Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT ${}_{\bigodot}$ by Topology Proceedings. All rights reserved.

ON CELLULARITY IN HOMOMORPHIC IMAGES OF BOOLEAN ALGEBRAS

J. Donald Monk and Peter Nyikos*

Abstract

 $c_{Hr}A = \{(\mu,\nu) : |A/I| = \nu \geq \omega \text{ and } c(A/I) = \mu \text{ for some ideal } I \text{ of } A\} \text{ for } A \text{ an infinite Boolean algebra. Special cases of the main results are: } (1) If <math>(\omega_1,\omega_2) \in c_{Hr}A$ and $(\omega,\omega_2) \notin c_{Hr}A$, then $(\omega_1,\omega_1) \in c_{Hr}A$. (2) There is a model with a BA A such that $c_{Hr}A = \{(\omega,\omega), (\omega_1,\omega_1), (\omega,\omega_2), (\omega_2,\omega_2)\}$. (3) Under GCH, there is a BA A such that $c_{Hr}A = \{(\omega,\omega_1), (\omega_1,\omega_1), (\omega_1,\omega_2), (\omega_2,\omega_2)\}$. (4) If $cA \geq \omega_2$ and $(\omega,\omega_2) \in c_{Sr}A$, then $(\omega_1,\omega_2) \in c_{Sr}A$ for the notion c_{Sr} analogous to c_{Hr} .

For any infinite Boolean algebra A, let $c_{Hr}A = \{(\mu, \nu) : |A/I| = \nu \geq \omega \text{ and } c(A/I) = \mu \text{ for some ideal } I \text{ of } A\}$. Here for any Boolean algebra A, cA is the *cellularity* of A, which is defined to be the supremum of the cardinalities of families of pairwise disjoint elements of A. We call c_{Hr} the *homomorphic cellularity relation of* A. In topological terms, we are dealing with compact zero-dimensional Hausdorff spaces X, with

 $c_{Hr}X = \{(\mu, \nu) : \text{there is an infinite closed subspace } Y \text{ of } X$ with weight ν and cellularity μ .

Mathematics Subject Classification: 06E05, 03E35, 54A25

^{*} Research of second author partially supported by NSF Grant DMS-9209711

It is natural to try to characterize these relations in cardinal number terms. This appears to be a difficult task, but one can give various properties of the relations. We mention some known facts; see Monk [6] for references and more details.

- (1) (Shapirovskii, Shelah) If $(\lambda, (2^{\kappa})^+) \in c_{Hr}A$ for some $\lambda \leq \kappa$, then $(\omega, (2^{\kappa})^+) \in c_{Hr}A$.
- (2) (Koszmider) If $(\kappa', \lambda') \in c_{Hr}A$, κ' is not inaccessible, and $\kappa' < cf|A|$, then there is a $\kappa'' \ge \kappa'$ such that $(\kappa'', |A|) \in c_{Hr}A$.
- (3) (Todorčević) Assuming V = L, for each infinite κ there is a BA A such that $c_{Hr}A = \{(\lambda, \lambda) : \omega \leq \lambda \leq \kappa\} \cup \{(\kappa, \kappa^+)\}.$
- (4) (Malyhin, Shapirovskii) Under MA, if $|A| < 2^{\omega}$, then A has a countable homomorphic image (implying obvious things about $c_{Hr}A$).
- (5) (Koszmider) There is a model with BA's A, B, C, D having respective homomorphic cellularity relations $\{(\omega, \omega_2)\}, \{(\omega, \omega_1)\}, \{(\omega, \omega_2), (\omega_1, \omega_2)\}, \{(\omega, \omega_1), (\omega_1, \omega_1)\}.$

In this paper we give some more properties of these relations.

- (6) If $(\omega_1, \omega_2) \in c_{Hr}A$ and $(\omega, \omega_2) \notin c_{Hr}A$, then $(\omega_1, \omega_1) \in c_{Hr}A$. This was mentioned without proof in Monk [6]. We prove a generalization of this to higher cardinalities.
- (7) There is a model with a BA A such that $c_{Hr}A = \{(\omega, \omega), (\omega_1, \omega_1), (\omega, \omega_2), (\omega_2, \omega_2)\}$. This was also mentioned without proof in Monk [6]. The model is a standard one used to adjoin a big maximal almost disjoint family of sets of integers, and we give the construction of that model, and a property it has that is crucial for this application, in a general form.
- (8) Under CH, there is a BA A such that $c_{Hr}A = \{(\omega, \omega_1), (\omega_1, \omega_1), (\omega_2, \omega_2)\}$. This solves problem 8(i) of Monk [6] positively. This BA is the algebra of countable and cocountable subsets of ω_2 , and we describe c_{Hr} for algebras $\langle [\kappa]^{\leq \rho} \rangle$ in general, in ZFC.

(9) Under GCH, there is a BA A such that $c_{Hr}A = \{(\omega, \omega_1), (\omega_1, \omega_1), (\omega_1, \omega_2), (\omega_2, \omega_2)\}$. This solves problem 8(i) of Monk [6] positively. The BA is obtained from one of the previous algebras by adjoining a family of almost disjoint sets.

There is an analogous notion for subalgebras: $c_{Sr}A = \{(\mu, \nu) : A \text{ has a subalgebra of size } \nu \geq \omega \text{ and cellularity } \mu\}$. Concerning this notion we give one result, a special case of which is

(10) If $cA \ge \omega_2$ and $(\omega, \omega_2) \in c_{Sr}A$, then $(\omega_1, \omega_2) \in c_{Sr}A$. This solves problem 4 of Monk [6] negatively.

Results about the relations $c_{Hr}A$ and $c_{Sr}A$ are described thoroughly in Monk [6]. In particular, the situation for algebras of size at most ω_2 is thoroughly discussed. After the results in the present paper, there remain six natural open problems, which can be concisely described as follows:

- (1) Can one prove in ZFC that there is a BA A such that $c_{Hr}A = \{(\omega, \omega), (\omega, \omega_1), (\omega_1, \omega_1), (\omega_1, \omega_2)\}$? It is consistent that such a BA exists.
- (2) Can one prove in ZFC that there is a BA A such that $c_{Hr}A = \{(\omega, \omega), (\omega, \omega_1), (\omega_1, \omega_1), (\omega_1, \omega_2), (\omega_2, \omega_2)\}$? Again it is consistent that such a BA exists.
- (3) Is it consistent that there is a BA A such that $c_{Hr}A = \{(\omega, \omega_1), (\omega_1, \omega_1), (\omega_1, \omega_2)\}$? It is consistent that no such BA exists.
- (4) Is it consistent that there is a BA A such that $c_{Hr}A = \{(\omega, \omega_1), (\omega_1, \omega_1), (\omega, \omega_2), (\omega_2, \omega_2)\}$? It is consistent that no such BA exists.
- (5) Can one prove in ZFC that there is a BA A such that $c_{Sr}A = \{(\omega, \omega), (\omega, \omega_1), (\omega_1, \omega_1), (\omega_1, \omega_2)\}$? It is consistent that such a BA exists.
- (6) Can one prove in ZFC that there is a BA A such that $c_{Sr}A = \{(\omega, \omega), (\omega, \omega_1), (\omega_1, \omega_1), (\omega_1, \omega_2), (\omega_2, \omega_2)\}$?

It is consistent that such a BA exists.

Notation. For set theory, we follow Kunen [5], with the following changes and additions. If $f:A\to B$ and $X\subseteq A$, then the f-image of X is denoted by f[X]. A family of sets $\mathscr A$ is almost disjoint if $|X\cap Y|<|X|,|Y|$ for any two distinct $X,Y\in\mathscr A$; it is μ -almost disjoint or μ -ad if the intersection of any two distinct members has size less than μ . A subset X of a set A is called co- κ if $|A\backslash X|<\kappa$.

For any topological space X, the collection of all closed and open subsets of X is denoted by clop X.

For Boolean algebras we follow Koppelberg [4]. If I is an ideal in a BA A and $x \in I$, then $[x]_I$ is the equivalence class of x under the equivalence relation determined by I. The subalgebra of A generated by X is denoted by $\langle X \rangle_A$, or simply $\langle X \rangle$ if A is clear. The free algebra on κ free generators is denoted by $\mathrm{Fr}\kappa$. The algebra of finite and cofinite subsets of a cardinal κ is denoted by $\mathrm{Finco}\kappa$. The completion of an algebra A is denoted by \overline{A} . We need a slight generalization of a result of Juhász and Shelah [2]; their result corresponds to successor λ in Theorem 2.

