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ON CELLULARITY IN HOMOMORPHIC IMAGES 
OF BOOLEAN ALGEBRAS 

J. Donald Monk and Peter Nyikos* 

Abstract 

CHrA = {(JL,lJ) : lA/II = lJ 2:: wand 
c(AII) = It for some ideal I of A} for A an infi­
nite Boolean algebra. Special cases of the main 
results are: (1) If (WI, W2) E cHr A and (w, W2) tf. 
CHrA, then (WI, WI) E CHrA. (2) There is a 
model with a BA A such that CHrA 

{(w,w), (WI,WI), (W,W2), (W2,W2)}. (3) Under 
GCH, there is a BA A such that CHrA = {(W, WI), 
(WI,WI), (WI,W2), (W2,W2)}. (4) If cA 2:: W2 and 
(w, W2) E csrA, then (WI, W2) E csrA for the no­
tion CSr analogous to CHr. 

For any infinite Boolean algebra A, let CHrA = {(J.l, lJ) : 
IAIII = lJ 2:: wand c(AII) = J.l for some ideal I of A}. Here 
for any Boolean algebra A, cA is the cellularity of A, which is 
defined to be the supremum of the cardinalities of families of 
pairwise disjoint elements of A. We call CHr the homomorphic 
cellularity relation of A. In topological terms, we are dealing 
with compact zero-dimensional Hausdorff spaces X, with 

CHrX = {(J.l, lJ) : there is an infinite closed subspace Y of X 

with weight lJ and cellularity J.l}. 
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It is natural to try to characterize these relations in cardinal 
number terms. This appears to be a difficult task, but one 
can give various properties of the relations. We mention some 
known facts; see Monk [6] for references and more details. 

(1) (ShapirovskiI, Shelah) If (A, (2K )+) E CHrA for some A ~ K, 

then (w, (2K )+) E CHrA. 

(2) (Koszmider) If (K' , A') E CHrA, K' is not inaccessible, and 
K' < cflAI, then there is a K" 2:: K' such that (K", IAI) E CHrA. 

(3) (Todorcevic) Assuming V = L, for each infinite K there is 
a BA A such that CHrA = {(A, A) : w ~ A ~ K} U {(K, K+)}. 

(4) (Malyhin, ShapirovskiI) Under MA, if IAI < 2w
, then A 

has a countable homomorphic image (implying obvious things 
about CHrA). 

(5) (Koszmider) There is a model with BA's A, B, C, D having 
respective homomorphic cellularity relations {(w, W2)}, 
{(W,WI)}, {(W,W2), (WI,W2)}, {(W,WI)' (WI,WI)}. 

In this paper we give some more properties of these relations. 

(6) If (WI,W2) E CHrA and (W,W2) ¢. CHrA , then (WI, WI) E CHrA. 
This was mentioned without proof in Monk [6]. We prove a 
generalization of this to higher cardinalities. 

(7) There is a model with a BA A such that CHrA = {(w,w), 
(WI,WI),(W,W2),(W2,W2)}. This was also mentioned without 
proof in Monk [6]. The model is a standard one used to adjoin 
a big maximal almost disjoint family of sets of integers, and 
we give the construction of that model, and a property it has 
that is crucial for this application, in a general form. 

(8) Under CH, there is a BA A such that CHrA = {(W,Wl), 
(WI, WI), (W2,W2)}. This solves problem 8(i) of Monk [6] pos­
itively. This BA is the algebra of countable and cocountable 
subsets of W2, and we describe CHr for algebras ([K]~P) in gen­
eral, in ZFC. 
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(9) Under GCH, there is a BA A such that CHrA = {(w, Wl), 
(Wl, WI), (Wl, W2), (W2, W2)}. This solves problem 8(i) of Monk 
[6] positively. The BA is obtained from one of the previous 
algebras by adjoining a family of almost disjoint sets. 

There is an analogous notion for subalgebras: csrA = {(j,l, v) : 
A has a subalgebra of size v 2:: wand cellularity j,l}. Concern­
ing this notion we give one result, a special case of which is 

(10) If cA ~ W2 and (w, W2) E csrA, then (Wl, W2) E csrA. This 
solves problem 4 of Monk [6] negatively. 

Results about the relations CHrA and csrA are described thor­
oughly in Monk [6]. In particular, the situation for algebras 
of 'size at most W2 is thoroughly discussed. After the results 
in the present paper, there remain six natural open problems, 
which can be concisely described as follows: 

(1) Can one prove in ZFC that there is a BA A such that
 
CHrA = {(w,w), (W,Wl), (Wl,Wl), (Wl,W2)}?
 
It is consistent that such a BA exists.
 

(2) Can one prove in ZFC that there is a BA A such that
 
CHr A = {(w,w), (W,WI), (Wl,Wl), (WI,W2), (W2,W2)}?
 
Again it is consistent that such a BA exists.
 

(3) Is it consistent that there is a BA A such that
 
CHr A = {(W,Wl), (Wl,Wl), (Wl,W2)}?
 
It is consistent that no such BA exists.
 

(4) Is it consistent that there is a BA A such that
 
CHr A = {(W,Wl), (Wl,Wl), (W,W2), (W2,W2)}?
 
It is consistent that no such BA exists.
 

