed
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refinement of U [ X,. Since U | X, is a well-monotone open
cover of the #-space X,,, it follows from Lemma 2.3 that there
is a §-sequence {V, x} of open refinements of U | X,,. For each
V' € Vnk, choose a(V) € & with V' C Uywyy N X,, and let
V* = (VU(X\X,))NUyv). Then V* is an open set in X with
V*NX, =V and V* C Uyv). Here weset V;, ={V*:V €
Vurt UU | (X\X,) for each n,k € w. Then it is easy to see
that V), is a 6-sequence of open refinements of &. Hence it
follows from Theorem 1.1 that X is submetacompact. O

Remark. 1t follows from ([13], Theorem 3.3) that each regular
space whose every well-monotone open cover has a o-closure-
preserving closed refinement is isocompact (that is, each count-
ably compact closed subspace in it is compact). So, if every
well-monotone open cover of a regular ¥-space X has such a
refinement, then X is a strong 3-space, hence X is subpara-
compact (see [3], Theorem 4.14). On the other hand, each
semi-stratifiable space is always subparacompact (see [3], The-
orem 5.11).

3 Another result

Here we discuss the property of such a space that every well-
monotone open cover has a (o-)closure-preserving closed re-
finement.

Lemma 3.1 [4, 13] For a space X, the following are equiva-
lent.

(a) For every well-monotone open cover {U, : a € k} of X,
there is a well-monotone closed cover {F, : a € k} of X
such that F, C U, for each a € k.

(b) Every well-monotone open cover of X has a cushioned
refinement.
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(c) FEvery infinite open cover U of X has an open refinement

V with ord(z,V) < |U| for each z € X.

This was first proved in ([4], Theorem 3.1), and after that,
it was restated in ([13], Theorem 2.4).

Lemma 3.2 [9] Assume that a space Y has a sequence {y, :
a € k} of length k and its cluster point z such that z ¢ Cl{yp :
B < a} for each a € k. If X XY is orthocompact, then every
open cover U of X with |U| = k has an open refinement ¥V such
that ord(x,V) < k for each z € X.

The proof is similar to that of ([9], Lemma 1.3).

Recall that a space X is orthocompact if every open cover
of X has an interior-preserving open refinement.

Lemma 3.3 [5, 6, 7] Let X be an orthocompact space and let
U be an open cover of X. Then U has a (o-)closure-preserving
closed  refinement if and only if it has a
(0-)cushioned refinement.

For a space X, we denote by L(X) the Lindel6f degree of
X. For an ordinal A, we denote by (A + 1)’ the space of all
ordinals < A with the topology such that the point A has a
neighborhood base in the usual order topology and all other
points are isolated.

Using the product X x (A+ 1), we can obtain an analogue
of ([14], Theorem) as follows.

Theorem 3.4 For an orthocompact space X, the following are
equivalent.

(a) FEvery well-monotone open cover of X has a closure-
preserving closed refinement.

(b) X X (5+1) is orthocompact for each cardinal k < L(X).



274 Nobuyuki Kemoto and Yukinobu Yajima

(c) X x (A+ 1) is orthocompact for each ordinal \.

Proof: (b)=>(a): Let U be an open cover of X with |U| = «.
We may assume w < k£ < L(X). Since the space (k + 1)’
satisfies the condition of Y in Lemma 3.2, it follows that ¢ has
an open refinement V such that ord(z,V) < & for each z € X.
So Lemmas 3.1 and 3.3 assure this implication.

(c)=>(b): Obvious.

(a)=(c): Let G = {G¢ : £ € =} be an open cover of X X
(A +1)". We show that there is an interior-preserving (in X x
(A + 1)) partial open refinement H of G, covering X x {\}.
For each 4 < A and £ € =, let

Uue = U{U : U is open in X with U x (g, A] C Ge}.

Then {U,¢ : (u,€) € A X Z} is an open cover of X. Since X is
orthocompact, there is an interior-preserving open cover {V, ¢ :
(1,€) € A x E} of X such that V, ¢ C U, for each (i, ¢) €
AXZ. Well-order AxE by < such that, for each (¢',¢'), (s, €) €
AXE, ' < pimplies (u',€') < (u,&). Since {Umen<iue) Vg
(g, €) € XA x E} is a well-monotone open cover of X, there is
a closure-preserving closed cover {F, ¢ : (¢,€) € A X Z} of X
such that Fle C U en<(ue Vg for each (p,€) € A x E. We
may assume that {F,¢ : (4,€) € A x Z} is well-monotone by
<on AXZ. Let Wye = V,¢\F,¢ for each (p,€) € A\ x Z,
and let W = {W,¢ : (4,€) € X x E}. Then it is easy to
see that W is an interior-preserving open cover of X. Let
H={Wyuex(pA: (g€ €A xE}. Then H is a partial open
refinement of G, covering X x{A}. For each (z,n) € X x(A+1)’
with n < A, (VH(z,n) contains ((YW(z)) x {n}. Pick z € X.
Take a (o, &) € AXZ with € F, ¢,. By the choice of W, ¢’s,
we have z ¢ U(u,£)>(uo,€o) W, ¢. Then we have

ﬂH(x,A) = n{Wu,f X (Al 1 @ € Wy and (1, €) 2 (po, o)},
) ﬂ{Wu,ﬁ X (po, Al 1 @ € Wye},
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ﬂw ﬂ0> /\]

Since W is an interior-preserving open cover of X, we have
shown z € Int([) H(z)) for each z € X x (A +1)'. Hence H is
interior-preserving in X x (A 4+ 1)'.

