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Abstract 

The ideal space Id(A) of a Banach algebra A can 
be studied as a bitopological space (Id(A), lv., In), 
where IU is the weakest topology for which all 
the norm functions I ---+ Iia + III (a E A, I E 
I d( A)) are upper semi-continuous, and In is the 
de Groot dual of IU. A survey is given of re­
cent work in this area. When A is separable, 
Tn V IU is either a compact, metrizable topology, 
or it is neither Hausdorff nor first countable. It is 
shown that the Banach algebra consisting of sep­
arable Hilbert space with the zero multiplication 
exhibits the latter behaviour. 

A basic idea of ring theory is to decompose an interesting ring 
into simpler quotient rings, and then to lift information about 
the quotient rings back to the original ring by reassembling 
the pieces, somehow. In its simplest form, this approach leads 
to sub-direct product decompositions. Given a ring R and a 
family X of two-sided ideals of R, there is a homomorphism 
p : R ---+ ITIEX R/I given by p(r) (I) = r + I (r E R, I EX), 
and p is injective precisely when nIEX I = {Ole The problem 
of reassembling the pieces amounts to identifying those cross-
sections in ITIEX R/I which lie in p(R). 

One possible way of identifying the image of R is to equip X 
with a topology, and hope that the cross-sections coming from 
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elements of R are those which behave nicely with respect to 
the topology. The classic example here is the Gelfand theory 
for commutative Banach algebras. Let A be a unital, commu­
tative Banach algebra, and take X to be the set of maximal 
ideals of A. Then AII C for each I EX, by the Gelfand­rv 

Mazur theorem, so for a E A, p(a) is a complex-valued function 
on X. The weak topology on X induced by these functions is 
called the Gelfand topology, and is compact and Hausdorff. 
Thus p is a homomorphism (the Gelfand transform) from A 
into the algebra C(X) of continuous, complex functions on the 
compact, Hausdorff space X, and if p is injective A is said to 
be semisimple. Even when A is semisimple p is not surjec­
tive, in general, nor is the norm on A usually equivalent to the 
supremum norm on C(X), but in spite of these drawbacks 
the Gelfand transform is an indispensable tool in studying 
commutative Banach algebras. Furthermore, if A is a unital, 
commutative C*-algebra, p is a norm-preserving isomorphism 
onto C(X), so the Gelfand transform works perfectly. 

The success of the Gelfand theory for commutative C* 
algebras and Banach algebras leads, inevitably, to a search 
for a similar bundle representation in the non-commutative 
situation, and the two main questions that arise are, 

(i) What set of ideals should be taken as the base-space X? 

(ii) What topology should be used on the base-space? 

In order to discuss these questions we shall introduce some 
notation. Let A be a Banach algebra, and let I d(A) be the 
lattice of closed ideals of A (all ideals will be closed and two­
sided). For a E A and I E Id(A) , let lIa + III denote the 
quotient norm of the element a + I in the quotient Banach 
algebra All. The functions Id(A) ~ R : I ~ Iia + III 
(I E I d(A), a E A), are called norm functions. For non­
commutative Banach algebras one can no longer expect the 
fibres AII to be isomorphic to the complex numbers, or each 
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other, so the simplest way to introduce topologies on the base­
space is to use the norm functions. Thus let Il, IS, and IU be 
weakest topologies on I d(A) such that all the norm functions 
are respectively lower semicontinuous, continuous, and upper 
semicontinuous. 