(5) Can one prove in ZFC that there is a BA A such that
 
csrA = {(w,w), (W,Wl), (Wl,Wl), (Wl,W2)}?
 
It is consistent that such a BA exists.
 

(6) Can one prove in ZFC that there is a BA A such that
 
csrA = {(w,w), (W,Wl), (Wl,Wl), (Wl,W2), (W2,W2)}?
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It is consistent that such a BA exists. 

Notation. For set theory, we follow Kunen [5], with the fol­
lowing changes and additions. If f : A ~ B and X ~ A, 
then the j-image of X is denoted by j[X]. A family of sets 
J2!I is almost disjoint if IX n YI < lXI, IYI for any two distinct 
X, Y E J2!1; it is jj-almost disjoint or jj-ad if the intersection of 
any two distinct members has size less than jj. A subset X of 
a set A is called CD-K if IA\XI < K. 

For any topological space X, the collection of all closed and 
open subsets of X is denoted by clopX. 

For Boolean algebras we follow Koppelberg [4]. If I is an 
ideal in a BA A and x E I, then [x]] is the equivalence class of 
x under the equivalence relation determined by I. The subal­
gebra of A generated by X is denoted by (X) A, or simply (X) 
if A is clear. The free algebra on K free generators is denoted 
by FrK. The algebra of finite and cofinite subsets of a cardinal 
K is denoted by FincoK. The completion of an algebra A is 
denoted by A. We need a slight generalization of a result of 

Juhasz and Shelah [2]; their result corresponds to successor A 
in Theorem 2. 

Let ~ be a binary relation on a set X, and let T and jj 
be infinite cardinal numbers. For any subset a of X and any 
x E X, let Predax = {y E a : y -< x}. We say that -< is 
« T)-jull if for every a E [X]<T there is an x E X such that 
a = Predax. And we say that ~ is J.l-local if for every x E X 
we have IPredxxI < J.l. 

Lemma 1. Let -< be a binary relation on an infinite cardinal 
p that is both (< T) -full and J.l-local. Then for every (J < T and 
every almost disjoint family J2!I ~ [p]U we have IJ2!II ~ p . J.l<T. 

Proof Since -< is « T)-full, for every a E J2!I there is a ~a < 
p such that a = Preda~a. Thus a E [Predp~a]<T. So J2!I ~ 

Uc;<p [Predp~] <T, and the latter has size at most p · Jl<T. 0 

Theorem 2. Suppose that K and A are infinite cardinals, A ~ 
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K+, A regular. Let f be a homomorphism from ([K]<A)gJy;, onto 
an infinite BA B. Then IBI < 2<-x or IBI<A = IBI. 

Proof. Let p = IBI and C = f[[K]<A]. Thus IGI = p too. 
Suppose that 2<A :::; p. 

(1) :::;B restricted to G is « A)-full. 

For, suppose that a ~ C and lal < A. Then there is an x E 

[[~]<A]<A such that a = j[x]. Since Ais regular, also b ~ Ux E 
[K]<A, so f(b) E C. Now a ~ Predcf(b). For, if u E a, say 
u = f(c) with c E x. Then c ~ b, so f(c) ~ f(b). Hence 
a = {y E a : y :::; f(b)}, and (1) follows. 

(2) :::;B restricted to C is 2<A-Iocal. 

In fact, suppose that c E C; say c = f(x) with x E [K]<A. 
If bEe and b :::; c, say b = f(y) with y E [K]<A. Then 
f(ynx) = j(y) nj(x) = b. Thus b E j[&x]; and I&xl :::; 2<A, 
as desired in (2). 

Now by lemma 1 we have 

(3) For every ,,- < A, and every almost disjoint Jl1 ~ [p]'" we 
have 1Jl11 :::; p. (2<A)<A = p. 

Now we are ready to show that p<A = p. For, suppose that 
p<A > p. Since A ~ p, it follows that pT > P for some ,,- < A; 
let ,,- be minimum with this property. Then by a well-known 
argument, there is an almost disjoint Jl1 ~ [p]T of size p"'. This 
contradicts (3). 0 

Lemma 3. Suppose that K and A are cardinals, W :::; A ~ K+, 

A regular. Let A = ([K] <A)gJ y;, • Let I be an ideal on A, and 
assume that IAIII > 2<A. Then 

(i) Va E I(lal < A). 
(ii) Suppose that Jl1 ~ A, Va E Jl1(lal < A), ([a]I : a E Jl1) 

is pairwise disjoint, and Jl1 is maximal with these properties. 
Then EaEd[a]I = 1. 

(iii) Continuing (ii), (AIII ~ IUJl11<A. 
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(iv) IA/II ~ c(A/1)<>". 
(v) 2<>" < c(A/I). 

Proof For (i), suppose that a E I and I - at < A. Then the 
mapping x ~ [XlI for x ~ -a is a homomorphism from c9(-a) 
onto A/I. But Ic9(-a)1 ~ 2<).., contradicting lA/II> 2<>". 

For (ii), suppose not: say [b]I =I- 0, while [b]I · [a]I = 0 for 
all a E 91. Then for all e E [b]<>" we have [elI = o. Hence 
Ibl ~ A, so I - bl < A. So [elI = [e\b]I for all e E [K]<>". 
Hence {[elI : e E [K]<>"} = {[elI : e E [-b]<>"} has size at most 
J.L<>", where J.L = I - bl· And J.L < A, so J.L<)" ~ 2<>". Hence 
IAjII ~ 2<>", contradiction. 