Let \prec be a binary relation on a set X, and let τ and μ be infinite cardinal numbers. For any subset a of X and any $x \in X$, let $\operatorname{Pred}_a x = \{y \in a : y \prec x\}$. We say that \prec is $(<\tau)$ -full if for every $a \in [X]^{<\tau}$ there is an $x \in X$ such that $a = \operatorname{Pred}_a x$. And we say that \prec is μ -local if for every $x \in X$ we have $|\operatorname{Pred}_X x| < \mu$.

Lemma 1. Let \prec be a binary relation on an infinite cardinal ρ that is both $(<\tau)$ -full and μ -local. Then for every $\sigma < \tau$ and every almost disjoint family $\mathscr{A} \subseteq [\rho]^{\sigma}$ we have $|\mathscr{A}| \leq \rho \cdot \mu^{<\tau}$.

Proof. Since \prec is $(<\tau)$ -full, for every $a \in \mathscr{A}$ there is a $\xi_a < \rho$ such that $a = \operatorname{Pred}_a \xi_a$. Thus $a \in [\operatorname{Pred}_\rho \xi_a]^{<\tau}$. So $\mathscr{A} \subseteq \bigcup_{\xi < \rho} [\operatorname{Pred}_\rho \xi]^{<\tau}$, and the latter has size at most $\rho \cdot \mu^{<\tau}$.

Theorem 2. Suppose that κ and λ are infinite cardinals, $\lambda \leq$

 κ^+ , λ regular. Let f be a homomorphism from $\langle [\kappa]^{<\lambda} \rangle_{\mathscr{P}_{\kappa}}$ onto an infinite BA B. Then $|B| < 2^{<\lambda}$ or $|B|^{<\lambda} = |B|$.

Proof. Let $\rho = |B|$ and $C = f[[\kappa]^{<\lambda}]$. Thus $|C| = \rho$ too. Suppose that $2^{<\lambda} \le \rho$.

(1) \leq_B restricted to C is $(< \lambda)$ -full.

For, suppose that $a \subseteq C$ and $|a| < \lambda$. Then there is an $x \in [[\kappa]^{<\lambda}]^{<\lambda}$ such that a = f[x]. Since λ is regular, also $b \stackrel{\text{def}}{=} \bigcup x \in [\kappa]^{<\lambda}$, so $f(b) \in C$. Now $a \subseteq \operatorname{Pred}_C f(b)$. For, if $u \in a$, say u = f(c) with $c \in x$. Then $c \subseteq b$, so $f(c) \subseteq f(b)$. Hence $a = \{y \in a : y \subseteq f(b)\}$, and (1) follows.

(2) \leq_B restricted to C is $2^{<\lambda}$ -local.

In fact, suppose that $c \in C$; say c = f(x) with $x \in [\kappa]^{<\lambda}$. If $b \in C$ and $b \le c$, say b = f(y) with $y \in [\kappa]^{<\lambda}$. Then $f(y \cap x) = f(y) \cap f(x) = b$. Thus $b \in f[\mathscr{P}x]$; and $|\mathscr{P}x| \le 2^{<\lambda}$, as desired in (2).

Now by lemma 1 we have

(3) For every $\tau < \lambda$, and every almost disjoint $\mathscr{A} \subseteq [\rho]^{\tau}$ we have $|\mathscr{A}| \leq \rho \cdot (2^{<\lambda})^{<\lambda} = \rho$.

Now we are ready to show that $\rho^{<\lambda} = \rho$. For, suppose that $\rho^{<\lambda} > \rho$. Since $\lambda \leq \rho$, it follows that $\rho^{\tau} > \rho$ for some $\tau < \lambda$; let τ be minimum with this property. Then by a well-known argument, there is an almost disjoint $\mathscr{A} \subseteq [\rho]^{\tau}$ of size ρ^{τ} . This contradicts (3).

Lemma 3. Suppose that κ and λ are cardinals, $\omega \leq \lambda \leq \kappa^+$, λ regular. Let $A = \langle [\kappa]^{<\lambda} \rangle_{\mathscr{P}_{\kappa}}$. Let I be an ideal on A, and assume that $|A/I| > 2^{<\lambda}$. Then

- (i) $\forall a \in I(|a| < \lambda)$.
- (ii) Suppose that $\mathscr{A} \subseteq A$, $\forall a \in \mathscr{A}(|a| < \lambda)$, $\langle [a]_I : a \in \mathscr{A} \rangle$ is pairwise disjoint, and \mathscr{A} is maximal with these properties. Then $\sum_{a \in \mathscr{A}} [a]_I = 1$.
 - (iii) Continuing (ii), $|A/I| \leq |\bigcup \mathscr{A}|^{<\lambda}$.

(iv)
$$|A/I| \le c(A/I)^{<\lambda}$$
.
(v) $2^{<\lambda} < c(A/I)$.

Proof. For (i), suppose that $a \in I$ and $|-a| < \lambda$. Then the mapping $x \mapsto [x]_I$ for $x \subseteq -a$ is a homomorphism from $\mathscr{P}(-a)$ onto A/I. But $|\mathscr{P}(-a)| \leq 2^{<\lambda}$, contradicting $|A/I| > 2^{<\lambda}$.

For (ii), suppose not: say $[b]_I \neq 0$, while $[b]_I \cdot [a]_I = 0$ for all $a \in \mathscr{A}$. Then for all $c \in [b]^{<\lambda}$ we have $[c]_I = 0$. Hence $|b| \geq \lambda$, so $|-b| < \lambda$. So $[c]_I = [c \setminus b]_I$ for all $c \in [\kappa]^{<\lambda}$. Hence $\{[c]_I : c \in [\kappa]^{<\lambda}\} = \{[c]_I : c \in [-b]^{<\lambda}\}$ has size at most $\mu^{<\lambda}$, where $\mu = |-b|$. And $\mu < \lambda$, so $\mu^{<\lambda} \leq 2^{<\lambda}$. Hence $|A/I| \leq 2^{<\lambda}$, contradiction.

For (iii), note that if $b \in [\kappa \backslash \bigcup \mathscr{A}]^{<\lambda}$, then $b \in I$ by the maximality of \mathscr{A} . So

$$\{[b]_I:b\in A,|b|<\lambda\}=\{[b\cap \left\lfloor \ \right\rfloor\mathscr{A}]_I:|b|<\lambda\},$$

so (iii) holds.

For (iv), note that if $c(A/I) < \lambda$, then $|\bigcup \mathscr{A}| < \lambda$ by regularity of λ , and so $|\bigcup \mathscr{A}|^{<\lambda} \leq 2^{<\lambda}$, and (iii) gives a contradiction. So $\lambda \leq c(A/I)$. Hence $|\bigcup \mathscr{A}| \leq c(A/I)$. Then (iii) yields (iv).

Finally, (v) follows from (iv) and the hypothesis. \Box

Theorem 4. Suppose that $\omega \leq \rho \leq \kappa$. Let $A = \langle [\kappa]^{\leq \rho} \rangle_{\mathscr{P}_{\kappa}}$. Then $c_{\operatorname{Hr}}(A) = S \cup T \cup U$, where

$$S = \{(\mu, \nu) : \omega \le \mu \le \nu \le 2^{\rho}, \nu^{\omega} = \nu\};$$

$$T = \{(\mu, \mu^{\rho}) : 2^{\rho} < \mu \le \kappa\};$$

$$U = \{(\mu, \kappa^{\rho}) : 2^{\rho} < \mu, \mu^{\rho} = \kappa^{\rho}, \kappa < \mu\}.$$

Proof. First suppose that $(\mu, \nu) \in S$. The mapping $a \mapsto a \cap \rho$ gives a homomorphism of A onto $\mathscr{P}\rho$. Since $\mathscr{P}\rho$ has an independent subset of size 2^{ρ} , there is a homomorphism of $\mathscr{P}\rho$ onto an algebra B such that $\operatorname{Fr}\nu \leq B \leq \overline{\operatorname{Fr}\nu}$. Since $\nu^{\omega} = \nu$, we have $|B| = \nu$. Now there is a homomorphism of B onto an

algebra C such that $\operatorname{Fr}\nu \times \operatorname{Finco}\mu \leq C \leq \overline{\operatorname{Fr}\nu \times \operatorname{Finco}\mu}$. Thus $|C| = \nu$ and $\operatorname{c}(C) = \mu$, so $(\mu, \nu) \in \operatorname{c}_{\operatorname{Hr}}(A)$.