Going back to the questions now, it turns out that neither 
of them has a unique answer for non-commutative C*-algebras. 
One cannot guarantee that any single bundle representation 
will have all the properties that one would wish. Thus the 
nicest topology of the three for bundle representations is ob­
viously IS, because it is Hausdorff, and gives continuity of the 
norm functions, but it has the drawback that the natural base­
space for IS is the set of minimal primal ideals of A, which is 
not always Is-compact [1; 4.8]. On the other hand, the natural 
base-space for Il is the set of .primitive ideals of A, which is 
always Il-compact, if A is unital, but not always Hausdorff, 
and one loses the upper semicontinuity of the norm functions, 
in general. A third possibility for the base-space is the set of 
Glimm ideals of A, on which the natural topology is Tu [6]. 
This time the base-space is Tu-compact and Hausdorff, if A is 
unital, but the lower semicontinuity of the norm functions is 
usually lost, and also the connection with the primitive ide­
als of A. These are the three base-spaces that have been 
most commonly used, and in practice one has to work with 
whichever seems most appropriate, see e.g. [8], [11], [2], and 
other 
references in [2]. In the best circumstances, however, some 
of the base-spaces coincide. If all three coincide the C*-algebra 
is said to be central, while if the spaces of Glimm and mini­
mal primal ideals coincide the C*-algebra is said to be quasi­
standard [2]. The class of quasi-standard C*-algebras is the 
largest class of C*-algebras for which a really satisfactory 
bundle representation can be found. 

Before turning to consider Banach algebras, it will be help­
ful to look at the three topologies for C*-algebras a little more 
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closely. The lattice I d(A) of closed ideals of a C*-algebra A 
is a continuous lattice [10; 1.1.20], and thus carries the three 
standard lattice topologies, lower, Lawson, and Scott, and 
these turn out to be precisely Tl, Ts , and r u [13]. Furthermore, 
it follows from the general theory of continuous lattices that Ts 

is compact and Hausdorff on Id(A), and that (Id(A) ,Tu,TZ) is 
joincompact, where a bitopological space (X, r, a) is 
joincompact [18] if it satisfies the conditions: 

(i) the topology T V a is compact and To, 

(ii) for any x, y E X, x is in the T-closure of y if and only if y 
is in the a-closure of x, 

(iii) for any	 x, y E X, if x is not in the T-closure of y, then 
there exist disjoint sets T E T and SEa such that x E T 
and yES (this condition is called pseudo-Hausdorffness). 

Conditions (ii) and (iii) imply that T V a is Hausdorff. Con­
dition (ii) is the requirement that the specialization order of 
(X, a) should be the reverse of the specialization order of (X, T), 
where the specialization order ~ on a topological space (X, T) 
is given by x < y if x is in the r-closure of y, (x, y EX). 

The importance of joincompact spaces is two-fold. On the 
one hand there is the natural duality principle: if (X, T, a) is 
joincompact, then clearly (X, a, T) is also joincompact. On 
the other hand there is a rigidity about joincompact spaces: 
if (X, T, a) is joincompact, then (J is necessarily the de Groot 
dual T dG of T [18; 5.3], where given a topological space (X, T) 

the de Groot dual r dG of r is defined to be the topology on 
X generated by taking the r-compact, upper subsets (in the 
specialization order) of X as a sub-base for the closed sets of 
r dG . 

Let us return now to consider non-commutative Banach al­
gebras. Algebraically these can be much more complicated 
than C*-algebras, and it is correspondingly more difficult to 
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find an appropriate base-space. For semisimple Banach alge­
bras one can still use the spaces of primitive or Glimm ideals, 
but these have the same disadvantages as before. So far no 
satisfactory analogue has been found for the space of minimal 
primal ideals. One of the aims of this work was to identify the 
classes of Banach algebras which correspond, from the point 
of view of bundle representations, to the central C*-algebras 
and quasi-standard C*-algebras mentioned above. For the for­
mer we propose in [20] the class of 'strongly central' Banach 
algebras (the name 'central' already being in use), but it is not 
yet clear what definition should be taken for 'quasi-standard' 
Banach algebras. The second question about topologies on 
base-spaces seems to be easier to answer, and from now on we 
shall restrict our attention to that. 

Experience with C*-algebras suggests that useful topologies 
for bundle representations are likely to arise from a joincom­
pact structure, or something akin to it. We begin by noticing 
that the lattice structure of I d(A) is probably not going to 
be useful for defining topologies, in general. For instance, the 
lattice of closed ideals of a Banach algebra A is not always 
a continuous lattice, see Example 5, and even if I d(A) is a 
continuous lattice, the lattice topologies might bear little rela­
tion to the norm functions, see Example 6. Thus for a general 
Banach algebra the best that one could hope for would be a 
joincompact structure on I d(A), involving the norm functions, 
and respecting the natural order on Id(A), but perhaps not 
otherwise involving the lattice structure. 

