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CLOS~D IDEALS IN C(X) AND 4>-ALGEBRAS 
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Abstract 

Given a topological space X, the ring C(X) of 
continuous real-valued. functions on X is endowed 
with the uniform metric. The closed ideals of 
C(X) in this metric are of interest, and a new, 
purely algebraic characterization of these ideals 
is provided. The result is applied to describe the 
real maximal ideals of C(X), and to characterize 
several types of topological spaces. A 4>-algebra 
is an archimedian lattice-ordered algebra closely 
related to C(X). z-ideals in 4>-algebras are ex­
amined, and as an application to this study, sev­
eral conditions equivalent to regularity in a 4>­
algebra are obtained. A uniform metric may also 
be placed upon a (P-algebra, and we give neces­
sary and sufficient conditions to ensure that an 
ideal of a 4>-algebra is closed. Moreover, for two 
broad classes of 4>-algebras we show that these 
conditions are equivalent, thus generalizing our 
characterization from the C(X) case. 

1. Closed Ideals in C(X) 

Beginning with a (Tychonoff) space X, the uniform metric p 
on C(X) is defined by 

p(!, g) = sup{I!(x) - g(x)l/\ 1 : x EX}, (!,g E C(X)). 

In the sequel, all topological properties of C(X) will be with 
respect to the uniform topology. As in [GJ], the convention 
that all ideals are proper will be followed. 
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If K is a compact space then the uniform topology on C(K) 
coincides with the supremum norm topology on C(K), in which 
case the closed ideals of C(K) are precisely the intersections 
of maximal ideals of C(K), [GJ, 40]. In the case of an arbi­
trary space X, a characterization of the closed ideals of C(X) 
was obtained by Nanzetta and Plank in [NP], however their 
description, (unlike the one quoted above for closed ideals of 
C(K), where K is compact), is highly non-algebraic in nature. 
In this section, we present a new, purely algebraic character­
ization of the closed ideals of C(X) and apply the result to 
describe the real maximal ideals of C(X) and to character­
ize pseudocompact spaces. Where there is overlap with [NP], 
the proofs given are independent of, and perhaps simpler than 
those found in that paper. 

The principal tool to be used is the concept of strongly di­
visible ideals, which was introduced in [AI], and used there to 
characterize Lindelof spaces. 

Definition 1.1. An ideal I of a commutative ring R is called 
strongly divisible if for every countable subset {an : n E N} of 
I there is an a E I and a subset {bn : n E N} of R such that 
for each n E N, abn = an. 

One immediately observes that any principal ideal is strongly 
divisible, and any countably generated strongly divisible ideal 
is principal. The first part of the following theorem is by F. 
Azarpanah and is found in [AI]. Its proof is not long and so 
for the sake of completeness we choose to include it. 

Theorem 1.2. Let X be a Tychonoff space. 
1. [Azarpanah] If I is a z-ideal ofC(X) such that Z[I] is closed 
under countable intersection, then I is strongly divisible. 
2. If I is strongly divisible, then Z[I] is closed under countable 
intersection. 

Proof. 1. Let (fn) C I. Because C(X) is closed under uniform 
convergence, g = L:~=12-nf~/3(1 + f~/3)-1 belongs to C(X), 
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and it is clear that Z(g) = n~=lZ(fn). Z[1] is closed under 
countable intersection, and therefore Z(g) E Z[I]; it follows 

f~/3that 9 belongs to the z-ideal I. But for each n, 9 :2: 2-n~, 

and therefore Ifni:::; 12n (1 + f~/3)gI3/2. By [GJ, ID], each In 
is a multiple of 2n(I + 1~/3)g, hence each In is a multiple of g. 
Therefore I is strongly divisible. 