Second, suppose that $2^{\rho} < \mu \leq \kappa$. The mapping $a \mapsto a \cap \mu$ gives a homomorphism of A onto $\langle [\mu]^{\leq \rho} \rangle$, which has size μ^{ρ} and cellularity μ . So $(\mu, \mu^{\rho}) \in c_{Hr}(A)$.

Third, suppose that $2^{\rho} < \mu$, $\mu^{\rho} = \kappa^{\rho}$, and $\kappa < \mu$. Note that $2^{\rho} < \kappa$, for if $\kappa \leq 2^{\rho}$ then $\kappa^{\rho} \leq 2^{\rho} \leq \kappa^{\rho}$, so $\kappa^{\rho} = 2^{\rho} < \mu \leq \mu^{\rho} = \kappa^{\rho}$, contradiction. Now let ν be minimum such that $\kappa \leq \nu^{\rho}$. Since $2^{\rho} < \kappa$ and $\kappa < \kappa^{\rho}$, it follows from Jech [1], Theorem 19, that $\mathrm{cf}\nu \leq \rho < \nu$ and $\kappa^{\rho} = \nu^{\mathrm{cf}\nu}$. Now if $\sigma < \mathrm{cf}\nu$, then $\nu^{\sigma} \leq \kappa$, for

$$|
u^{\sigma} = |^{\sigma} \nu| = \left| \bigcup_{\delta < \nu} {}^{\sigma} \delta \right| \le \sum_{\delta < \nu} |^{\sigma} \delta| \le \kappa.$$

Hence $\left|\bigcup_{\sigma<\operatorname{cf}\nu}{}^{\sigma}\nu\right| \leq \kappa$, so there is an $\mathscr{A}\subseteq [\kappa]^{\operatorname{cf}\nu}$ which is $\operatorname{cf}\nu$ -ad and of size $\nu^{\operatorname{cf}\nu}=\kappa^{\rho}$. Let $I=[\kappa]^{<\operatorname{cf}\nu}$. Then $\langle [a]_I:a\in\mathscr{A}\rangle$ is isomorphic to $\operatorname{Finco}(\kappa^{\rho})$. Hence there is a homomorphism of $\langle [a]_I:a\in\mathscr{A}\rangle$ onto $\operatorname{Finco}\mu$. By the Sikorski extension theorem we get a homomorphism h of A onto a BA B with $\operatorname{Finco}\mu\leq B\leq \overline{\operatorname{Finco}\mu}$. Thus $\operatorname{c}(B)=\mu$, and by Theorem 2, $|B|^{\rho}=|B|$. Since $\kappa<\mu\leq |B|$, it follows that $\kappa^{\rho}\leq |B|^{\rho}=|B|\leq \kappa^{\rho}$. So $|B|=\kappa^{\rho}$. Thus $(\mu,\kappa^{\rho})\in\operatorname{chr}(A)$.

Finally, suppose conversely that $(\mu, \nu) \in c_{Hr}(A)$. Since A is σ -complete, it is well-known that $\nu^{\omega} = \nu$. So if $\nu \leq 2^{\rho}$, then $(\mu, \nu) \in S$. Suppose that $2^{\rho} < \nu$. By Theorem 2 $\nu^{\rho} = \nu$, and by Lemma 3, $2^{\rho} < \mu$ and $\nu \leq \mu^{\rho}$. Hence $\mu^{\rho} \leq \nu^{\rho} \leq \mu^{\rho}$, so $\nu = \nu^{\rho} = \mu^{\rho}$. If $\mu \leq \kappa$, then $(\mu, \nu) \in T$. Suppose that $\kappa < \mu$. Then $\kappa^{\rho} \leq \mu^{\rho} = \nu \leq \kappa^{\rho}$, so $\nu = \kappa^{\rho}$ and $(\mu, \nu) \in U$.

Theorem 4 provides a positive solution of Problem 8(i) of Monk [6]. Namely, assume CH and let $\kappa = \omega_2$ and $\rho = \omega$ in the theorem. Thus with $A = \langle [\omega_2]^{\leq \omega} \rangle_{\mathscr{P}\omega_2}$, under CH we have

$$c_{Hr}A = \{(\omega, \omega_1), (\omega_1, \omega_1), (\omega_2, \omega_2)\}.$$

Under GCH, there is a simpler description of $\langle [\kappa]^{\leq \rho} \rangle_{\mathscr{P}_{\kappa}}$:

Corollary 5. (GCH) Suppose that $\omega \leq \rho \leq \kappa$. Let $A = \langle [\kappa]^{\leq \rho} \rangle_{\mathscr{P}_{\kappa}}$. Then

$$c_{Hr}A = \{(\mu, \nu) : \omega \le \mu \le \nu \le \rho^+, cf\nu > \omega\}$$

$$\cup \{(\mu, \mu) : \rho^+ < \mu, \rho < cf\mu, \mu \le \kappa\}$$

$$\cup \{(\mu, \mu^+) : \rho^+ < \mu, cf\mu \le \rho, \mu \le \kappa\}$$

$$\cup \{(\kappa^+, \kappa^+) : cf\kappa \le \rho < \kappa\}.$$

It is natural to also consider the algebra $A = \langle [\kappa]^{<\lambda} \rangle$ for λ limit. For λ singular the situation is unclear. Note that if $\mathrm{cf}\lambda = \omega$, it is possible that A has a countable homomorphic image. For example, let $\kappa = \lambda = \aleph_{\omega}$. For each $n \in \omega$ let F_n be an ultrafilter on the Boolean algebra $\mathscr{P}\aleph_n$ such that $X \in F_n$ for every $X \subseteq \aleph_n$ for which $|\aleph_n \backslash X| < \aleph_n$. Define $f(a) = \{n \in \omega : a \cap \aleph_n \in F_n\}$ for every $a \in A$. It is easy to see that f is a homomorphism from A onto Finco ω .

For λ regular limit (meaning that it is weakly inaccessible), we can give a complete description of the cellularity homomorphism relation. For this we need another lemma. This lemma is proved like Lemma 3.

Lemma 6. Suppose that κ and λ are cardinals, λ is weakly inaccessible, $2^{\mu} < 2^{<\lambda}$ for all $\mu < \lambda$, and $\lambda \leq \kappa$. Let $A = \langle [\kappa]^{<\lambda} \rangle_{\mathscr{P}\kappa}$. Let I be an ideal on A, and assume that $|A/I| = 2^{<\lambda}$. Then

- (i) $\forall a \in I(|a| < \lambda)$.
- (ii) Suppose that $\mathscr{A} \subseteq A$, $\forall a \in \mathscr{A}(|a| < \lambda)$, $\langle [a]_I : a \in \mathscr{A} \rangle$ is pairwise disjoint, and \mathscr{A} is maximal with these properties. Then $\sum_{a \in \mathscr{A}} [a]_I = 1$.
 - (iii) Continuing (ii), $|A/I| \le |[\bigcup \mathscr{A}]^{<\lambda}]|$. (iv) $c(A/I) \ge \lambda$.

Proof. Only (iv) requires additional scrutiny. If $c(A/I) < \lambda$, then $|\mathscr{A}| < \lambda$, so by the regularity of λ , $|\bigcup \mathscr{A}| < \lambda$. But then $|\bigcup \mathscr{A}|^{<\lambda}| = |\mathscr{P}(\bigcup \mathscr{A})| < 2^{<\lambda}$, contradiction.