The first instinct in this direction is to wonder whether 
(1d(A), IU' Tl) is always joincompact, but as Ferdinand Beck­
hoff has pointed out [3], this is not the case: the topology 
IS = IU V Il is always Hausdorff, but is not compact in general. 
There is a further problem, which is that IS might not be in­
variant under changing to an equivalent algebra norm on A, 
and since this is regarded as a minor operation in Banach alge­
bra theory, it should not be allowed to affect the topology on 
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the base-space of a bundle representation. The difficulty turns 
out to be with Tl rather than with Tu which is unaffected by a 
change to an equivalent norm. Beckhoff [3], [4] has suggested 
that instead of asking for lower semicontinuity, one should ask 
for normality of the norm functions: if (10 ;) is a net of ideals 
converging to an ideal I in some topology, one requires that 
if a ¢ I then lim inf II a + 10: II > o. This property is invariant 
under changing to an equivalent norm. 

Let us say that a topology T has the normality property if ev­
ery T-convergent net has the normality property with respect 
to each of its limits. We would like to consider the weakest 
topology having the normality property, but there might not 
be any such topology. Instead we define a topology Tn as fol­
lows: a set C ~ 1d(A) is Tn-closed if and only if whenever it 
contains a net having the normality property with respect to 
an ideal 1 then 1 E C. Any topology having the normality 
property is stronger than Tn, but it is not clear whether Tn 

has the normality property. Nevertheless, from the point of 
view of norm functions, Tn would seem to be the appropriate 
replacement for TZ in general Banach algebras. 

Another possible approach suggests itself, however, which 
is to take Tu as the basic topology, since it is invariant under 
changing to an equivalent norm. One is then led to consider 
riG, since, by Kopperman's theorem [18; 5.3], if there is a 
topology a such that (1d(A), Tu , a) is joincompact, then a nec­
essarily is r':G. Happily, these two approaches turn out to give 
the same result. 

Proposition 1. [20; 2.5] Let A be a Banach algebra. Then 
dG'r - 'r

'n - 'u · 

Thus if one hopes for a joincompact structure on 1d(A), with 
topologies coming from the norm functions, then (1d(A), Tu , Tn) 

is the natural candidate. Furthermore, it automatically sat­
isfies conditions (i) and (ii) of joincompactness, so the only 
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question concerns the pseudo-Hausdorffness. Let Tr = Tu V Tn. 

Then Tr is compact and T1 , and we would like to know if it 
is Hausdorff. In fact, a dichotomy emerges: either Tr is Haus­
dorff and both Tr and Tn have the normality property, or else 
all these desirable conditions fail. 

Theorem 2. [20; 2.12] Let A be a Banach algebra. The 
following are equivalent: 

(i) (Id(A) , Tn, Tu ) is a joincompact space, 
(ii) Tr is Hausdorff, 
(iii) Tr has the normality property, 
(iv) Tn has the normality property. 

For separable Banach algebras the dichotomy is even sharper: 
if Tr is Hausdorff then it is metrizable-otherwise it is not even 
first countable. 

Theorem 3. [20; 2.13] (based on [4; Theorem 6]) Let A be a 
separable Banach algebra. Then the following are equivalent: 

(i) Tr is Hausdorff, 
(ii) Tr is first countable, 
(iii) Tr is second countable, 
(iv) Tn is first countable, 
(v) Tn is second countable. 

We shall give examples of both possibilities in a moment. But 
first we note that, irrespective of the dichotomy, we can answer 
the question about the correct topology for the base-space of a 
bundle representation. If a Banach algebra does have a repre­
sentation as a bundle of Banach algebras, with good behaviour 
of the norm functions, then the topology on the base-space is 
necessarily T r • Furthermore, if the base-space is a 'horizontal 
slice' through I d(A) then T r , Tu , and Tn all coincide on it. 

Theorem 4. [20; 2.11, 4.7] Let A be a Banach algebra. 
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Suppose that 7 is a compact topology on a subset X c I d(A), 
such that 7-convergent nets have the normality property, and 
such that 7 2 Tulx. Then 7 is Hausdorff and T = Trlx. If, 
furthermore, I ~ J =::::::} I = J for I, J E X then 
7 r lx = 7 u lx = 7 n lx. 