2. Let (fn) C I, so that {Z(fn) : n E N} is an arbitrary sub­
set of 2[1]. 1 is strongly divisible, so take 9 E I such that for 
each n, 9 divides fn. It is clear then that Z(g) C n~=l Z(fn). 
But 2[1] is a z-filter containing 2(g), so n~=l Z(!n) E Z[1]. D 

Corollary 1.3. 1. A maximal ideal ojC(X) is real if and only 
if it is strongly divisible. . 
2.A space X is pseudocompact if and only if every maximal 
ideal of C(X) is strongly divisible. 

Proof. A maximal ideal M of C(X) is real if and only if Z[M] 
is closed under countable intersection, [GJ, 5.14], if and only 
if M is strongly divisible (by the above theorem). 2. X is 
pseudocompact if and only if vX = (3X if and only if every 
maximal ideal is real. 0 

If A is a subset of C(X) then A will denote its (uniform) 
closure in C(X). 

Theorem 1.4. The following are equivalent for an ideal I of 
C(X). 
1. I is closed (in the uniform topology on C(X)). 
2. I is a strongly divisible z-ideal. 

Proof 1. =* 2. Let I be a closed ideal of C(X). Suppose 
I E C(X) and 9 E I are such that Z(f) = Z(g). For every 
positive integer n, let hn = [(f - lin) V 0] + [(f + lin) /\ 0)]. 
Then for each n, Z(hn ) = f~[-l/n, lin], so Z(g) = Z(f) C 
intZ(hn ). By [GJ, 1D], each hn is a multiple of g, hence each 
hn E I. But If - hnl ::; 21n --+ 0 as n --+ 00, so hn converges to 
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I uniformly (i.e. hn converges to I in the uniform topology). 
Since I is closed it follows that f E I, proving that I is a 
z-ideal. It remains to prove that I is strongly divisible. 

Let (In) be a countable subset of I. By (1.2) , to prove 
strong divisibility it suffices to show that n::1 Z(ln) E Z[I]. 
Because C(X) is closed under uniform convergence, 
9 = Lr' Ifni /\ 2-n belongs to C(X). If for each n E N, gn = 

Lk=l Ifkl/\2-k, then it is clear that the sequence (gn) converges 
to 9 uniformly. But for each n, Z(gn) = nk=l Z(lk) E Z[I], 
and I is a z-ideal, so each gn E I. I is closed, so 9 E I and 
therefore n~=l Z(fn) = Z(g) E Z[I]. 

2. :::} 1. Let I denote the closure of I in C(X) and let 
I E I. Then for every positive integer n, take fn E I such 
that If - inl ::; lin. If x E n~=l Z(!n), then for each n, 
If(x)1 = I!(x) - !n(x) I ~ lin and therefore x E Z(f). Hence 
n~=l Z(fn) c Z(f)· By (1.2), n~=l Z(fn) E Z[I] and thus 
Z(f) E Z[I]. But I is a z-ideal, so ! E I. Thus I = I and I is 
closed. 0 

Recall that [GJ, 4A] asserts that the following algebraic con­
dition is necessary and sufficient for an ideal I in C(X) to be 
a z-ideal: 
Given! E C(X), if there exists gEl such that f belongs to 
every maximal ideal containing g, then f E I. 
Thus, as claimed, 1.4 is algebraic in character. 

The following extends Corollary 4.3 of [NP]. 

Corollary 1.5. The following are equivalent for an ideal I of 
C(X). 
1. I is real. 
2. I is a closed maximal ideal of C(X). 
3. I is a maximal closed ideal of C(X). 
4. I is a maximal strongly divisible ideal of C(X). 
5. I is a strongly divisible maximal ideal of C(X). 

