
Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT c© by Topology Proceedings. All rights reserved.



Topology Proceedings 
Volume 22, Summer 1997, 261-274 

THE ROUND IDEAL COMPLETION VIA
 
SOBRIFICATION
 

Jimmie Lawson 

Abstract 

In this paper we consider an important order 
completion, the rounded-ideal completion, that 
has arisen in the modern theory of continuous 
domains. We show that it can be alternately 
viewed as a special case of a more general topo­
logical method of completion, namely taking the 
sobrification of a topological space. A number 
of important special caSes and examples are in­
cluded. 

1. Introduction 

The two standard methods of obtaining the real numbers from 
the rationals are via completions with Cauchy sequences or 
with Dedekind cuts. The first approach is a topological con­
struction while the second is an order-theoretic one. Of course 
the method of completions via Cauchy sequences extends to 
all metric spaces, not just ordered spaces. 

In this short paper we consider another important order 
completion of more recent origin, the rounded-ideal comple­
tion, and show that it can be alternately viewed as a spe­
cial case of a more general topological method of completion, 
namely taking the sobrification of a topological space. 

We quickly recall basic notions of ordered sets and continu­
ous domain theory (see, for example, [AJ95] or [COMP]). Let 
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(P, :::;) be a partially ordered set (or poset). A principal ideal 
is a set of the form lx := {y: y ~ x}. A set A is a lower set if 
A = lA := {y : y ~ a for some a E A}. A non-empty subset 
D of P is directed if x, y E D implies there exists zED with 
x :::; z and y :::; z. An ideal of P is a directed lower set. The 
poset P is a directed complete partially ordered set (DCPO) if 
every directed subset of P has a supremum. 

If x, y belong to a partially ordered set P, we write x « y 
and say that x approximates y if for every directed set D with 
y :::; sup D, we have x :::; d for some d ED. A partially ordered 
set is called a continuous poset if every element is the directed 
supremum of all elements which approximate it, Y = Vi{x : 
x « y} for all YEP. The partially ordered set is a continuous 
domain if it is both a DCPO and a continuous paset. 

Let P be a poset. A subset B of P is called a basis if for each 
x E P there exists a directed subset D of B with supremum x 
such that each member of D approximates x. It is a standard 
result that P is a continuous poset if and only if P possesses a 
basis. The set P itself is a basis in any continuous poset. 

A continuous poset admits a useful To topology called the 
Scott topology; a set is Scott closed by definition if it is a lower 
set which is closed with respect to taking suprema of directed 
subsets. 

The open sets are the upper sets U with the property that 
if the supremum of a directed set lies in U, then some member 
of the directed set lies in U. It is well-known that the Scott 
topology has as a basis of open sets all sets of the form 

ix := {y : x « y}. 

2. Rounded Ideal Completions 

The material in this section is more-or-Iess standard with the 
seminal ideas dating back to the early work of D. Scott. We 
refer the reader to [Sm77] , Section 2.2 of [AJ95], and Chapter 
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1.1 of [COMP]. 
Let (P, -<) denote a set equipped with a binary relation. For 

F ~ P and yEP, we write F -< Y if x -< y for all x E F. 
The binary relation -< is called fully transitive if it is transitive 
(x -< y, y -< z => x -< z) and satisfies the strong interpolation 
property: 

'tIFI < 00, F -< z => ~y -< z such that F -< y. 

For the case that F = 0, we interpret the condition to mean 
that for all z E P, there exists yEP such that y -< z. A(n) 
(abstract) basis is a pair (B, -<) where B is a set equipped 
with a fully transitive relation -<. We observe that if B is a 
basis for a continuous poset, then (B, «), the restriction of the 
approximation relation to B, is an abstract basis. 

Definition 2.1. Suppose that (B, -<) is an abstract basis. A 
non-empty subset I of B is a round ideal if (i) y E I and 
x -< y imply that x E I, and (ii) x, y E I implies there exists 
z E I with x -< z and y -< z. The round ideal completion is 
the partially ordered set (RI(B),!;) consisting of all rounded 
ideals ordered by set inclusion. 