Theorem 7. Suppose that λ is uncountable and weakly inaccessible and $\lambda \leq \kappa$. Let $A = \langle [\kappa]^{<\lambda} \rangle_{\mathscr{P}_{\kappa}}$. Define

$$S = \{(\mu, \nu) : \omega \le \mu \le \nu < 2^{<\lambda}, \nu^{\omega} = \nu\};$$

$$T = \{(\mu, \mu^{<\lambda}) : 2^{<\lambda} < \mu \le \kappa\};$$

$$U = \{(\mu, \kappa^{<\lambda}) : 2^{<\lambda} < \mu, \mu^{<\lambda} = \kappa^{<\lambda}, \kappa < \mu\};$$

$$V = \{(\mu, 2^{<\lambda}) : \omega \le \mu \le 2^{<\lambda}\};$$

$$W = \{(\mu, 2^{<\lambda}) : \lambda \le \mu \le 2^{<\lambda}\}.$$

Then

- (i) If $2^{\rho} = 2^{<\lambda}$ for some $\rho < \lambda$, then $c_{Hr}(A) = S \cup T \cup U \cup V$; (ii) If $2^{\rho} < 2^{<\lambda}$ for all $\rho < \lambda$, then $c_{Hr}(A) = S \cup T \cup U \cup W$. (iii) If λ is strongly inaccessible, then $c_{Hr}(A) = S \cup T \cup U \cup \{(\lambda, \lambda)\}$.
- *Proof.* The proof that $S \cup T \cup U \subseteq c_{Hr}(A) \subseteq S \cup T \cup U \cup V$ is very similar to the proof for Theorem 4. For example, to show that $U \subseteq c_{Hr}(A)$, take μ such that $2^{<\lambda} < \mu$, $\mu^{<\lambda} = \kappa^{<\lambda}$, and $\kappa < \mu$. Then $2^{<\lambda} < \kappa$ by an argument like that in the proof of Theorem 4. Since $\kappa < \mu \le \kappa^{<\lambda}$, choose ρ so that $\kappa < \kappa^{\rho}$ and $\rho < \lambda$, and then proceed as before.

Now suppose that $\rho < \lambda$ and $2^{\rho} = 2^{<\lambda}$. The mapping $a \mapsto a \cap \rho$ gives a homomorphism from A onto $\mathscr{P}\rho$. Then the argument at the beginning of the proof of Theorem 4 shows that $(\mu, 2^{<\lambda}) \in c_{\mathrm{Hr}}(A)$ for all $\mu \in [\omega, 2^{<\lambda}]$. This proves (i).

Next, suppose that $2^{\rho} < 2^{<\lambda}$ for all $\rho < \lambda$, and that $\lambda \leq \mu < 2^{<\lambda}$. Then there is a $\rho < \lambda$ such that $\mu < 2^{\rho}$. Write $\lambda = \Gamma_0 \cup \Gamma_1$, where $\Gamma_0 \cap \Gamma_1 = \emptyset$, $|\Gamma_0| = \lambda$, and $|\Gamma_1| = \rho$. By Theorem 4 there is a homomorphism f of $\mathscr{P}\Gamma_1$ onto an algebra of size 2^{ρ} and cellularity μ . Let $g(a) = (a \cap \Gamma_0, f(a \cap \Gamma_1))$ for all $a \in A$. The image of g has size $2^{<\lambda}$ and cellularity μ .

To get a homomorphic image of size and cellularity $2^{<\lambda}$ we have to modify this argument. Let M be the set of all infinite cardinals less than λ , and let $\langle \Gamma_{\alpha} : \alpha \in M \rangle$ be a partition of λ with $|\Gamma_{\alpha}| = \alpha$ for all $\alpha \in M$. For each $\alpha \in M$ let f_{α} be a

homomorphism of $\mathscr{P}\Gamma_{\alpha}$ onto an algebra of size and cellularity 2^{α} . Then let $g(a)_{\alpha} = f_{\alpha}(a \cap \Gamma_{\alpha})$ for all $a \in A$. Then the image of g is as desired.

That no other pairs are in $c_{Hr}(A)$ follows from Lemma 6. Thus (ii) holds.

For the next result we need a standard Boolean algebraic fact:

Proposition 8. Suppose that A is κ -complete, and I is a κ -complete maximal ideal in A. Suppose that $f: I \to B$ preserves $(<\kappa)$ -joins, $(<\kappa)$ -meets, and 0. Then f extends to a unique κ -complete homomorphism $f^+: A \to B$. Moreover, f^+ is one-one iff $\forall x \in I[f(x) = 0 \Rightarrow x = 0]$ and $\forall x \in I[f(x) \neq 1]$.

Proof. The following definition of f^+ is forced upon us:

$$f^{+}(a) = \begin{cases} f(a) & \text{if } a \in I, \\ -f(-a) & \text{if } a \notin I. \end{cases}$$

Then f^+ preserves -, since if $a \in I$, then $f^+(-a) = -f(a) = -f^+(a)$, and if $a \notin I$, then $f^+(-a) = f(-a) = -f(-a) = -f^+(a)$.

Now we show that f^+ preserves $(< \kappa)$ -joins. So, let $\sum_{\xi < \alpha} a_{\xi}$ be given, with $\alpha < \kappa$. If $\forall \xi < \alpha [a_{\xi} \in I]$, then

$$f^+\left(\sum_{\xi<\alpha}a_\xi\right)=f\left(\sum_{\xi<\alpha}a_\xi\right)=\sum_{\xi<\alpha}f(a_\xi)=\sum_{\xi<\alpha}f^+(a_\xi).$$

Now suppose that $\exists \xi < \alpha [a_{\xi} \notin I]$. Let $\Gamma = \{ \xi < \alpha : a_{\xi} \in I \}$.

Then

$$\begin{split} \sum_{\xi \in \Gamma} a_{\xi} + \left(-\sum_{\xi < \alpha} a_{\xi} \right) &= \sum_{\xi \in \Gamma} a_{\xi} + \left(-\left(\sum_{\xi \in \Gamma} a_{\xi} + \sum_{\xi \in \alpha \backslash \Gamma} a_{\xi} \right) \right) \\ &= \sum_{\xi \in \Gamma} a_{\xi} + \left(-\sum_{\xi \in \Gamma} a_{\xi} \cdot -\sum_{\xi \in \alpha \backslash \Gamma} a_{\xi} \right) \\ &= \sum_{\xi \in \Gamma} a_{\xi} + \left(-\sum_{\xi \in \alpha \backslash \Gamma} a_{\xi} \right). \end{split}$$

Using this,

$$\sum_{\xi < \alpha} f^{+}(a_{\xi}) + \left(-f^{+}\left(\sum_{\xi < \alpha} a_{\xi}\right)\right)$$

$$= \sum_{\xi \in \Gamma} f(\alpha_{\xi}) + \sum_{\xi \in \alpha \backslash \Gamma} -f(-a_{\xi}) + f\left(-\sum_{\xi < \alpha} a_{\xi}\right)$$

$$= f\left(\sum_{\xi \in \Gamma} a_{\xi} + \left(-\sum_{\xi < \alpha} a_{\xi}\right)\right) + \sum_{\xi \in \alpha \backslash \Gamma} -f(-a_{\xi})$$

$$= f\left(\sum_{\xi \in \Gamma} a_{\xi} + \left(-\sum_{\xi \in \alpha \backslash \Gamma} a_{\xi}\right)\right) + \sum_{\xi \in \alpha \backslash \Gamma} -f(-a_{\xi})$$

$$= f\left(\sum_{\xi \in \Gamma} a_{\xi}\right) + f\left(-\sum_{\xi \in \alpha \backslash \Gamma} a_{\xi}\right) + \sum_{\xi \in \alpha \backslash \Gamma} -f(-a_{\xi})$$

$$= f\left(\sum_{\xi \in \Gamma} a_{\xi}\right) + \prod_{\xi \in \alpha \backslash \Gamma} f(-a_{\xi}) + \left(-\prod_{\xi \in \alpha \backslash \Gamma} f(-a_{\xi})\right)$$

$$= 1.$$

And if $\xi \in \Gamma$, then

$$f^{+}(a_{\xi}) \cdot -f^{+}\left(\sum_{\eta < \alpha} a_{\eta}\right) = f(a_{\xi}) \cdot f\left(-\sum_{\eta < \alpha} a_{\eta}\right)$$
$$= f\left(a_{\xi} \cdot -\sum_{\eta < \alpha} a_{\eta}\right)$$
$$= f(0) = 0.$$

If $\xi \in \alpha \backslash \Gamma$, then

$$f^+(a_\xi)\cdot -f^+\left(\sum_{\eta<\alpha}a_\eta\right)=-f(-a_\xi)\cdot f\left(-\sum_{\eta<\alpha}a_\eta\right).$$

Now $a_{\xi} \leq \sum_{\eta < \alpha} a_{\eta}$, so $-\sum_{\eta < \alpha} a_{\eta} \leq -a_{\xi}$, hence $f\left(-\sum_{\eta < \alpha} a_{\eta}\right)$ $\leq f(-a_{\xi})$, so $-f(-a_{\xi}) \cdot f\left(-\sum_{\eta < \alpha} a_{\eta}\right) = 0$. So we have proved that $f^{+}\left(\sum_{\xi < \alpha} a_{\xi}\right) = \sum_{\xi < \alpha} f(a_{\xi})$. So f is a κ -homomorphism.