For (iii), note that if b E [K\ U91]<).., then bEl by the 
maximality of 91. So 

{[bh : b E A, Ibl < A} = {[bn U9lh : Ibl < A}, 

so (iii) holds. 
For (iv) , note that if c(A/I) < A, then IU9I1 < A by reg­

ularity of A, and so IU911<>" ~ 2<).., and (iii) gives a contra­
diction. So A ~ c(AjI). Hence IU911 < c(AjI). Then (iii) 
yields (iv). 

Finally, (v) follows from (iv) and the hypothesis. D 

Theorem 4. Suppose that w ~ p ~ ~. Let A = ([~)~P)f!IJ"". 

Then cHr(A) = S U T U U, where 

wS = {(J.L,v): w ~ J.L ~ v ~ 2P,v = v}; 

T = {(J.L, J.LP) : 2P< J.L ~ K}; 
U' { (J.L, KP) : 2P< J.L, J.LP . KP, K < J.L}. 

Proof First suppose that (J.L, v) E S. The mapping a ~ a n 
p gives a homomorphism of A onto c9p. Since c9p has an 
independent subset of size 2P, there is a homomorphism of c9p 
onto an algebra B such that Frv ~ B < Frv. Since vW = v, 
we have IB I = v. Now there is a homomorphism of B onto an 
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algebra C such that Frll x FincotL ::; C ::; Frll x FincotL. Thus 
ICI = II and c(C) = tL, so (tL, v) E cHr(A). 

Second, suppose that 2P < tL :::; K. The mapping a ~ a n jj 
gives a homomorphism of A onto ([jj]5:P), which has size jjP and 
cellularity Jl. So (Jl, JlP) E cHr(A). 

Third, suppose that 2P < Jl, J..lP = KP, and K < J..l. Note that 
2P < K, for if K :::; 2P then KP :::; 2P :::; KP, so KP = 2P < J..l :::; jjP = 
KP, contradiction. Now let II be minimum such that K ::; liP. 
Since 2P < K and K < KP, it follows from Jech [1], Theorem 19, 
that cfll ::; P < II and KP = lIcfl/. Now if a < cfll, then lIU 

:::; K, 
for 

yU = IUyl = Uu8 ::; L IU81 ::; K. 

8<1/ 8<1/ 

Hence IUu<efl/ ulll :::; K, so there is an 01 ~ [K]efl/ which is cfll­
ad and of size vefl/ = KP. Let I = [K]<efl/. Then ([a]I : a E 01) 
is isomorphic to Finco(KP). Hence there is a homomorphism of 
([a]I : a E 01) onto FincotL. By the Sikorski extension theorem 
we get a homomorphism h of A onto a BA B with FincotL ::; 
B :::; FincoJl. Thus c(B) = J..l, and by Theorem 2, IBIP = IBI. 
Since K < Jl ~ IBI, it follows that KP ~ IBIP = IBI ~ KP. SO 
IBI = KP. Thus (tL, KP) E cHr(A). 

Finally, suppose conversely that (J..l, v) E cHr(A). Since A is 
a-complete, it is well-known that lIW = v. So if v :::; 2P, then 
(tL, lI) E S. Suppose that 2P < lI. By Theorem 2 liP = lI, and 
by Lemma 3, 2P < J-l and v ~ J-lp. Hence J-lP ~ vP ~ J-lP, so 
II = liP = JlP. If tL ~ K, then (tL, lI) E T. Suppose that K < J-l. 
Then K P ~ tLP = II ::; K P, so V = KP and (tL, v) E U. 0 

Theorem 4 provides a positive solution of Problem 8(i) of Monk 
[6]. Namely, assume CR and let K = W2 and p = w in the 
theorem. Thus with A = ([W2[5:W )9Jw2' under CR we have 

Under GCH, there is a simpler description of ([K]~P) !Pit: 
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Corollary 5. (GCH) Suppose that w ~ p ~ K. Let A = 
([K]:5P) 9K. Then 

CHrA = {(jl,v) : w ~ jl ~ v <p+,cfv > w} 
U {(jl,jl) : p+ < jl,p < cfjl,J.L < K} 
U {(J.L, J.L+) : p+ < Jl, cfJ.L ~ p, jl ~ K} 
U {(K+, K+) : cfK::; p < K}. o 

It is natural to also consider the algebra A = ([K]<,\) for A 
limit. For A singular the situation is unclear. Note that if 
cfA = w, it is possible that A has a countable homomorphic 
image. For example, let K = A = ~w. For each nEw let 
Fn be an ultrafilter on the Boolean algebra c9J~n such that 
X E Fn for every X ~ ~n for which I~n \XI < ~n. Define 
f(a) = {n E w: an~n E Fn } for every a E A. It is easy to see 
that f is a homomorphism from A onto Fincow. 

For A regular limit (meaning that it is weakly inaccessible), 
we can give a complete description of the cellularity homomor­
phism relation. For this we need another lemma. This lemma 
is proved like Lemma 3. 