Theorem 2.2. Let (B, -<) be an abstract basis. Then the fol­
lowing hold: 

(i)	 the round ideal completion (RI(B), C) is a continuous do­
main; 

(ii)	 I « J in RI(B) {::} ~y E J such that I -< y; 

(iii)	 the mapping j: B ~ RI(B) defined by j(y) = ~y := {x: 
x -< y} has the property that x -< y implies j (x) « j (y ); 

(iv)	 the set j(B) is a basis for RI(B). 

A proof may be found in Section 2.2 of [AJ95]. 
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The following example shows that the round ideal comple­
tion may be viewed as a generalization of the ideal completion 
of a poset. 

Example 2.3. Let (P,::;) be any partially ordered set, and 
let -<:=~. Then the round ideals of P are just the ideals, so 
the round ideal completion agrees with the ideal completion 
in this case, and the standard mapping x r---t lx into the ideal 
completion is just the mapping j of Theorem 2.2. 

There is a variant context for constructing the round ideal 
completion that one often encounters in practice. Let (P,::;) 
be a partially ordered set. A binary relation -< on P is called 
an auxiliary relation if (i) -< is fully transitive, (ii) -<~~, and 
(iii) w :s; x -< y ::; z implies w -< z. An auxiliary relation is 
said to be approximating if given any' y i x, there exists z -< y 
such that z i x. We note that the order relation itself in any 
partially ordered set and the approximation relation in any 
continuous poset are always approximating auxiliary relations. 

There is a slightly modified and sharpened version of Theo­
rem 2.2 for posets equipped with auxiliary relations. 

Theorem 2.4. Let (P,::;) be a partially ordered set endowed 
with an auxiliary relation -<. Then the following hold for the 
round ideal completion with respect to -<: 

(i) each round ideal is an ideal; 

(ii)	 the round ideal completion (RI(P),~) is a continuous do­
main; 

(iii)	 I « J in RI(P) ¢} 3y E J such that I ~ lYe 

(iv)	 the mapping j: P ~ RI(P) defined by j(y) = jJ.y := {x : 
x -< y} is order-preserving and has the property that x -< y 
implies j(x) «j(y); 

(v)	 the set j(P) is a basis for RI(P); 
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(vi)	 if -< is approximating, then j is injective, strictly order 
preserving, and satisfies x -< y if and only if j (x) « j (y) . 

Proof We verify those assertions that do not appear already 
in Theorem 2.2. 

Let I be a round ideal, let y E I, and let x ~ y. There 
exists wEI such that y -< w, and hence by property (iii) of 
an auxiliary relation x -< w. Thus x E I and hence I is a 
lower set. Now assume that x, y E I. By definition there exists 
z E I such that x -< z and y -< z. Then by property (ii) of an 
auxiliary relation x ::; z and y ::; z. Hence I is directed and is 
thus an ideal. 

Suppose that I « J in RI(P). By Theorem 2.2 there exists 
y E J such that I -< y. But since -<~~, it follows that I ~ lYe 
Conversely suppose that I ~ ly for some y E J. Since J is 
round, there exists z E J with y -< z. Then I -< z, and again 
from Theorem 2.2 I ~ J. 

Suppose that x ~ y in P. If w -< x, then w -< y (by property 
(iii) of an auxiliary relation), and hence j(x) C j(y). Thus j 
is order-preserving. 

We show j is strictly order-preserving under the hypothesis 
of (vi). Suppose that j(x) ~ j(y). If x i y, then there exists 
w -< x with w i y. But then w E j(x) and w ~ j(y), which 
contradicts j (x) C j (y). Since strictly order preserving maps 
are injective, we conclude that j is injective. 

Finally suppose that -< is approximating and j (x) « j (y). 
By (iii) there exists W E j(y) such that j(x) ~ lw. If x i w, 
then z -< x but z i w for some z E P. But then z E j(x) ~ lw, 
a contradiction. Thus x ::; w -< y, and hence x -< y. 0 

Example 2.5. Let Q denote the set of rational numbers with 
the usual order and with -<=<, which is an approximating 
auxiliary relation. The round ideals are all sets of the form 
(-00, r) n Q, r E lR, and the set Q itself. Thus the round ideal 
completion may be naturally identified with lR U {oo}, with 00 

added as a largest element. 
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The following proposition gives a universal property for the 
round ideal completion (see Proposition 2.2.24 of [AJ95] for a 
weaker universal property under weaker hypotheses). 