Concerning the final statement, the direction \Rightarrow is clear. Now suppose the indicated condition holds, and $f^+(a) = 0$. If $a \in I$, then $f(a) = f^+(a) = 0$, so a = 0. If $a \notin I$, then $f^+(a) = -f(-a) = 0$, so f(-a) = 1 and $-a \in I$, contradiction.

Lemma 9. Suppose that $\kappa < \lambda$, κ is regular, $\mathscr{A} \subseteq [\kappa]^{\kappa}$ is almost disjoint, and $|\mathscr{A}| = \lambda$. Let Λ be the κ -complete subalgebra of $\mathscr{P}\kappa$ generated by $\mathscr{A} \cup \{\{\xi\} : \xi < \kappa\}$. Then $\Lambda/[\kappa]^{<\kappa} \cong \langle [\lambda]^{<\kappa} \rangle_{\mathscr{P}\lambda}$.

Proof. Let $\langle X_{\alpha} : \alpha < \lambda \rangle$ be a one-one enumeration of \mathscr{A} . Set $I = [\kappa]^{<\kappa}$. For each $\Gamma \in [\lambda]^{<\kappa}$ let $f(\Gamma) = [\bigcup_{\alpha \in \Gamma} X_{\alpha}]_I$. Clearly f preserves $(<\kappa)$ -joins, and f(0) = 0. It also preserves $(<\kappa)$ -meets. For, suppose that $\Gamma_{\alpha} \in [\lambda]^{<\kappa}$ for all $\alpha < \gamma$, where $\gamma < \kappa$. Let $\Delta = \bigcup_{\alpha < \gamma} \Gamma_{\alpha}$. So $|\Delta| < \kappa$ since κ is regular. Let

P be the set of all nonconstant $g \in \prod_{\alpha < \gamma} \Gamma_{\alpha}$. Then

$$\bigcap_{\alpha < \gamma} \bigcup_{\xi \in \Gamma_{\alpha}} X_{\xi} = \bigcup_{g \in \prod_{\alpha < \gamma} \Gamma_{\alpha}} \bigcap_{\alpha < \gamma} X_{g(\alpha)}$$

$$= \bigcup_{\xi \in \bigcap_{\alpha < \gamma} \Gamma_{\alpha}} X_{\xi} \cup \bigcup_{g \in P} \bigcap_{\alpha < \gamma} X_{g(\alpha)}.$$

Now

$$\bigcup_{g \in P} \bigcap_{\alpha < \gamma} X_{g(\alpha)} \subseteq \bigcup \{ X_{\alpha} \cap X_{\beta} : \alpha, \beta \in \Delta, \alpha \neq \beta \},$$

and the latter set has size less than κ . This shows that f preserves $(< \kappa)$ -meets.

Hence by Proposition 8, f extends to a κ -homomorphism from $\langle [\lambda]^{<\kappa} \rangle_{\mathscr{P}\lambda}$ into A/I. by the same proposition it is clear that f is one-one. Since $f[[\lambda]^{<\kappa}]$ generates A/I as a κ -complete algebra, f maps onto A/I.

Theorem 10. (GCH) Let $\mathscr{A} \subseteq [\kappa^+]^{\kappa^+}$ be κ^+ -ad, with $|\mathscr{A}| = \kappa^{++}$. Let A be the κ^+ -complete subalgebra of $\mathscr{P}\kappa^+$ generated by $\mathscr{A} \cup \{\{\alpha\} : \alpha < \kappa^+\}$. Then

$$c_{Hr}A = \{(\mu, \nu) : \omega \leq \mu \leq \nu \leq \kappa^+, cf\nu > \omega\} \cup \{(\kappa^+, \kappa^{++}), (\kappa^{++}, \kappa^{++})\}.$$

Proof. Let $\langle X_{\alpha} : \alpha < \kappa^{++} \rangle$ be a one-one enumeration of \mathscr{A} . Let $I = [\kappa^{+}]^{\leq \kappa}$. Then by Lemma 9,

$$(1) A/I \cong \langle [\kappa^{++}]^{\leq \kappa} \rangle_{\mathscr{P}_{\kappa^{++}}}.$$

Hence by Corollary 5, $c_{Hr}A$ contains the set of the theorem. Suppose that $(\mu, \nu) \in c_{Hr}A$, with (μ, ν) not in the indicated set. Then $\nu = \kappa^{++}$ and $\mu \leq \kappa$. So A has an independent subset $\mathscr F$ of size κ^{++} . Since $|I| = \kappa^{+}$, we may assume that the members of $\mathscr F$ are pairwise inequivalent modulo I, each nonzero modulo I. By the proof of (1), for each $a \in \mathscr F$ we can choose a $\Gamma_a \in [\kappa^{++}]^{\kappa}$ such that $[a]_I = \bigcup_{\alpha \in \Gamma_a} X_{\alpha}]_I$. Then

there is a $\Delta \in [\mathscr{F}]^{\kappa^{++}}$ such that $\langle \Gamma_a : a \in \Delta \rangle$ is a Δ -system. Let a,b,c be distinct members of Δ . Then $[a \cdot b \cdot -c]_I = 0$, i.e., $|a \cdot b \cdot -c| \leq \kappa$. Hence

$$\langle a\cdot b\cdot -c\cdot d: d\in \Delta\backslash \{a,b,c\}\rangle$$

is a system of κ^{++} independent subsets of $a \cdot b \cdot -c$, which contradicts GCH.

Taking $\kappa = \omega$ in this theorem we get, under GCH, a BA A such that

$$c_{Hr}A = \{(\omega, \omega_1), (\omega_1, \omega_1), (\omega_1, \omega_2), (\omega_2, \omega_2)\}.$$

This solves Problem 8(iii) of Monk [6] positively.

For the next result we need a fact about one of the standard ways of forcing a large mad family. This fact was observed by Richard Laver, and we thank him for allowing us to include the proof of the fact here.

Theorem 11. In a model of ZFC+GCH, suppose that κ and λ are infinite cardinals, κ regular, $\kappa < \lambda$. Then there is an extension preserving cofinalities and cardinalities in which there is a system $\langle A_{\alpha} : \alpha < \lambda \rangle$ of almost disjoint members of $[\kappa]^{\kappa}$ with the following property:

(*) if $X \in [\kappa]^{\kappa}$ and $|X \cap A_{\alpha}| = \kappa$ for κ many $\alpha < \lambda$, then $|X \cap A_{\alpha}| = \kappa$ for $co-\kappa^+$ many $\alpha < \lambda$.

Proof. Let \mathbb{P} be the set of all functions f such that there exist an $F \in [\lambda]^{<\kappa}$ and a $\nu < \kappa$ such that $f : F \times \nu \to 2$. For $f \in \mathbb{P}$ we let F_f and ν_f be the F, ν mentioned, with $F_f = 0 = \nu_f$ if f = 0. We write $f \leq g$ iff $g \subseteq f$ and for any distinct $\alpha, \beta \in F_g$ and any $\iota \in \nu_f \setminus \nu_g$, $f(\alpha, \iota) = 0$ or $f(\beta, \iota) = 0$. Clearly

(1) (\mathbb{P}, \leq) is κ -closed and satisfies the κ^+ -chain condition. Consequently, forcing with (\mathbb{P}, \leq) preserves cofinalities and cardinals.

(2) For any $\alpha < \lambda$, the set $\{f \in \mathbb{P} : \alpha \in F_f\}$ is dense.