Lemma 6. Suppose that K and A are cardinals, A is weakly 
inaccessible, 2JL < 2<'\ for all Jl < A, and A :::; K. Let A = 
([K]<,\) 91t. Let I be an ideal on A, and assume that IAjII = 
2<,\. Then 

(i) 'Va E I(lal < A). 
(ii) Suppose that 01 ~ A, 'tIa E oI(lal < A), ([a]/ : a E 01) 

is pairwise disjoint, and 01 is maximal with these properties. 
Then LaEd[a]] = 1. 

(iii) Continuing (ii) , fAIII ::; I[U 01]<'\] I· 
(iv) c(AjI) > A. 

Proof Only (iv) requires additional scrutiny. If c(AjI) < A, 
then loll < A, so by the regularity of A, IU01\ < A. But then
I[U 01] <,\ I= \~ (U 01) I < 2<'\, contradiction. 0 
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Theorem 7. Suppose that A is uncountable and weakly inac­
cessible and A ::; K. Let A = ([K]<A) .9~. Define 

S = {(JL,1/): w::; JL::; 1/ < 2<A,1/W = 1/}; 

T = {(JL, JL<A) : 2<A < JL ::; K}; 

U = {(JL,~<A): 2<A < JL,JL<A = K<A,~ < JL}; 

V = {(JL, 2<A) : w ~ JL ~ 2<A}; 

W = {(JL, 2<A) : A ~ JL ~ 2<A}. 

Then 
(i) If2P = 2<A for some p < A, then cHr(A) = SUTUUUV,. 
(ii) If2P < 2<A for all p < A, then cHr(A) = SUTUUuW. 
(iii) If A is strongly inaccessible, then cHr(A) = S U T U U u 

{(A,A)}. 

Proof The proof that SUTUU ~ cHr(A) ~ SUTuUUV is 
very similar to the proof for Theorem 4. For example, to show 
that U ~ cHr(A), take jj such that 2<A < JL, JL<A = K<A, and 
~ < Jwl. Then 2<A < K by an argument like that in the proof of 
Theorem 4. Since ~ < jj ::; K,<A, choose p so that K, < ",P and 
p < A, and then proceed as before. 

Now suppose that p < A and 2P = 2<A. The mapping 
a ~ a n p gives a homomorphism from A onto gJp. Then the 
argument at the beginning of the proof of Theorem 4 shows 
that (jj,2<A) E cHr(A) for all JL E [W,2<A]. This proves (i). 

Next, suppose that 2P < 2<A for all p < A, and that A :::; 
JL < 2<A. Then there is a p < A such that JL < 2P• Write ­
A = fa U f 1, where fa n f 1 = 0, Ifol = A, and If1 \ = p. By 
Theorem 4 there is a homomorphism f of &Jf1 onto an algebra 
of size 2P and cellularity JL. Let g(a) = (a n fa, f(a n f 1)) for 
all a E A. The image of 9 has size 2<A and cellularity JL. 

To get a homomorphic image of size and cellularity 2<A we 
have to modify this a!gument. Let M be the set of all infinite 
cardinals less than A, and let (ra : a E M) be a partition of 
A with Ir0:1 = Q for all Q E M. For each Q E M let fa: be a 
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homomorphism of c9f0: onto an algebra of size and cellularity 
20:. Then let g(a)o: = fo:(a n r0:) for all a E A. Then the image 
of 9 is as desired. 

That no other pairs are in cHr(A) follows from Lemma 6. 
Thus (ii) holds. 

(iii) is a clear consequence of (ii). D 

For the next result we need a standard Boolean algebraic fact: 

Proposition 8. Suppose that A is K-complete, and I is a K­

complete maximal ideal in A. Suppose that f : I ~ B preserves 
« K)-joins, « K)-meets, and o. Then f extends to a unique 
K-complete homomorphism f+ : A ~ B. Moreover, f+ is 
one-one iffVx E I[f(x) = 0 ::::} x = 0] and Vx E I[f(x) =I 1]. 

Proof. The following definition of f+ is forced upon us: 

f+(a) = {f(a) if a E I, 
-f(-a) ifa¢I. 

Then f+ preserves -, since if a E f, then f+( -a) = - f(a) = 
- f+(a), and if a fI. f, then f+( -a) = f( -a) = - - f( -a) = 
- f+(a). 

Now we show that f+ preserves « K)-joins. So, let E~<o: a~ 

be given, with a < K. If V€ < a[a~ E I], then 

Now suppose that 3€ < a[a~ tt. I]. Let r = {~ < a : a~ E I}. 
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Then 

L a~ + (-L a~) = L a~ + (- (L a~ + L a~)) 
~Er ~<a ~Er ~Er ~Ea\r 

= L a~ + (-LaC - L a~) 
~Er ~er ~Ea\r 

= L a~ + (- L a~) · 
~Er ~Ea\r 

Using this, 

Lf+(a~) + (-1+ (La~)) 
~<a ~<a 

= Lf(Q~) + L -f(-a~) +f (- La~) 
~Er eEa\r ~<a 

= 1 (La~ + (- La~)) + L -f(-a~) 
~Er ~<a ~Ea\r 

= f (La~+ (- L a~)) + L -f(-a~) 
eer eEa\r eEa\r 

= f (La~) + f (- L a~) + L -f(-af,) 
eer ~ea\r eea\r 

= 1 (L af.) + II f( -af,) + (- II f( -af,)) 
eer eEo\f eEo\f 

= 1. 
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And if ~ E f, then 

f+(a~) . - f+ (L a7/) = f(a~) . f (-L~) 
~<a ~<a 

= f (a{ ·-L a7l ) 
~<a. 