Proof The equivalence of 1., 2., and 5. is clear from (1.3) and 
(1.4); that 2. implies 3. is obvious. 
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3. =} 4. If I c J, where J is strongly divisible, then Z+-[Z[J]] 
is a strongly divisible z-ideal (by 1.2), hence closed by (1.4), 
with I c J c Z+-[Z[J]]. By 3. I = Z+-[Z[J]], hence I = J. 
Therefore I is a maximal strongly divisible ideal of C(X). 
4. =? 3. Were I c J, with J closed then J is strongly divisible 
by (1.4), hence I = J by 4. 
3. => 5. Supposing I is not maximal, take M a maximal ideal 
of C(X) with I properly contained in M. If f E M\I, then 
we claim that 

B = {Z(f) nZ (g) : gEl} 

is a base for a z-filter A on X that is closed under count­
able intersection. To see this, observe that A C Z[M], Z[M] 
a z-filter so 0 ¢. A. I is closed, therefore strongly divisible, 
hence by (1.2) Z[I] is closed under countable intersection; it 
follows that B is closed under countable intersection, whence 
A is closed under countable intersection. 
From (1.2) Z+-[A] is a strongly divisible z-ideal, hence a closed 
ideal of C(X) containing I. But f E Z+-[A] , f fJ. I, so this 
containment is proper, a contradiction to 3. 0 

That an ideal is merely strongly divisible does not alone 
guarantee that it is closed, that is, strongly divisible ideals 
need not be z-ideals. For example, if i denotes the identity 
funtion on R, then the principal, (hence strongly divisible) 
ideal (i) is not a z-ideal in C(R); see [GJ, 2.4]. The following 
is a slight extension of Theorem 2.1 of [NP). A shorter though 
less interesting proof of their final implication is given. 

Corollary 1.6. The following are equivalent: 
1. X is pseudocompact. 
2. The closure of any ideal in C(X) is an ideal. 
3. Every ideal in C(X) is contained in a strongly divisible 
ideal. 
4. Every ideal in C(X) is contained in a closed ideal. 
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Proof. 1. => 2. If X is pseudocompact, then the map 
C(j3X) -t C(X) : f -t fiX is an isometric isomorphism. 
Since (3X is compact, by [GJ,2M] closures of ideals of C((3X) 
are ideals. 2. follows. 

2. :::} 3. Clear from (1.4). 
3. => 4. Let I be a strongly divisible ideal of C(X). Then 

Z[I] is closed under countable intersection by (1.2). But J = 
Z~[Z[I]] is a z-ideal, with Z[J] = Z[I] closed under countable 
intersection. Hence J is a strongly divisible z-ideal, therefore 
closed, and I c J. Thus 4. follows from 3. 

4. => 1. By 4., every maximal ideal is closed, therefore real 
by (1.5). Hence vX = j3X and X is pseudocompact. 0 

We now attempt to determine which prime ideals of C(X) 
are closed in the uniform topology. 

Lemma 1.7. For all p E j3X, OP = Mp. 

Proof. It is enough to show that MP c OP, so let f E MP and 
let e > o. Let 9 = [(f - c) V 0] + [(f + c) 1\ 0]. Then Z(g) = 
f~[-e,e]. Now by [GJ,7D] f*(p) = 0, where f* : j3X -t R* 
is the (unique) continuous function from j3X into R*, (the 
one point compactification of R), such that f* IX = f. By 
[GJ, 7.12], Z(g) E Z[OP] and therefore, since OP is a z-ideal, 
9 E OPe But If - gl < c, hence f E OPe 0 

[GJ, 7.15] asserts that for every prime ideal P of C(X), there 
is a unique p E (3X such that OP c P c MP. It follows from 
the lemma that no non-maximal prime ideal of C(X) is closed. 
However, as noted earlier, the closed maximal ideals of C(X) 
are precisely the real ideals of C(X), i.e. MP is closed if and 
only if p E vX. Hence we have 

Corollary 1.8. Let X be a Tychonoff space. 
1. lfp E j3X then OP = MP if and only ifp E vX. 
2. Let P be a prime ideal of C(X), MP the unique maximal 
ideal containing P. Then P is a (necessarily maximal) ideal if 
and only ifp E vX. 
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A space X is pseudocompact if and only if (3X = vX. Hence 
we get the following extension of (1.6): 
A (Tychonofj) space X is pseudocompact if and only if the clo­
sure of any prime ideal of C(X) is a (maximal) ideal. 