In fact, given $g \in \mathbb{P}$, if $\alpha \notin F_g$, let $F_f = F_g \cup \{\alpha\}$, $\nu_f = \nu_g$, and let f extend g with $f(\alpha, \iota) = 0$ for all $\iota < \nu_g$. Clearly this proves (2).

Now let G be generic for (\mathbb{P}, \leq) over the ground model. We then set, for any $\alpha < \lambda$,

$$A_{\alpha} = \{ \iota < \kappa : \exists g \in G(\alpha \in F_g, \iota < \nu_g, g(\alpha, \iota) = 1) \}$$

$$\Gamma_{\alpha} = \{ (\hat{\iota}, g) : \alpha \in F_g, \iota < \nu_g, g(\alpha, \iota) = 1 \}.$$

Thus $\Gamma_{\alpha}^{G} = A_{\alpha}$.

(3) For each $\alpha < \lambda$, $|A_{\alpha}| = \kappa$.

In fact, it suffices to show that for any $\mu < \kappa$ the following set is dense:

$$\{g \in \mathbb{P} : \alpha \in F_g \text{ and } \exists \xi \in \kappa \backslash \mu(\xi < \nu_g \text{ and } g(\alpha, \xi) = 1)\}.$$

To prove this, let $f \in \mathbb{P}$. By (2) we may assume that $\alpha \in F_f$. Now let $f \subseteq g$, $F_f = F_g$, $\nu_g = \max(\nu_f + 1, \mu + 2)$, $\xi = \max(\nu_f, \mu + 1)$, with $g(\beta, \iota) = 0$ if $\nu_f \le \iota$ and $\beta \ne \alpha$, $g(\alpha, \iota) = 0$ if $\iota \ne \xi$, and $g(\alpha, \xi) = 1$. Clearly $g \in \mathbb{P}$ and $g \le f$, as desired in (3).

(4)
$$|A_{\alpha} \cap A_{\beta}| < \kappa$$
 for $\alpha \neq \beta$.

In fact, by (2) choose $g \in G$ such that $\alpha, \beta \in F_g$. Then, we claim, $A_{\alpha} \cap A_{\beta} = \{\iota < \nu_g : g(\alpha, \iota) = 1 = g(\beta, \iota)\}$, which will prove (4). Clearly \supseteq holds. Now suppose that $\iota \in A_{\alpha} \cap A_{\beta}$. Then there is an $f \in G$ such that $f \leq g$, $\iota < \nu_f$ and $f(\alpha, \iota) = 1 = f(\beta, \iota)$. From the definition of \subseteq it follows that $\iota < \nu_g$, and hence $f(\alpha, \iota) = g(\alpha, \iota)$ and $f(\beta, \iota) = g(\beta, \iota)$, as desired.

Now suppose that $X \in [\kappa]^{\kappa}$ and $|X \cap A_{\alpha}| = \kappa$ for κ many α 's. Let τ be a name for X. Choose $p \in G$ so that

(5)
$$p \Vdash \forall H \in [\lambda]^{<\kappa} (|\tau \setminus \bigcup_{\alpha \in H} \Gamma_{\alpha}| = \kappa).$$

Now we claim

(6) There is a $C \in [\lambda]^{\leq \kappa}$ such that $F_p \subseteq C$ and for all q, μ, H , if $q \in \mathbb{P}$, $F_q \subseteq C$, $q \leq p$, $\mu < \kappa$, and $H \in [C]^{<\kappa}$, then there is a $q' \leq q$ such that $F_{q'} \subseteq C$ and there is a $\xi \in \kappa \setminus \mu$ such that $q' \Vdash \xi \in \tau \setminus \bigcup_{\beta \in H} \Gamma_{\beta}$.

For we construct $\langle C_{\alpha} : \alpha < \kappa \rangle$ by induction. Let $C_0 = F_p$. For α limit, let $C_{\alpha} = \bigcup_{\beta < \alpha} C_{\beta}$. Now suppose that C_{α} has been constructed, with $|C_{\alpha}| \leq \kappa$. For q, μ, H such that $q \in \mathbb{P}, q \leq p$, $F_q \subseteq C_{\alpha}, \mu < \kappa$, and $H \in [C_{\alpha}]^{<\kappa}$, there exist a $q' = q'(q, \mu, H)$ and a $\xi \in \kappa \setminus \mu$ such that $q' \leq q$ and $q' \Vdash \xi \in \tau \setminus \bigcup_{\beta \in H} \Gamma_{\beta}$. Let

$$C_{\alpha+1}=C_\alpha\cup\bigcup\{F_{q'(q,\mu,H)}:q,\mu,H\text{ as above}\}.$$

Let $C = \bigcup_{\alpha < \kappa} C_{\alpha}$. Clearly C is as desired in (6).

Now take any $\alpha \in \lambda \backslash C$ and $\mu < \kappa$. We finish the proof by showing

(7) $\{q: q \Vdash \exists \xi \in \kappa \backslash \mu(\xi \in \tau \cap \Gamma_{\alpha})\}\$ is dense below p.

To show this, let $r \leq p$ be arbitrary. By (2), we may assume that $\alpha \in F_{\tau}$. Let $s = r \upharpoonright (C \times \nu_{\tau})$. By (6), choose $q' \leq s$ and $\xi > \max(\mu, \nu_{\tau})$ such that $F_{q'} \subseteq C$ and $q' \Vdash \xi \in \tau \setminus \bigcup_{\beta \in F_s} \Gamma_{\beta}$. Now let $F_q = F_{q'} \cup F_{\tau}$, $\nu_q = \max(\nu_{q'}, \xi + 1)$, and for any $\beta \in F_q$ and $\iota < \nu_q$ let

$$q(\beta,\iota) = \begin{cases} q'(\beta,\iota) & \text{if } \beta \in F_{q'} \text{ and } \iota < \nu_{q'}, \\ r(\beta,\iota) & \text{if } \beta \in F_r \backslash F_{q'} \text{ and } i < \nu_r, \\ 1 & \text{if } \beta = \alpha \text{ and } \iota = \xi, \\ 0 & \text{in all other cases.} \end{cases}$$

Clearly $q \in \mathbb{P}$. Since $q(\alpha, \xi) = 1$, we have $q \Vdash \xi \in \Gamma_{\alpha}$.

(8)
$$q \le q'$$
.

In fact, clearly $q' \subseteq q$. Now suppose that β and γ are distinct members of $F_{q'}$ and $\iota \in \nu_q \setminus \nu_{q'}$. Then by definition we have $q(\beta, \iota) = 0$ or $q(\gamma, \iota) = 0$, as desired; so (8) holds.

So it remains only to prove

(9) $q \le r$.

For this, first note that $F_r = (F_r \cap C) \cup (F_r \setminus C) \subseteq F_q$. And $\nu_r \leq \nu_{q'} \leq \nu_q$. Now suppose that $\beta \in F_r$ and $\iota < \nu_r$. If $\beta \in C$, then $r(\beta, \iota) = s(\beta, \iota) = q'(\beta, \iota) = q(\beta, \iota)$. If $\beta \notin C$, then directly from the definition, $q(\beta, \iota) = r(\beta, \iota)$. All of this shows that $r \subseteq q$.

Now suppose that β and γ are distinct members of F_r and $\iota \in \nu_q \setminus \nu_r$. To finish the proof we want to show that $q(\beta, \iota) = 0$ or $q(\gamma, \iota) = 0$.

Case 1. $\beta, \gamma \in C$ and $\iota < \nu_{q'}$. Then $\beta, \gamma \in C \cap F_r = F_s \subseteq F_{q'}$, so $q(\beta, \iota) = q'(\beta, \iota)$ and $q(\gamma, \iota) = q'(\gamma, \iota)$. Also, $\iota \in \nu_{q'} \setminus \nu_s$ since $\nu_s = \nu_r$. So $q'(\beta, \iota) = 0$ or $q'(\gamma, \iota) = 0$.

Case 2. $\beta \in C$, $\iota \geq \nu_{\sigma'}$. So $q(\beta, \iota) = 0$.

Case 3. $\gamma \in C$, $\iota \geq \nu_{q'}$. So $q(\gamma, \iota) = 0$.