= f(O) = O. 

If ~ E a:\f, then 

Nowa{ ::; L:7l<a~' so - L:7/<a a7/ ::; -a{, hence f ( - L:7/<a a7/) 

::; !(-a{), so -f(-a{)·f (- L:7/<aa7/) = o. So we have proved 

that f+ (L:{<a a{) = L:{<a ! (a{). So f is a K,-homomorphism. 
Concerning the final statement, the direction => is clear. 

Now suppose the indicated condition holds, and f+(a) = o. If 
a E I, then f(a) = f+(a) = 0, so a = o. If a fj. I, then j+(a) = 
- f( -a) = 0, so f( -a) = 1 and -a E I, contradiction. D 

Lemma 9. Suppose that I', < A, I', is regular, 01 ~ [K,]~ 

is almost disjoint, and loll = A. Let A be the K,-complete 
subalgebra oj 9 I', generated by 01 u {{~} : ~ < K,}. Then 
A/[K,]<~ rv ([A]<~)9),. 

Proof. Let (Xa : Q < A) be a one-one enumeration of 01. Set 
I = [K,]<~. For each r E [A]<~ let j(f) = [Ua.ErXa.]I. Clearly 
f preserves « K)-joins, and j(O) = o. It also preserves « 1',)­
meets. For, suppose that r a: E [A]<~ for all a < " where 
, < K. Let ~ = Ua<1 ra. SO I~I < I', since I', is regular. Let 
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P be the set of all nonconstant g E TIa<1' r a' Then 

nU X~ = u nXg(a) 
a<'Y eEra: gEna:<'"Y r a: a<'Y 

U X{ U unXg(a). 
~Ena:<'"Y r a: gEP a<'Y 

Now 

unXg(a) ~ U{Xa n X(3 : a, (3 E ~,a =1= (3}, 
gEPa<'Y 

and the latter set has size less than K. This shows that f 
preserves « K)-meets. 

Hence by Proposition 8, f extends to a K-homomorphism 
from ([;\]<1\':)9A into All. by the same proposition it is clear 
that f is one-one. Since j[[;\]<1\':] generates AII as a K-complete 
algebra, f maps onto AII. 0 

Theorem 10. (GCH) Let sd ~ [K+]1\':+ be K+ -ad, with Isdl = 

K++. Let A be the K+ -complete subalgebra of ~K+ generated 
by sd U { { Q} : Q< K+}. Then 

CHrA = {(p"v) : w ~ p, ~ v ~ K+,cfv > w} U 
{(K+, K++), (K++, K++)}. 

Proof. Let (Xa : Q < K++) be a one-one enumeration of sd. 
Let I = [K+]~1\':. Then by Lemma 9, 

(1) AII rv ([K++]:51\':) 91\':++. 

Hence by Corollary 5, CHrA contains the set of the theorem. 
Suppose that (p" v) E cHrA, with (p" v) not in the indicated 
set. Then v = K++ and p, ~ K. SO A has an independent 
subset § of size K++. Since III = K+, we may assume that 
the members of ~ are pairwise inequivalent modulo I, each 
nonzero modulo I. By the proof of (1), for each a E ~ we 
can choose a fa E [K++]1t such that [alI = [UaEr

a 
Xa]r Then 
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there is a ~ E [~]K++ such that (ra : a E ~) is a ~-system. 
Let a, b, c be distinct merrlbers of~. Then [a· b· -C]I = 0, i.e., 
la .b · -ci ~ "'. Hence 

(a · b · -c· d : d E ~ \ {a, b, c}) 

is a system of K++ independent subsets of a · b . -c, which 
contradicts GCR. D 

Taking '" = w in this theorem we get, under GCH, a BA A 
such that 

This solves Problem 8(iii) of Monk [6] positively. 

For the next result we need a fact about one of the standard 
ways of forcing a large mad family. This fact was observed by 
Richard Laver, and we thank him for allowing us to include 
the proof of the fact here. 

Theorem 11. In a model of ZFC+GCH, suppose that", and 
A are infinite cardinals, K regular, K < A. Then there is an ex­
tension preserving cojinalities and cardinalities in which there 
is a system (Ao: : Q < A) of almost disjoint members of [K]K 
with the following property: 

(*) if X E [K]K and IX n Ao:l = K for K many Q < A, then 
IX n Ao:l = '" for CO-K+ many a < A. 

Proof. Let TID be the set of all functions f such that there exist 
an F E [A]<K and a v < '" such that f : F x v ~ 2. For f E lP 
we let Ff and vf be the F, v mentioned, with Ff = 0 = vf if 
f = O. We write f ~ 9 iff 9 ~ ! and for any distinct a, (3 E Fg 

and any LE vf\vg , j(a, L) = 0 or !((3, L) = O. Clearly 

(1) (lP, <) is K-closed and satisfies the K+-chain condition. 
Consequently, forcing with (TID, ~) preserves cofinalities and car­
dinals. 
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(2) For any a < A, the set {f E IP : a E Ff } is dense. 