If p E vX and OP =I MP, then Op is a proper dense subset 
of MP that fails to be strongly divisible by (1.4). Thus even 
if the closure of an ideal is an ideal, it may fail to be strongly 
divisible. 

2.	 Spaces X For Which Every Countably Generated 
Ideal of C(X) is Principal 

As an application to the above, in this section it is shown that 
those spaces with the property of the preceding title are pre­
cisely the finite (Tychonoff) spaces. The result is perhaps sur­
prising given that F-spaces - spaces X for which every finitely 
generated ideal in C(X) is principal- may be non-discrete and 
of uncountably infinite cardinality, for example (3N\N, [GJ, 
14.27]. Our theorem hinges upon the following observation. 

Proposition 2.1. Let R be a commutative ring. Then every 
ideal in R is strongly divisible if and only if every countably 
generated ideal of R is principal. 

Proof That strongly divisible, countably generated ideals are 
principal is obvious. For the converse let I be an ideal of R 
and let {an} be any countable subset of I. Then J = (an: n = 
1,2, ... ) the ideal generated by {an} is principal, say J = (a), 
where a E R. But a divides each an, and since J c I, a E I. 
Hence I is strongly divisible. D 

A result of De Marco's, [D], states that if X is compact, then 
the ideal I = npes Op, where S is a zero-set of X, is countably 
generated. Recall that a topological space is a P-space if each 
of its zero-sets is open. 
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Theorem 2.2. Every countably generated ideal of C(X) is 
principal if and only if X is finite. 

Proof If every countably generated ideal of C(X) is principal, 
then by (2.1), every ideal of C(X) is strongly divisible, and 
consequently, X is pseudocompact (1.6). Suppose for now that 
X is compact and let S be a zero-set of X. By the lemma, 
the ideal I = npEs Op is countably generated and therefore 
principal by hypothesis, so take f E I such that (f) = I. 
Clearly then, Z(f) = S, but since f E I, it is also true that 
S C intZ(j). Hence S = Z(f) is open and therefore X is a P­
space. But compact P-spaces are finite [GJ, 4K], so X is finite. 
If X is assumed only to be pseudocompact, then C(X) is ring 
isomorphic to C((3X) , so every countably generated ideal of 
C((3X) is principal, and by the above argument {jX is finite, 
whence X is finite. 

Conversely suppose X is finite, and let I = (fn : n = 
1,2, ... ) be the countably generated, (proper, non-trivial) ideal 
of C(X) generated by {In: n = 1,2, ...}. By the blanket as­
sumption that all spaces are Tychonoff, X is discrete (and 
compact). Therefore the zero-set S = nZ[I] = nn Z(fn) is a 
non-empty proper subset of X, and so the characteristic func­
tion, call it f, on X\S is a non-unit in C(X). Now Z(f) = S, 
so for each n, Z(f) c Z(fn), and clearly I In = In' hence 
(f) :J I. On the other hand, it is easy to see that for some n, 
nk=l Z(fk) = S. Define 9 to be If + ... + I~; then gEl, and 
Z(g) = Z(f). By the discreteness of X, [GJ, 1D] implies that 
f is a multiple of g. It follows that (I) = I. 0 

Corollary 2.3. Every ideal of C(X) is closed if and only ifX 
is finite. 

Proof. Closed ideals are strongly divisible, which together with 
(2.1) and (2.5), provides necessity. If X is finite, then by the 
above every countably generated ideal of C(X) is principal, 
hence every ideal of C(X) is strongly divisible. As a disrete 
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space, X is also a P-space, therefore every ideal of C(X) is 
also a z-ideal, [GJ, 4J]. Thus every ideal of C(X) is closed, by 
(1.4). 0 

3. Weakly Lindelof Spaces 

In F. Azarpanah's paper [AI], the notion of strongly divisible 
ideals is used to characterize (Tychonoff) Lindelof spaces as 
those spaces X such that every strongly divisible ideal of C(X) 
is fixed. Here we give a similar characterization for weakly 
Lindelof spaces. 