Proposition 2.6. Let (B, -<) be an abstract basis and let 
f: B ~ P be a function into a DCPO which satisfies: 

'Vb E B, f(b) = ViJ(,ij.b). 

Then there exists a unique Scott continuous function 
F: RI(B) ~ P such that F 0 j = f, where j: B --+ RI(B). 

Proof For each round ideal I E RI(B) , set F(I) = Vif(I). 
It is straightforward to verify that F preserves directed 

suprema and it follows from the hypothesis that F(~b) = f(b) 
for b E B, i.e., F 0 j = f. 0 

3. Completions via Sobrification 

We recall some standard topological facts about sober spaces 
(see, for example, [COMP]). 

A subset E of a topological space X is said to be irreducible 
if for any two closed subsets A and B such that E ~ A u B, 
either E ~ A or E ~ B. The closure of any singleton subset 
is always a closed irreducible subspace. The space X is said 
to be sober if every closed irreducible set C is the closure of a 
unique point, C = {x} for an unique x EX. . 

Given any space X, a pair (XS, j) is called a sobrification 
of X if XS is a sober space and j: X --+ XS is a continuous 
mapping such that U ~ j-l(U) is a lattice isomorphism from 
the lattice O(XS) of open sets of XS onto the lattice O(X) of 
open sets of X. Every space X admits a sobrification. One 
standard construction to obtain the sobrification of X is to 
take for the elements of XS all closed irreducible subsets of X 
and for the closed subsets of XS all closed irreducible subsets 
contained in a given closed subset of X; the mapping j sends 
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a point to its closure (see Exercise V.4.9 of [COMP]). Fur­
thermore, the sobrification of X is unique in the sense that 
if (Xi, ji) are sobrifications for i = 1,2, then there exists a 
unique homeomorphism h: Xi ~ X2such that h 0 j1 = j2. 

Definition 3.1. Let (B, -<) be an abstract basis. For b E B, 
set 

'fib := {x E B : b -< x}. 

It follows from the strong interpolation property that the 
sets i1b form a basis for a topology on B, called the pseudoScott 
topology. 

Lemma 3.2. Let (B, -<) be an abstract basis equipped with the 
pseudoScott topology and let the mapping j : B ~ RI(B) be 
given by j(b) = ~b. Then for each open set U in B, ij(U) is 
open in RI(B) and j-1(ij(U)) = U. 

Proof. Let y :J j (b) for some b E U. There exists dEB 
such that b E i1d ~ U. Pick c such that d -< c -< b. Then 
c E i1d implies c E U. By Theorem 2.2 j(b) E i1j(c) and hence 
y E i1j(c) ~ ij(c) ~ ij(U). Since i1j(c) is open in RI(B), we 
conclude that i j (U) is open. 

Set V := ij(U); we have just seen that V is open. Clearly 
U ~ j-1(V). Conversely suppose j(q) E V. Then j(q) ~ j(b) 
for some b E U. As in the preceding paragraph, there exists 
c E U such that c -< band i1c ~ U. Then c E ~b ~ ~q implies 
c -< q and hence q E U. 0 

Theorem 3.3. Let (B, -<) be an abstract basis equipped with 
the pseudoScott topology. Then the mapping j : B ~ RI(B) of 
Theorem 2.2 is a sobrifi,cation of B, where RI(B) is equipped 
with the Scott topology. 

Proof. By Theorem 2.2 RI(B) is a continuous domain, and 
it is a standard result that a continuous domain is sober with 
respect to the Scott topology (see [La79]). 
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Let b E B and let U be a Scott open set containing j(b) = 
~b. Since j(b) is the directed union of all j(x), x E .JJ,b, there 
exists x -< b such that j (x) E U. Since U is an upper set in 
RI(B), by part (iii) of Theorem 2.2, j(1r"x) ~ U. We conclude 
that j is continuous and hence that j-l(U) is open in B for 
each Scott open set U. 