In fact, given 9 E IP, if a ¢. Fg, let Ff = Fg U {a}, vf = vg, 
and let f extend 9 with f(o:, L) = 0 for all L< vg • Clearly this 
proves (2). 

Now let G be generic for (lfD,::;) over the ground model. We 
then set, for any a < A, 

Aa = {L < K: 3g E G(a E Fg,L < vg,g(a,L) = I)} 
fa = {(i,g): 0: E Fg,L < vg,g(c;l,L) = I}. 

Thus r~ = Aa . 

(3) For each a < A, IAal = K. 

In fact, it suffices to show that for any Jl < K the following set 
is dense: 

{g E IP : a E Fg and 3~ E K\Jl(~ < vg and g(o:,~) = I)}. 

To prove this, let f E P. By (2) we may assume that 0: E 

Ff . Now let f ~ g, Ff = Fg, 1/g = max(vf + 1, Jl + 2), ~ = 
max(1/f' /-l+ 1), with g((3, t) = 0 if 1/f ~ Land (3 =I a, g(a, L) = 0 
if t =I ~, and g(a,~) = 1. Clearly 9 E ]P> and 9 ~ !, as desired 
in (3). 

(4) lAo n At3 1 < K for a =I {3. 

In fact, by (2) choose 9 E G such that a, {3 E Fg • Then, we 
claim, Aa: n A,a = {t < vg : g(o., t) = 1 = g(,8, t)}, which will 
prove (4). Clearly;2 holds. Now suppose that L E Aa n A,B. 
Then there is an f E G such that f ~ g, L< vf and f(a, L) = 
1 = !({3, L). From the definition of ::; it follows that L < vg , 

and hence f(o:, L) = g(o., L) and f((3, L) = g((3, L), as desired. 
Now suppose that X E [K]1t and IX n Aal = K for K, many 

a's. Let T be a name for X. Choose pEG so that 

(5) p H- VH E [A]<K(IT\ UaEH r 0:1 = K). 

Now we claim 
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(6) There is aCE [A]~K such that Fp ~ C and for all q, J..l, H, 
if q E lP', Fq ~ C, q :::; p, J..l < K, and H E [C]<K, then there is 
a q' :::; q such that Fql ~ C and there is a ~ E K\J.L such that 
q' I~ ~ E r\ U,BEH f {3. 

For we construct (Co: : a < ~) by induction. Let Co = Fp • For 
a limit, let Co: = U,e<o: C,e. Now suppose that Co: has been 
constructed, with ICo:I :::; K. For q, J.L, H such that q E IP, q :::; p, 
Fq ~ Co:, J..l < K, and H E [Co:]<K, there exist a q' = q'(q, J..l, H) 
and a ~ E K\J..l such that q' :::; q and q' H- ~ E 7\ U,sEH r,s. Let 

Ca+1 = Co. U U{Fql(q,JL,H) : q, /1, H as above}. 

Let C = UO:<K Co:. Clearly C is as desired in (6). 
Now take any a E A\C and J..l < K. We finish the proof by 

showing 

(7) {q: q H- 3~ E K\J..l(~ E 7 n fo:)} is dense below p. 

To show this, let r ::s; p be arbitrary. By (2), we may assume 
that a E Fr. Let s = r r (C X vr). By (6), choose q' ::s; sand 
~ > max(J.L, lJr ) such that Fql ~ C and q' H- ~ E 7\ U,sEF

s 
r,s. 

Now let Fq = Fql UFr , lJq = max(Vql,~ + 1), and for any (3 E Fq 
and t < vq let 

q' C{3, L) if {3 E Fql and L < Vql, 

q((3, t) = 
r((3, t) 

1 

if (3 E Fr \Fql and i < lJr , 

if (3 = a and L = ~, 

o in all other cases. 

Clearly q E]F. Since q(a,~) = 1, we have q n- ~ E r 0:. 

(8) q ~ q'. 

In fact, clearly q' ~ q. Now suppose that (3 and 'Yare distinct 
members of Fql and L E 1Jq\Vql. Then by definition we have 
q((3,L) = 0 or q('Y,L) = 0, as desired; so (8) holds. 

So it remains only to prove 
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(9) q ~ r. 

For this, first note that Fr == (Fr n C) U (Fr \C) ~ Fq • And 
Vr ~ Vql ~ vq . Now suppose that [3 E Fr and t < V r . If 
[3 E C, then r([3, t) == s([3, t) == q'([3, t) == q([3, t). If [3 f/; C, 
then directly from the definition, q([3, t) == r([3, t). All of this 
shows that r ~ q. 

Now suppose that [3 and I are distinct members of Fr and 
t E vq\vr . To finish the proof we want to show that q([3, t) == 0 
or q("t) == o. 