Recall that a space X is weakly LindelOJif every open cover 
of X contains a countable subfamily whose union is dense in 
X, [PW]. A collection C of subsets of a space X will be said to 
have the strong countable intersection property (SCIP) if the 
intersection of any countable subfamily of C has non-empty 
interior. A subset of a topological space is regular closed if it 
is the closure of an open set. 

Theorem 3.1. The following are equivalent for a topological 
space X 
(1) X is weakly LindelOf 
(2) If C is a family of closed subsets of X with SCIP then 
nC#0. 
(3) If C is a family of regular closed subsets of X with SCIP 
then nC # 0. 
(4) If U is any family of open subsets of X with SelP then 
n{d(U) : U E U} # 0. 
(5) IfC is a family of basic closed subsets ofX with SCIP then 
nC#0. 

Proof We prove only the implication (4) =} (1). It is routine 
to verify that (1) =} (2) => (3) => (4), and that (2) {::} (5) is 
immediate. 

(4) =} (1) Supposing (1) is false let U = {Ua : a E A} be an 
open cover of X such that the union of no countable subfamily 
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of U is dense in X. Let V = {D c A : D is countable}. 
For each D E DIet VD = X\cl[UaED Ua]. Then each VD is 
open and by the hypothesis on U, each VD # 0. Let V = 
{VD : D E V}. Then V has SCIP. For if (Dn ) is a countable 
subfamily of V, then D = UDn E V and it is routine to verify 
that nn VDn :J YD. But VD is open, non-empty and therefore 
int(nn VDn ) # 0, hence V does indeed have SCIP. 

But 

ncl(V) : V E V	 = ncl(VD ) : D E V 

= n cl[X\cl( U Ua)] 
DE'D aED 

= n X\int[cl( U Ua )] C n (X\ UUa ) 
DE'D aED DE'D aED 

= X\( U U Ua ) 
DE1)aED 

= X\ U Ua = X\X = 0, 
aEA 

since U covers X. Therefore (4) is false.	 o 

Definition 3.2. A strongly divisible ideal I of a commutative 
ring R comprised entirely of divisors of zero will be called neigh­
borhood strongly divisible, or simply nsd. 

Recall that a member f of C(X) is a divisor of zero if and 
only if Z(f) has non-empty interior. Thus an ideal I of C(X) 
is nsd if given any countable subfamily (in) of I there is agE I 
and (hn) C C(X) such that for each n, in = ghn, and Z(g) 
has non-empty interior. The proof of the following lemma is 
similar to that of (1.2). 

Lemma 3.3. Let X be Tychonofj, I a z-ideal of C(X). Then 
I is nsd if and only if Z[I] has SCIP and is closed under count­
able intersection. 

Theorem 3.4. If X is a (Tychonoff) space, then X is weakly 
LindelOf if and only if every nsd ideal of C(X) is fixed. 
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Proof Suppose X is weakly Lindelof, I a nsd ideal of C(X). 
Then, given any countable subset (in) of I there is agE I and 
(hn) C C(X) such that for each n, in = ghn, and intZ(g) =I 0. 
Therefore, intZ(g) C Z(g) c nn Z(in), hence int[nn Z(in)) # 
0. Therefore Z[I] has SeIP, so by (3.1), nZ[I] =I 0, that is I 
is fixed. 

Conversely let A be a collection of zero-sets (basic closed in 
Tychonoff X), of X with SCIP. Let B be the collection of all 
countable intersections of members of A. Then B is a base for 
a z-filter F on X which has SCIP and is closed under countable 
intersection. Therefore Z~[F] is a z-ideal and Z[Z~[F]] = F 
has SeIP, and is closed under countable intersection. By the 
lemma, Z~[F] is nsd. Hence, by 2., Z~[F] is fixed, so nF =I 0. 
But A c F so nA =I 0, and X is weakly Lindelof. 0 

As observed by Professor Henriksen, a corollary to the above 
is the following theorem which is part of [RW, 5.11]. 