Suppose that U and V are open sets in RI(B), U =f V. 
Then there exists x E U \ V (or vice-versa). Since j(B) is a 
basis by Theorem 2.2, there exists j(b) « x with j(b) E U. 
But then j(b) ~ V, for otherwise x E jV = V. It follows that 
j-l(U) =f j-l(V). 

To complete the proof, we need to show that each open set 
W in B is of the form j-l(U) for some U open in RI(B). But 
this follows directly from the preceding lemma. 0 

Example 3.4. Let (P,~) be a partially ordered set. If we 
consider P as an abstract basis for the fully transitive relation 
~, then the pseudoScott topology is the topology of all upper 
sets, sometimes called the Alexandroff discrete topology. As we 
have seen in the in Example 2.3, the round ideal completion 
is the ideal completion, and by the previous Theorem 3.3 the 
sobrification of the Alexandroff discrete topology yields the 
ideal completion equipped with the Scott topology. 

The following important special case of the above results 
was worked out by R.-E. Hoffmann [Ho79] and further treated 
by M. Mislove in Section 4.2 of [Mi98]. 

Example 3.5. Let (P,~) be a continuous poset. Then the 
approximation relation « on P is an approximating auxiliary 
relation. We may view the round ideal completion as attaching 
to P suprema for all rounded ideals which are not principal, 
Le., not of the form ~(x) = {y : y « x}, so that P is en­
riched and transformed to a DCPO RI(P). The pseudoScott 
topology on P is just the Scott topology, and by Theorem 3.3 
its sobrification gives RI(P), again equipped with the Scott 



THE ROUND IDEAL COMPLETION VIA ... 269 

topology. If the sobrification mapping is injective (Le., if the 
original space is To), as it is in this case, then it is easily seen 
to be a homeomorphic embedding, and thus the restriction of 
the Scott topology on RI(P) to P (which we identify with 
j(P)) is again the Scott topology. Observing that y « x in P 
resp. RI(P) if and only if x is in the Scott-interior (in P resp. 
RI(P)) of jy, we conclude directly from the preceding remarks 
that the restriction of the approximation or "way-below" re­
lation on RI(P) to P agrees with the original approximation 
relation onP. This fact also follows from part (vi) of 2.4. 

We recall the the sobrification functor is the adjoint func­
tor for the inclusion of the category of sober spaces into the 
category of topological spaces. It follows that the sobrification 
satifies a universal property, namely that given any continuous 
map from the original space into another sober space Y, there 
exists a unique continuous function from the sobrification into 
Y which extends the original function. 

Proposition 3.6. Let (B, -<) be an abstract basis, let Y be a 
sober space, and let f : B ~ Y be a junction which is continu­
ous with respect to the pseudoScott topology. Then there exists 
a continuous junction F: RI(B) ~ Y such that F 0 j = !, 
where j: B ~ RI(B) is the sobrification mapping. 

Proof. The proof follows from the preceding general theory of 
sobrifications. However one can alternately check directly in 
this case that a round ideal is an irreducible subset of B, and 
hence its-image in Y also is. The mapping F is then given by 
sending the round ideal to the unique point which generates 
the closure of its image. 0 

4. Computational Models for Topological Spaces 

In an early paper D. Scott [Sc70] suggested that partially or­
dered structures such as the set of all closed subintervals of a 
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closed real interval (viewed as a partially ordered set ordered 
by reverse inclusion) should be useful for the study of contin­
uous and computable functions on the closed interval. Ideas 
of computability on metric spaces related to those of Scott's 
had surfaced much earlier, for example, in [Lac59] (see also 
[ML70]). Scott's suggestion was developed along various lines 
in [WS81] and [KT84]. Two recent developments have given a 
new impetus to such considerations. One of these is the intro­
duction and ripening theory of the probabilistic power domain 
of a continuous poset [Sa80], [J089], [JP89]. If a continuous 
poset can be appropriately associated with a topological space, 
then one has at hand via the probabilistic power domain what 
can be a very effective and powerful tool for the study of a 
variety of problems associated with integration, measure and 
probability (see, for example, [Ed95a]). In addition, A. Edalat 
has effectively used such structures in a wide variety of appli­
cations involving measures, dynamical systems, and iterated 
function systems and fractals [Ed95b, Ed96, ER97]. 