Note that X x {u} is closed-open in X X (A + 1)’ for each
p € A. Since X is orthocompact, there is an interior-preserving
open refinement H, of G | (X x {p}). Let O = 'HU(UME/\ A)-
It is easy to check that O is an interior-preserving open refine-
ment of G. Hence X x (A + 1) is orthocompact. O

A space X is suborthocompact [12] if every open cover U of
X has a sequence {V,} of open refinements such that, for each
z € X, there is n € w with z € Int [} V,(2).

Using this, we can obtain

Theorem 3.5 Let X be a suborthocompact space.

(1) If every well-monotone open cover of X has a o-closure-
preserving closed refinement, then X x (A + 1) is sub-
orthocompact for each ordinal ).

(2) If X x (A + 1) is suborthocompact for each cardinal k <
L(X), then every well-monotone open cover of X has a
o-cushioned refinement.

The proof of (1) in the above is similar to that of (a)=(c)
in Theorem 3.4. However, the former is more complicated than
the latter. Modifying Lemmas 3.1 and 3.2, we can easily get
(2) in the above as well as (b)=>(a) in Theorem 3.4.

By Lemma 3.3 and Theorem 3.5, we immediately have

Corollary 3.6 For an orthocompact space X, the following
are equivalent.

(a) Every well-monotone open cover of X has a o-closure-
preserving closed refinement.
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(b) X x (k + 1) is suborthocompact for each cardinal k <
L(X).

(¢) X x (A4 1) is suborthocompact for each ordinal \.

4 Example

A function V from a space X into Top(X) is a neighbornet if
z € V(z) for each € X. A neighbornet V of X is co-countable
(co-finite) if {y € X : z € V(y)} is at most countable (finite)
for each z € X.

Lemma 4.1 [8, 11| A space X has a closure-preserving closed
cover by countable (finite) sets if and only if X has a co-
countable (co-finite) neighbornet.

The following example shows that our Theorem 2.4 is not
true without the assumption of X being a (-space.

Example 4.2 There is a normal orthocompact space X which
is not submetacompact, but which is such that every well-
monotone open cover has a closure-preserving closed refine-
ment.

The example is a modification of Bing’s example in [1],
which is seen in ([2], Example 4.9 (iii)). We restate it here for
the reader’s convenience.

Let P(wy) be the family of all subsets of w;. Let P(w1)9 he
the set of all functions from P(w;) into {0,1}. For each a € wy,
we define @ €P“1) 2 by 4(Q) = 1fora € Q and &(Q) =
Ofora € Q. Let E = {& : a € wi}. For each a € wy
and each r € [P(w1)]<¥, let U(&,r) = {f €?@) 2 : f(Q) =
&(Q) for each Q € r}. Let Y be the space P(“1)2 with the topol-
ogy defined such that each & € E has a neighborhood base
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{U(&,r) : r € [P(w1)]<*} and each f €P“1) 2\ E is an isolated
point. Now, we take the subspace X of Y defined by

X=EU{z €Y :{Q € P(w):z(Q) = 1} is at most countable}.

Then it is known that X is normal, but not submetacompact
(see [2], Example 4.9 (iii)). Since E is closed discrete in X
and X\F is open discrete in X, it is easy to check that X is
orthocompact. For each z € X, we take the neighbornet V of
X defined by V(&) = U(&, {{a}}) for each a € wy and V(z) =
{z} for each z € X\E. Then V(&)NE = {&} for each o € w;.
Now, we need to verify the following two facts.

Fact 1. V is a co-countable neighbornet of X.

If & € V(y), then y must be & If z € V(y) and y € X\F,
then y = z. Pickz € X\E. Let A = {a € w : z € V(&)}.
Then z({a}) = &({a}) = 1 for each @ € A. Hence we have
HQ € P(w1) : z(Q) = 1}| > |A|. However, by z € X\FE, we
also have |[{Q € P(w1) : 2(Q) =1} S w. Hence {y € X : z €
V(y)} is at most countable.

Fact 2. X is countably metacompact.

Let {U, : n € w} be a well-monotone countable open cover
of X. Let E, = EN(U,\Up-1) for each n € w, where U_; = 0.
Then {F, : n € w} is a discrete collection of closed sets in X.
Since X is normal, there is a discrete collection {V,, : n € w} of
open sets in X such that F, C V,, C U, for each n € w. Then
{Via:inewlU{{z}:2 € X\U,c Va} is a point-finite open
refinement of {U, : n € w}.

It follows from Fact 1 and Lemma 4.1 that X has a closure-
preserving closed cover by countable sets. So, when cf(k) > w,
every well-monotone open cover of X with cardinality « has a
closure-preserving closed refinement (by countable sets). More-
over, by Fact 2, every well-monotone countable open cover of X
has a well-monotone countable closed refinement. Therefore,
every well-monotone open cover of X has a closure-preserving
closed refinement. O
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