Corollary 3.5. Weakly LindelOf almost P-spaces are LindelOf. 

Proof Zero-sets of almost P-spaces have non-empty interior 
by definition. The result follows immediately from the above 
and the Azarpanah characterization of Lindelof spaces, which 
was quoted at the beginning of this section. 0 

4. <I>-algebra Preliminaries 

A 4>-algebra is an archimedian lattice-ordered algebra over the 
field R of real numbers in which 1 is a weak-order unit. In this 
section we describe some of the basic results on q>-algebras to 
be used in this paper. Details of this brief survey, as well as 
any undefined concepts and notation, may be found without 
exception in the paper [HJ), by M. Henriksen and D. Johnson. 
An essentially complete history of the subject may be found in 
[H2). 
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Let ,R = Ru {±oo} denote the two-point compactification 
of the real field R. For a compact space X, let D(X) denote 
the set of all continuous functions f : X ~ ,R for which 

R(f) = {x EX: f(x) E R} 

is a dense (necessarily open) subset of X. The elements of 
D(X) are called extended (real-valued) junctions. Beginning 
with functions f, 9 E D(X), and A E R, the functions AI, 
1/\ g, and 1V 9 defined pointwise are clearly also in D(X). If 
there are functions h, k E D(X) satisfying 

hex) = f(x) + g(x), k(x) = f(x)g(x) 

for all x E R(f) nR(g), then hand k are called the sum and 
product of f and g, and we write h = f +g, k = fg. Note that 
since R(f) n n(g) is dense in X these operations are uniquely 
defined. 

An ideal I of a <P-algebra A is called an l-ideal, or an ab­
solutely convex ideal, if x E I and Iyl :::; lxi, implies y E I. 
The collection of all maximall-ideals of A, denoted M(A), is 
endowed with the hull-kernel topology and will be referred to 
as the maximal l-ideal space of A. 

Theorem 4.1. [HJ, 5.3] (Henriksen-Johnson Represen­
tation Theorem) Every {f)-algebra A is isomorphic to a sub­
(f)-algebra A ofD(M(A)). Moreover, ifS, T are disjoint closed 
subsets of M(A), then there is an a E A such that a[S] = 0, 
a[T] = 1, and 0 :::; a :::; 1. 

Henceforth, wherever it is convenient to do so, a (f)-algebra 
A will be identified with its isomorphic copy, the algebra A c 
D(M(A)) of extended functions. 

We presently outline some of the theory derived in [HJ] from 
the representation theorem. The first result is theorem 2.5 of 
[HJ]. 
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Theorem 4.2. A subset M of a (I)-algebra A is a maximall­
ideal of A if and only if there is a unique x E M(A) such 
that 

M = Mx = {a E A : (ab)(x) = 0 far all b E A}. 

In light of the above, an element of the maximal I-ideal space 
M (A) will be written as 'M', or 'Mx ' if we wish to view it as a 
maximall-ideal, and simply 'x' if we wish to view it as a point 
of the topological space M (A) . 

If M is a maximal l-ideal of A, then the totally ordered 
algebra AIM contains the real field R as a subfield via the 
embedding map R ~ AIM: r ~ M(r ·1). M is called real 
if AIM = R, otherwise M is called hyper-real. An immediate 
consequence of (4.2), which is stated for reference is 

Corollary 4.3. If x E M(A), then Mx is real if and only 
if M x = {a E A : a(x) = O}. 

Let A be a (I)-algebra. The uniform metric p on A is defined 
by 

p(a, b) = inf{r E R: la - bl /\ 1:::; r}, (a, b E A), 

where, as usual, r · 1 and r are identified. Henceforth all ref­
erences to topological properties of a (I)-algebra will be with 
respect to its uniform topology. 