In Edalat's work a compact space is realized as the set of 
maximal points of the continuous domain consisting of its com­
pact non-empty subsets ordered by reverse inclusion (some­
times called the "upper space" ). In [La97] the first construction 
was given for realizing any complete separable metric space as 
the set of maximal points of a continuous domain. 

In this section we briefly point out how the ideas of this 
paper and of [Lag7] lead naturally to the introduction of a 
computational structure on a topological space. These ideas 
from domain theory provide a unified framework for a variety 
of classical recursive settings and provide immediate general­
ization to a much broader class of spaces. 

Definition 4.1. Let (B, -<) be a countable abstract basis with 
a fixed enumeration, and suppose that -< is a recursive subset 
of B x B. We say that (B, -<, h) is a computational environment 
for a topological space X if h : X RI(B) is a homeomor­--t 
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phism onto the set of maximal points of RI(B) endowed with 
the relative Scott topology. 

For technical reasons it is also generally useful to require 
that jxnMax(RI(B)) is relatively Scott closed in Max (RI(B)) 
for all x E RI(B). 

The last requirement for a computational environment in­
sures that the space of maximal points (with the relative Scott 
topology) is a Polish space. 

The definition given above reduces the recursive theory that 
arises to recursion theory on the positive integers. Another 
convenient, often more direct, equivalent approach is via Post 
systems (see [ML70] for a particularly nice presentation). 

Example 4.2. Let (P,~) be the partially ordered set of fi­
nite strings of {O, I}, where the partial order is the prefix or­
der, WI ~ WIW2, where Wl and W2 are finite strings of D's and 
l's. Taking ::; as the fully transitive order, one sees that (via 
Post systems or a standard enumeration of P) it is a recursive 
relation. In this case, as we have seen in Example 2.3, the 
round ideal completion is just the ideal completion. The non­
principal ideals are the maximal points of RI(P) and may be 
identified with the infinite strings of {a, I}; the relative Scott 
topology of the set of maximal points is just the product topol­
ogy, and hence the maximal points form a Cantor set. We have 
thus constructed the classical computational environment for 
the Cantor set. 

Example 4.3. The classical computational environment for 
Baire space is constructed in a quite analogous way. In this 
case start with the set N, and let P consist of finite strings 
of non-negative integers ordered by the prefix order. The in­
finite strings are again the maximal points, the relative Scott 
topology is the product topology, and hence we have the Baire 
space NN as the space of maximal points. This is the classical 
computational environment for Baire space. 
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Example 4.4. Consider all closed intervals of rational num­
bers [PI q, r Is]. We define a partial order by reverse inclusion 
and an auxiliary relation by strict reverse inclusion at both 
endpoints. The maximal points in the round ideal completion 
arise from strictly nested intervals of rational numbers with 
length approaching 0; these may be identified with their inser­
section on the real line, and hence correspond to JR. We thus 
have a classical computational model for the real numbers. 

These examples extend to much broader classes of topolog­
ical spaces using the techniques for creating domain environ­
ments for topological spaces (continuous domains in which the 
space appears as the set of maximal points) that have recently 
appeared. Once one has constructed a computational environ­
ment for a space, then one has at hand all necessary tools for a 
unified approach to the study of notions of a computable point 
in the space (the round ideal defining it is a recursively enu­
merable set), computable (i.e., recursive) functions, and other 
standard related notions. We close with one final example 
based on the approach of [EH97]. 

Example 4.5. We construct a computational environment for 
JRn by taking B to be all n+ I-tuples of rational numbers, where 
the last rational entry is always positive. We think of the tuple 
as a closed ball in IRn with the first n-coordinates giving the 
center and the last coordinate giving the radius. The relation 
b1 -< b2 holds if and only if the closed ball b2 is contained 
in the interior of the ball b1. This yields a recursive abstract 
basis, and the 'space of maximal points with the relative Scott 
topology is easily seen to be jRn. 
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