Case 1. (3" E C and t < Vq'. Then [3" E CnFr == Fs ~ 

Fql, so q(j3,t) = q'(j3,t) andq(/,t) == q'(/,t). Also, t E Vql\VS 

since V s == Vr . So q'([3, t) == 0 or q'(" t) == O. 
Case 2. j3 E C, t 2:: Vq'. So q([3, t) = O. 
Case 3. , E C, t 2:: vq'. So q(" t) = O. 
Case 4. [3 ¢ C, l/r ~ t, (3 -I Q or t -I~. Then q([3, t) = O. 
Case 5. , tJ- C, Vr ~ t, , -I Q or t -I~. Then q(" t) == o. 
Case 6. [3 E C, t = ~, V r ~ t < Vq'. Then q([3, t) = 

q' ([3,~) = 0 since q' H- ~ f/; r,8. 
Case 7. , E C, t = ~, Vr ~ t < vq'. Then q(" t) = q'(,,~) == 

osince q' If- ~ f/; r,. 
Case 8. None of the above. So not both of {3" are in C, 

by Cases 1,2. Suppose one is in C, the other not; say (3 E C, 
I tt. C. Since t 2:: l/r, it follows that I = Q and t =~. Then 
q((3, t) == 0, either because ~ < vq' and q' II- ~ fJ. r,8, or because 
~ 2:: Vql and the definition of q. So, suppose that {3, I f/; C. 
Then one of Cases 4,5 must hold, contradiction. D 

Theorem 12. Let (Aa : Q < K) be a system of infinite almost 
disjoint subsets of w such that K > wand 

(*) For every infinite subset X of w, if {Q < K : X n Ao:} is 
infinite, then it is cocountable. 

Let A be the subalgebra of f!/Jw generated by 

{Ao: : Q < K} U { {i} : i < w}. 

Then CHrA = {(W,K)} U {(p"p,) : w ~ p, ~ K}. 
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Proof. Ajfin:: FincoK, so 2 holds. Now suppose that (f-L, 1/) E 

cHrA, W ~ f-L < 1/ ~ K, and (J-L,1/) # (w, K); we want to get a 
contradiction. Let I be an ideal of A such that IAjII = v and 
c(AjI) = f-L. Let b = {i < w: {i} E I}. 

(1) r def {Q < K : Al!\ b is infinite} is infinite. 

For, suppose that r is finite. Let p be regular, with f-L < p ~ v; 
we are going to show that AjI has a disjoint family of size p, 
contradiction. Now there is a Ll E [K]P such that for all a E Ll, 
AajI # 0 and Aa\b is finite, and for all distinct Q, (3 E ~, 

AajI # A(3jI. Let n E [~]P be such that (Aa:\b : Q E 0) 
is a ~-system, say with kernel K. Now if (Ao:\K)jI = 0, 
then AajI ::; KjI, and (AjI) r (Kj I) is finite. So wlog, 
(Aa\K)jI # 0 for all a E O. Now if a,(3 are distinct members 
of 0, then ((Ao: n A(3)\b)\K = 0, so (Aa n A(3)\K = (Aa: n 
A(3 n b)\K. But Ao: n A(3 n bEl since Aa: n A(3 is finite, so 
(Aa n A(3)\K E I. Thus ((Ao:\K)jI : a E 0) is a system of p 
disjoint elements, contradiction. This proves (1). 

So from (*) it follows that r is cocountable. Now the map 
a ~ Ao:\b for Q E r is one-one. For any x E A let g(x) = 
(xj I, x\b). This is a homomorphism. If x E I, then x\b = 0, 
and so g(x) = (0,0). And if g(x) = (0,0), then x E I. So the 
image of 9 is isomorphic to AjI. It follows that IAjII = K. 

Hence w < ~. Let (calI : a < WI) be a system of nonzero pair­
wise disjoint elements. Since there are only countably many 
finite subsets of w, wlog each Co: is infinite. In fact, we may 
assume that each Co: has the form 

 A(3· -Arl · ... · -A"Ym . -F, 

where F is finite and each Ii # (3. This can be written as 

A(3 . -(A(3 . A"Yl) ..... -(A(3 · Arm) · -F, 

and each A(3·A"Yi is finite. So wlog m = o. Thus we may assume 
that we have a pairwise disjoint system ((Ao:· -Fa)jI : a E ~) 

of nonzero elements, each Fa finite, ~ E [K]Wl. 
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Now we have Aa \b infinite for all a in a cocountable subset 
~' of~. So (Aa\Fa)\b is infinite for each a E ~/. Now for 
a -1= {3 the set Aa . - Fa .A,8 · - F,8 is in I and hence is a subset of 
b. So ((Aa\Fa)\b : a E ~/) is a system of WI pairwise disjoint 
subsets of w, contradiction. 0 

Theorem 13. Suppose that (K+, K++) E CHrA and (K, K++) rt. 
CHrA. Then (K+, K+) E CHrA. 

Proof We work in the Stone space X of A. We may assume 
that X has cellularity K+ and weight K++. Take points one 
apiece from a pairwise disjoint family of K+ open sets. If their 
closure has exactly K+ clopen sets, we are done, otherwise the 
closure has K++ clopen sets, and we may assume without loss 
of generality that the closure is all of X. Thus X has isolated 
points {xa : a < K,+}, listed without repetitions, and they are 
dense in X. For all a E [K, K+) let X a = cl{x,B : (3 < a}. Thus 
X a is a Boolean space with K isolated points, which are dense 
in X a . So by the hypothesis of the theorem, IclopXal :::; K+. 