For example, if A is a unital, commutative Banach algebra 
then 7r , Tu , and Tn all coincide, on the set of maximal ideals of 
A, with the Gelfand topology. If A is a C*-algebra then Tr is 
equal to 7s on I d(A) (and 7n of course is equal to 71). 

Let us now give some examples to illustrate Theorems 2 and 3. 
The class of Banach algebras for which Tr is Hausdorff on I d(A) 
includes C*-algebras, TAF-algebras, commutative Banach al­
gebras with spectral synthesis, various radical Banach algebras, 
and the Banach algebra C1[0, 1] of continuously differentiable 
complex functions on [0,1], see [20], [21], [7]. It follows from 
work of Beckhoff [4; Prop. 7] that finite-dimensional Banach 
algebras also belong to this class. On the other hand if A is a 
uniform algebra then 7 r is Hausdorff on I d(A) if and only if A 
has spectral synthesis [7]. 

Example 5. Let A be the disc algebra, that is, the algebra 
of continuous functions on the unit disc which are analytic in 
the interior of the disc, equipped with the supremum norm. 
Then A is a uniform algebra without spectral synthesis, so Tr 

is not Hausdorff on Id(A). The ideal structure of A was com­
pletely determined by Beurling and Rudin, see [14], and it was 
shown by Lamoureux [19; 2.4] that there are elements of I d(A) 
which are not an intersection of meet-irreducible ideals. This 
is impossible in a continuous lattice [10; 3.10], so I d(A) is not 
continuous. 

There are comparatively few Banach algebras for which a com­
plete description of the closed ideals is known, but of course 
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one does not need to know all the closed ideals, but only some 
suitable subset, in order to obtain a useful bundle representa­
tion. 

One trivial way of manufacturing Banach algebras is to take 
an arbitrary Banach space B and define the product of any two 
elements of B is to be o. Then B becomes a Banach algebra 
whose closed two-sided ideals are precisely the closed subspaces 
of B. Thus the dichotomy of Theorems 2 and 3 applies to the 
lattice of closed subspaces of a Banach space. We give an ex­
ample to illustrate each side of the dichotomy. 

Example 6. Let A = C2 with zero multiplication. Then A 
is finite-dimensional, so 7 r is Hausdorff on Id(A), as we men­
tioned above. Clearly Id(A) consists of {O}, A itself, and all 
the one-dimensional subspaces of A, which can be parametrized 
by the Riemann sphere 8 2. The restriction of 7r to the sphere 
is just the usual Euclidean topology, while A and {O} are 7 r ­

isolated points. 
It is curious to note that I d(A) is a continuous lattice, but 

its Lawson topology is quite different from 7r • Every point of 
1d(A) is Lawson-isolated, except for {O}, so (1d(A), Lawson) 
is the one-point compactification of an uncountable discrete 
space. 

One of the questions left open in [20] was whether 7 r is Haus­
dorff on I d(H), when H is an infinite-dimensional Hilbert space 
with the zero multiplication. Here we are able to answer this 
question. 

Let (.,.) denote the inner product on H, and let B(H) be 
the algebra of bounded linear operators on H. Recall that the 
strong operator topology (SOT) is the weakest topology on 
B(H) for which all the maps T ~ IITxll (x E H, T E B(H)) 
are continuous, while the weak operator topology (WOT) is the 
weakest topology on B(H) for which all the maps T ~ (Tx, y) 
(x,y E H, T E B(H)) are continuous. Since I(Tx,Y)1 :s; 
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IITxllllyl1, SOT is indeed stronger than WOT. A projection 
P in B(H) is a self-adjoint operator such that p2 = P. The 
strong and weak operator topology coincide on the set of pro­
jections, giving a topology which is Hausdorff but not compact 
[12; Q.115]. An operator T E B(H) is positive if (Tx, x) 2:: 0 
for all x E H. 

Example 7. Let H be an infinite-dimensional Hilbert space, 
with the zero muliplication. Then (Id(H), Tr ) is not Hausdorff. 