Case 4. $\beta \notin C$, $\nu_r \leq \iota$, $\beta \neq \alpha$ or $\iota \neq \xi$. Then $q(\beta, \iota) = 0$.

Case 5. $\gamma \notin C$, $\nu_r \leq \iota$, $\gamma \neq \alpha$ or $\iota \neq \xi$. Then $q(\gamma, \iota) = 0$.

Case 6. $\beta \in C$, $\iota = \xi$, $\nu_r \leq \iota < \nu_{q'}$. Then $q(\beta, \iota) = q'(\beta, \xi) = 0$ since $q' \Vdash \xi \notin \Gamma_{\beta}$.

Case 7. $\gamma \in C$, $\iota = \xi$, $\nu_r \le \iota < \nu_{q'}$. Then $q(\gamma, \iota) = q'(\gamma, \xi) = 0$ since $q' \Vdash \xi \notin \Gamma_{\gamma}$.

Case 8. None of the above. So not both of β , γ are in C, by Cases 1,2. Suppose one is in C, the other not; say $\beta \in C$, $\gamma \notin C$. Since $\iota \geq \nu_r$, it follows that $\gamma = \alpha$ and $\iota = \xi$. Then $q(\beta, \iota) = 0$, either because $\xi < \nu_{q'}$ and $q' \Vdash \xi \notin \Gamma_{\beta}$, or because $\xi \geq \nu_{q'}$ and the definition of q. So, suppose that $\beta, \gamma \notin C$. Then one of Cases 4,5 must hold, contradiction.

Theorem 12. Let $\langle A_{\alpha} : \alpha < \kappa \rangle$ be a system of infinite almost disjoint subsets of ω such that $\kappa > \omega$ and

(*) For every infinite subset X of ω , if $\{\alpha < \kappa : X \cap A_{\alpha}\}$ is infinite, then it is cocountable.

Let A be the subalgebra of $\mathscr{P}\omega$ generated by

$${A_{\alpha}: \alpha < \kappa} \cup {\{i\}: i < \omega}.$$

Then $c_{Hr}A = \{(\omega, \kappa)\} \cup \{(\mu, \mu) : \omega \leq \mu \leq \kappa\}.$

Proof. $A/\text{fin} \cong \text{Finco}\kappa$, so \supseteq holds. Now suppose that $(\mu, \nu) \in c_{\text{Hr}}A$, $\omega \leq \mu < \nu \leq \kappa$, and $(\mu, \nu) \neq (\omega, \kappa)$; we want to get a contradiction. Let I be an ideal of A such that $|A/I| = \nu$ and $c(A/I) = \mu$. Let $b = \{i < \omega : \{i\} \in I\}$.

(1) $\Gamma \stackrel{\text{def}}{=} \{ \alpha < \kappa : A_{\alpha} \setminus b \text{ is infinite} \}$ is infinite.

For, suppose that Γ is finite. Let ρ be regular, with $\mu < \rho \leq \nu$; we are going to show that A/I has a disjoint family of size ρ , contradiction. Now there is a $\Delta \in [\kappa]^{\rho}$ such that for all $\alpha \in \Delta$, $A_{\alpha}/I \neq 0$ and $A_{\alpha} \setminus b$ is finite, and for all distinct $\alpha, \beta \in \Delta$, $A_{\alpha}/I \neq A_{\beta}/I$. Let $\Omega \in [\Delta]^{\rho}$ be such that $\langle A_{\alpha} \setminus b : \alpha \in \Omega \rangle$ is a Δ -system, say with kernel K. Now if $(A_{\alpha} \setminus K)/I = 0$, then $A_{\alpha}/I \leq K/I$, and $(A/I) \upharpoonright (K/I)$ is finite. So wlog, $(A_{\alpha} \setminus K)/I \neq 0$ for all $\alpha \in \Omega$. Now if α, β are distinct members of Ω , then $((A_{\alpha} \cap A_{\beta}) \setminus b) \setminus K = 0$, so $(A_{\alpha} \cap A_{\beta}) \setminus K = (A_{\alpha} \cap A_{\beta} \cap b) \setminus K$. But $A_{\alpha} \cap A_{\beta} \cap b \in I$ since $A_{\alpha} \cap A_{\beta}$ is finite, so $(A_{\alpha} \cap A_{\beta}) \setminus K \in I$. Thus $\langle (A_{\alpha} \setminus K)/I : \alpha \in \Omega \rangle$ is a system of ρ disjoint elements, contradiction. This proves (1).

So from (*) it follows that Γ is cocountable. Now the map $\alpha \mapsto A_{\alpha} \backslash b$ for $\alpha \in \Gamma$ is one-one. For any $x \in A$ let $g(x) = (x/I, x \backslash b)$. This is a homomorphism. If $x \in I$, then $x \backslash b = 0$, and so g(x) = (0,0). And if g(x) = (0,0), then $x \in I$. So the image of g is isomorphic to A/I. It follows that $|A/I| = \kappa$. Hence $\omega < \mu$. Let $\langle c_{\alpha}/I : \alpha < \omega_1 \rangle$ be a system of nonzero pairwise disjoint elements. Since there are only countably many finite subsets of ω , wlog each c_{α} is infinite. In fact, we may assume that each c_{α} has the form

$$A_{\beta} \cdot -A_{\gamma_1} \cdot \ldots \cdot -A_{\gamma_m} \cdot -F,$$

where F is finite and each $\gamma_i \neq \beta$. This can be written as

$$A_{\beta} \cdot -(A_{\beta} \cdot A_{\gamma_1}) \cdot \ldots \cdot -(A_{\beta} \cdot A_{\gamma_m}) \cdot -F,$$

and each $A_{\beta} \cdot A_{\gamma_i}$ is finite. So wlog m = 0. Thus we may assume that we have a pairwise disjoint system $\langle (A_{\alpha} \cdot -F_{\alpha})/I : \alpha \in \Delta \rangle$ of nonzero elements, each F_{α} finite, $\Delta \in [\kappa]^{\omega_1}$.

Now we have $A_{\alpha}\backslash b$ infinite for all α in a cocountable subset Δ' of Δ . So $(A_{\alpha}\backslash F_{\alpha})\backslash b$ is infinite for each $\alpha\in\Delta'$. Now for $\alpha\neq\beta$ the set $A_{\alpha}\cdot -F_{\alpha}\cdot A_{\beta}\cdot -F_{\beta}$ is in I and hence is a subset of b. So $\langle (A_{\alpha}\backslash F_{\alpha})\backslash b:\alpha\in\Delta'\rangle$ is a system of ω_1 pairwise disjoint subsets of ω , contradiction.

Theorem 13. Suppose that $(\kappa^+, \kappa^{++}) \in c_{Hr}A$ and $(\kappa, \kappa^{++}) \notin c_{Hr}A$. Then $(\kappa^+, \kappa^+) \in c_{Hr}A$.

Proof. We work in the Stone space X of A. We may assume that X has cellularity κ^+ and weight κ^{++} . Take points one apiece from a pairwise disjoint family of κ^+ open sets. If their closure has exactly κ^+ clopen sets, we are done, otherwise the closure has κ^{++} clopen sets, and we may assume without loss of generality that the closure is all of X. Thus X has isolated points $\{x_{\alpha}: \alpha < \kappa^+\}$, listed without repetitions, and they are dense in X. For all $\alpha \in [\kappa, \kappa^+)$ let $X_{\alpha} = \operatorname{cl}\{x_{\beta}: \beta < \alpha\}$. Thus X_{α} is a Boolean space with κ isolated points, which are dense in X_{α} . So by the hypothesis of the theorem, $|\operatorname{clop} X_{\alpha}| \leq \kappa^+$.

Case 1. $Y \stackrel{\text{def}}{=} \bigcup_{\alpha \in [\kappa, \kappa^+)} X_{\alpha}$ is closed. Then $\bigcup_{\alpha \in [\kappa, \kappa^+)} \operatorname{clop} X_{\alpha}$ is a network for Y. Hence Y has weight κ^+ . Since $\{x_{\alpha} : \alpha < \kappa^+\}$ is its set of isolated points, and this set is dense in Y, the conclusion of the theorem holds.