Case 1. Y clef UO:E[K,K+) Xo: is closed. Then UO:E[K,K+) clopXo: 
is a network for Y. Hence Y has weight K+. Since {xa : a < 
K+} is its set of isolated points, and this set is dense in Y, the 
conclusion of the theorem holds. 

Case 2. Y is not closed. Let 9 E clY\Y. Then 9 ¢. clZ for all 
Z E [Y] K., so the tightness of Y is at least K+. Let (Ya : a < K+) 
be a convergent free sequence (by Juhasz, Szentmiklossy [3]). 
Say it converges to z. Let Z = cl{Ya : a < K+}. Note that 
each Ya is isolated in Z, and the Ya's are dense in Z. So it 
suffices to show that Z has weight K+. Let Wa = cl{Ya : {3 < 
a} for all a E [K, K+). Thus Wa is clopen in Z by freeness. 
Clearly naE[K.,K.+)(Z\Wa) = {z}. So {Z\Wa : a E [K, K+)} is 
a neighborhood basis for z. Now by hypothesis, each Wo has 
weight at most K,+; let !J8a be a base for Wa with l!J8a l ::; K+. 
Then u ~o: u {Z\Wo: : a < x;+} 

oE[K.,x-;+) 
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is a network for Z, so Z has weight K+, as desired. D 

This proof generalizes to give the following result: 

IfK+ < V, cofv =I K+, (K+, v) E CHrA, and (K,V) ¢ CHrA, then 
(K+, J,l) E CHrA for some J.L < v. 

Problem. Is it necessary to assume that cofv =I K+ in the 
foregoing result? Finally, a result on CSr : 

Theorem 14. For every infinite cardinal K, and every BA A, 
if cA ~ K++ and (K, K++) E csrA, then (K+, K++) E csrA. 

Proof. Suppose not. Let B be a subalgebra of size K++ with 
cellularity K. 

(1) There is an a E A such that Bra, which by definition is 
{b· a : b E B}, has cellularity K++. 

To see this, let X be pairwise disjoint of size K+. Then (B U 
X) is of size K++ and has cellularity greater than K, so its 
cellularity is K++; let Y be a pairwise disjoint subset of size 
K++. We may assume that each element y E Y has the form 
y = by . ay with by E Band ay E (X). Since IXI < K++, we 
may in fact suppose that each ay is equal to some element a, 
as desired in (1). 

Choose such an a, and let X E [B]It++ be such that (x · a : 
x E X) is a system of nonzero pairwise disjoint elements. Let 
Y be a subset of X of size K+, and let 

c = ({x· a: x E Y} U {x· -a: x E X\Y}). 

Now define x = y iff x, y E X\Y and x · -a = y · -a. Then 

(2) Every =-class has size at most K. 

For, suppose that Ixl = I > K. For any y E (xl =)\{x} we 
have 

y · -x = y · -x · a + y · -x · -a 
= y. a· -(x· a) + x· -x· -a 

=y·a. 
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This means that B has a pairwise disjoint subset of size greater 
than "', contradiction. So (2) holds. 

From (2) it follows that IGI = "'++. Thus we must have 
cG == "'++. Hence by the argument for (1), there is a d E 

({x . a : x E Y}) and a 

Z E [({x· -a : x E X\Y})]~++ 

such that (z· d : z E Z) is a system of nonzero pairwise disjoint 
elements. We may assume that each z E Z has the form 

xz,o · -a · . · · · Xz,m-l · -a 

. (-Yz,o + a) . · · · · (-Yz,n-l + a), 

where each Xz,i and Yz,j is in X\Y, and m and n do not depend 
on z. 

Now since ({x · a : x E Y}) is isomorphic to Finco",+, there 
are two cases. 

Case 1. d == L:xEF X · a for some finite F ~ Y. Then we 
may assume that in fact d == x · a for some x E Y. In this 
case we have m == 0, and then each z · d is just equal to d, 
contradiction. 

Case 2. d == - L:xEF (x · a) for some finite F ~ Y. Thus 
d == -a+a·- L:xEF x. If m == 0, then each z·d is ~ a·- L:xEF x, 
so these elements are not disjoint, contradiction. Thus m > O. 
Hence z · d == z for each z E Z. For each z E Z write ez = 

xz,o' · · .. Xz,m-l and Cz == ez · -Yz,o· ... · -Yz,n-l' Define z rv W 

iff Z,w E Z and ez = ewe If Z ~ w, then 

Cz . Cw = Cz · Cw· a + Cz · Cw· -a = z· W = O. 

Since Cz E B for each z E Z, it follows that there are at most K 

rv-classes. So, some rv-class has ",++ members. Thus we may 
assume that all of the ez's are the same. Thus for any z E Z 
we have 

z = Xo · Xm-l . -Yz,o · -Yz,n-l · -a, 

Cz == Xo Xm-l · -Yz,o -Yz,n-l' 
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Note that Cz . a = XQ .••. • Xm-l • a. So if z I- w, then 

Cz • -Cw = Cz · -Cw · a + Cz · -Cw · -a 

= Cz . a· -(Cw · a) + Cz • -a· -(ew · -a) 
= z· -w = z. 

So if we fix w E Z, then (cz • -Cw : z E Z\{w}) is a system 
of K++ nonzero pairwise disjoint elements of B, a 
contradiction. D 
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