Proof. The closed ideals of H are precisely the closed sub­
spaces of H, as we observed above, and we can identify these 
with the projections in B(H), as follows. Each closed sub­
space K is identified with the projection PK onto its orthogonal 
complement K 1.. Thus K = ker PK , and the norm functions 
K ~ Ilx + KII are the maps PK t-+ IIPKxll, x E H. With this 
identification, the Tr-topology gives a compact topology on the 
set of projections of B(H). 

Next we note that the topology Tr is weaker than the relative 
strong operator topology on the set of projections. To see this, 
suppose that (PaJ is an SOT-convergent net of projections with 
limit F, where P is a projection. Then IIPaxl1 --+ IIPxl1 for all 
x E H, so (Pa ) has the normality property with respect to P, 
and Pa --+ P (Tu ). Thus Pa --+ P (Tr ), as required. 

Since H is infinite-dimensional, the closure of the set of pro­
jections of B (H) in the weak operator topology is the set of 
positive operators T E B(H) such that IITII :::; 1 [12; Q.225]. 
In particular each operator of the form mI, where I is the 
identity operator on H, and mER with 0 ~ m ~ 1, is 
in the WOT-closure of the set of projections. Let mER 
with 0 < m ~ 1, and let (Fa) be a net of projections con­
verging (WOT) to mI. Then any subnet of (Pa ) has, by T r ­

compactness, a Tr-convergent subnet (P{3) with limit P, say, 
where P is a projection. Let x E ker P. Then lIP{3xlI --+ 0, 
by Tu-convergence of (P{3) to P, so (P{3x, x) ~IIP{3xllllxll --+ o. 
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But since (P{3) converges (WOT) to mI, (P{3X, x) ~ m(x, x). 
Hence m(x, x) = 0, so x = o. Thus ker P = {O}, so P = I. It 
follows that the original net (PoJ converges to I (Tr). 

Now for each n E N, choose a net (Pa(n»)a(n) converging 
(WOT) to (l/n)I, and hence converging (Tr ) to I, by the 
previous paragraph. Then limn lima:(n) Pa(n) = I in Tr , while 
limn lima:(n) Pa(n) = limn (l/n)I = 0 in WOT. Thus by [15; §2, 
Theorem 4] there exists a net (P,) of projections converging 
to I (Tr ) and to 0 (WOT). But SOT and WOT agree on the 
set of projections, as we mentioned above, and 0 is a projec­
tion, so P, ~ 0 (SOT). Since (SOT) is stronger than Tr on the 
set of projections, it follows that P, ~ 0 (Tr ). Thus Tr is not 
Hausdorff on Id(H). D 

Note that, with (P,) as above, the net (ker P,) converges (Tu ) 

to everything in Id(H), since it converges (Tu ) to H = ker O. 
On the other hand (ker P,) converges (Tn) to everything in 
Id(H), since it converges (Tn) to {O} = ker I. Thus (ker P,) 
converges (Tr ) to the whole of Id(H). 

Let us conclude by mentioning some other work on ideal spaces 
of Banach algebras. In [3] Beckhoff introduced the topology Too 

on Id(A), which is compact, invariant under a change to an 
equivalent norm, and stronger than Tn. It is closely related to 
the property of spectral synthesis [5], [21]. Since it is less often 
Hausdorff than Tr [20], it is less suitable than Tr as a topology 
on the base-space for bundle representations. Nevertheless, it 
seems to be an important topology. 

In [9] Fell studied a topology on the set of equivalence classes 
of finite-dimensional, irreducible representations of a Banach 
algebra A. This induces a topology, which we call TF, on the 
set X k of primitive ideals of A whose codimension is bounded 
by k2 (k EN). Fell's work shows that TF is evidently the 'right' 
topology to use on X k . For instance it is locally compact, and 
has the normality property and the Baire property. It was 
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shown in [20; 5.7] that if A is separable and unital then TF and 
Tn coincide on X k . 

Finally we should mention the work of Kitchen and Robbins 
on Banach bundle representations of Banach algebras, see e.g. 
[16], [17], but this is not closely related to the present work. 
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