Case 2. Y is not closed. Let $g \in \operatorname{cl}Y \backslash Y$. Then $g \notin \operatorname{cl}Z$ for all $Z \in [Y]^{\kappa}$, so the tightness of Y is at least κ^+ . Let $\langle y_{\alpha} : \alpha < \kappa^+ \rangle$ be a convergent free sequence (by Juhász, Szentmiklossy [3]). Say it converges to z. Let $Z = \operatorname{cl}\{y_{\alpha} : \alpha < \kappa^+\}$. Note that each y_{α} is isolated in Z, and the y_{α} 's are dense in Z. So it suffices to show that Z has weight κ^+ . Let $W_{\alpha} = \operatorname{cl}\{y_{\alpha} : \beta < \alpha\}$ for all $\alpha \in [\kappa, \kappa^+)$. Thus W_{α} is clopen in Z by freeness. Clearly $\bigcap_{\alpha \in [\kappa, \kappa^+)} (Z \backslash W_{\alpha}) = \{z\}$. So $\{Z \backslash W_{\alpha} : \alpha \in [\kappa, \kappa^+)\}$ is a neighborhood basis for z. Now by hypothesis, each W_{α} has weight at most κ^+ ; let \mathscr{B}_{α} be a base for W_{α} with $|\mathscr{B}_{\alpha}| \leq \kappa^+$. Then

$$\bigcup_{\alpha \in [\kappa, \kappa^+)} \mathscr{B}_{\alpha} \cup \{Z \backslash W_{\alpha} : \alpha < \kappa^+\}$$

is a network for Z, so Z has weight κ^+ , as desired.

This proof generalizes to give the following result:

If $\kappa^+ < \nu$, $cof \nu \neq \kappa^+$, $(\kappa^+, \nu) \in c_{Hr}A$, and $(\kappa, \nu) \notin c_{Hr}A$, then $(\kappa^+, \mu) \in c_{Hr}A$ for some $\mu < \nu$.

Problem. Is it necessary to assume that $cof \nu \neq \kappa^+$ in the foregoing result? Finally, a result on c_{Sr} :

Theorem 14. For every infinite cardinal κ , and every BA A, if $cA \geq \kappa^{++}$ and $(\kappa, \kappa^{++}) \in c_{Sr}A$, then $(\kappa^{+}, \kappa^{++}) \in c_{Sr}A$.

Proof. Suppose not. Let B be a subalgebra of size κ^{++} with cellularity κ .

(1) There is an $a \in A$ such that $B \upharpoonright a$, which by definition is $\{b \cdot a : b \in B\}$, has cellularity κ^{++} .

To see this, let X be pairwise disjoint of size κ^+ . Then $\langle B \cup X \rangle$ is of size κ^{++} and has cellularity greater than κ , so its cellularity is κ^{++} ; let Y be a pairwise disjoint subset of size κ^{++} . We may assume that each element $y \in Y$ has the form $y = b_y \cdot a_y$ with $b_y \in B$ and $a_y \in \langle X \rangle$. Since $|X| < \kappa^{++}$, we may in fact suppose that each a_y is equal to some element a, as desired in (1).

Choose such an a, and let $X \in [B]^{\kappa^{++}}$ be such that $\langle x \cdot a : x \in X \rangle$ is a system of nonzero pairwise disjoint elements. Let Y be a subset of X of size κ^{+} , and let

$$C = \langle \{x \cdot a : x \in Y\} \cup \{x \cdot -a : x \in X \backslash Y\} \rangle.$$

Now define $x \equiv y$ iff $x, y \in X \setminus Y$ and $x \cdot -a = y \cdot -a$. Then

(2) Every \equiv -class has size at most κ .

For, suppose that $|x| \equiv | > \kappa$. For any $y \in (x/\equiv) \setminus \{x\}$ we have

$$y \cdot -x = y \cdot -x \cdot a + y \cdot -x \cdot -a$$

= $y \cdot a \cdot -(x \cdot a) + x \cdot -x \cdot -a$
= $y \cdot a$.

This means that B has a pairwise disjoint subset of size greater than κ , contradiction. So (2) holds.

From (2) it follows that $|C| = \kappa^{++}$. Thus we must have $cC = \kappa^{++}$. Hence by the argument for (1), there is a $d \in \langle \{x \cdot a : x \in Y\} \rangle$ and a

$$Z \in [\langle \{x \cdot -a : x \in X \setminus Y\} \rangle]^{\kappa^{++}}$$

such that $\langle z \cdot d : z \in Z \rangle$ is a system of nonzero pairwise disjoint elements. We may assume that each $z \in Z$ has the form

$$x_{z,0} \cdot -a \cdot \ldots \cdot x_{z,m-1} \cdot -a$$
$$\cdot (-y_{z,0} + a) \cdot \ldots \cdot (-y_{z,n-1} + a),$$

where each $x_{z,i}$ and $y_{z,j}$ is in $X \setminus Y$, and m and n do not depend on z.

Now since $\langle \{x \cdot a : x \in Y\} \rangle$ is isomorphic to Finco κ^+ , there are two cases.

Case 1. $d = \sum_{x \in F} x \cdot a$ for some finite $F \subseteq Y$. Then we may assume that in fact $d = x \cdot a$ for some $x \in Y$. In this case we have m = 0, and then each $z \cdot d$ is just equal to d, contradiction.

Case 2. $d = -\sum_{x \in F} (x \cdot a)$ for some finite $F \subseteq Y$. Thus $d = -a + a \cdot -\sum_{x \in F} x$. If m = 0, then each $z \cdot d$ is $\geq a \cdot -\sum_{x \in F} x$, so these elements are not disjoint, contradiction. Thus m > 0. Hence $z \cdot d = z$ for each $z \in Z$. For each $z \in Z$ write $e_z = x_{z,0} \cdot \ldots \cdot x_{z,m-1}$ and $c_z = e_z \cdot -y_{z,0} \cdot \ldots \cdot -y_{z,n-1}$. Define $z \cong w$ iff $z, w \in Z$ and $e_z = e_w$. If $z \not\cong w$, then

$$c_z \cdot c_w = c_z \cdot c_w \cdot a + c_z \cdot c_w \cdot -a = z \cdot w = 0.$$

Since $c_z \in B$ for each $z \in Z$, it follows that there are at most κ \cong -classes. So, some \cong -class has κ^{++} members. Thus we may assume that all of the e_z 's are the same. Thus for any $z \in Z$ we have

$$z = x_0 \cdot \ldots \cdot x_{m-1} \cdot -y_{z,0} \cdot \ldots \cdot -y_{z,n-1} \cdot -a,$$

$$c_z = x_0 \cdot \ldots \cdot x_{m-1} \cdot -y_{z,0} \cdot \ldots \cdot -y_{z,n-1}.$$

Note that $c_z \cdot a = x_0 \cdot \ldots \cdot x_{m-1} \cdot a$. So if $z \neq w$, then

$$c_z \cdot -c_w = c_z \cdot -c_w \cdot a + c_z \cdot -c_w \cdot -a$$

= $c_z \cdot a \cdot -(c_w \cdot a) + c_z \cdot -a \cdot -(c_w \cdot -a)$
= $z \cdot -w = z$.

So if we fix $w \in Z$, then $\langle c_z \cdot -c_w : z \in Z \setminus \{w\} \rangle$ is a system of κ^{++} nonzero pairwise disjoint elements of B, a contradiction.

References

- [1] Jech, T., Set theory, Acad. Press, 1978, 621pp.
- [2] Juhász, I.; Shelah, S., On the cardinality and weight spectra of compact spaces, II, Preprint, 1997, (Paper 612 of Shelah).
- [3] Juhász, I.; Szentmiklossy, Z., Convergent free sequences in compact spaces, Proc. Amer. Math. Soc., 116 (1992), no. 4, 1153–1160.
- [4] Koppelberg, S., General theory of Boolean algebras, In Handbook of Boolean algebras, Edited by J. Donald Monk and Robert Bonnet, North-Holland, 1 1998, 312pp.
- [5] Kunen, K., Set theory, North-Holland, 1980, 313pp.
- [6] Monk, J. D., Cardinal invariants on Boolean algebras, Birkhäuser Verlag, 1996, ix+298pp.

Department of Mathematics, University of Colorado, Boulder

E-mail address: monkd@euclid.Colorado.EDU

Department of Mathematics, University of South Carolina, Columbus