If A is complete with respect to p, then A is said to be 
uniformly closed. Well-known examples of uniformly closed 4>­
algebras are Rand C(X), where X is any topological space. 
Indeed many 4>-algebras of interest, such as the respective al­
gebras of Baire and Lebesgue functions on the real line are 
uniformly closed, and consequently the properties of uniformly 
closed 4l-algebras are of especial interest. We outline some of 
these properties now; the first is [HJ, 3.2] and [HJ, 3.7]. 

Theorem 4.4. A iP-algebra A is uniformly closed if and only 
if A* and C(M(A)) are isomorphic. 



514 Ross Stokke 

A <P-algebra A is closed under bounded inversion if a E A, 
a 2:: 1, implies l/a E A. The principal ideal of a member a 
of <P-algebra A will be denoted (a), thus (a) = {ab : b E A}. 
The smallest l-ideal of A containing a will be denoted (a) land 
will be called the l-principal ideal of A generated by a, (as in 
[H]). It is easy to see that for any a E A, (a)l = {c E A : Icl ::; 
labl for some b E A}. The following is [HJ, 3.3] and [HJ, 3.4]. 

Theorem 4.5. (1) Every uniformly closed 4l-algebra is closed 
under bounded inversion. 
(2) If A is a <P-algebra closed under bounded inversion, then 
for a E A, (a)l = A if and only if l/a E A. 

5. z-Ideals in <P-Algebras 

The main objective in our study of iP-algebras is to general­
ize the characterization of closed ideals of C(X) as found in 
section one, to a <P-algebra setting. The notion of a z-ideal 
in C(X) was central to our earlier theorem as it will be when 
we attempt to describe the closed l-ideals of <P-algebras. Be­
cause z-ideals are crucial to the study of rings of continuous 
functions, we choose now to examine their role in iP-algebras. 
Using z-ideals we expand upon some of the results found in 
[HJ], thus illustrating the use of z-ideals in this more general 
context. We note that that z-ideals in the even more general 
settings of commutative rings and partially-ordered rings were 
studied by G. Mason in [M]. There, some of the results ob­
tained in this section may also be found, though we remark 
that our notation is rather different from Mason's. Due to the 
fact that we shall remain only in the world of 4>- algebras and 
therefore have access to the Henriksen-Johnson representation 
theorem, in those places where there is overlap with [M], the 
results that follow are sometimes slightly stronger than those 
found there. Unless explicitly stated otherwise, in the remain­
der of this paper, A will denote a iP-algebra. 

For each f E A, let M(f) = {x E M(A) : f E Mx }. 
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Definition 5.1. An ideal I of a ip-algebra A will be called a 
z-ideal if M(f) :=> M(g), fE A and g E I implies f E I. 

Note that since M (f) :=> M (g) if and only if M (f) = M (fg) , 
':=>' may without loss of generality be replaced by '=' in the 
above definition. As noted in section one, if X is a topological 
space, then the above definition of z-ideal agrees with the usual 
notion of a z-ideal in C(X), [GJ, 4A]. 

By the definition of the hull-kernel topology, the collection 
M[A] = {M(f) : f E A} is a base for the closed subsets of 
M(A). Similarly the zero-sets of a (completely regular) top­
logical space X comprise a closed base for X. In this section, 
the similarities between the M[A] and the zero-sets of a topo­
logical space will be illustrated; indeed, if X were a compact 
topological space, and M(C(X)) the maximal ideal space of 
C(X), then the sets M(f), (f E C(X)), are precisely the zero­
sets of C(X), (up to the equivalence of X and M(C(X))). 

The following notation is employed. If S is a subset of A, 
then the collection of subsets of M(A), {M(f) : f E S}, will 
be denoted by M[S]. Hence M[A] = {M(f) : f E A} and 
M(A) = {M : M is a maximal 1 - ideal of A}; square and 
round brackets distinguish the difference. If S is a subset of 
M[A], then M+-[S] = {f E A : M(f) E S}. Using this 
notation we see that 

I is a z - ideal in A if and only if I = M+-[M[I]]. 

The proof of the following is not difficult. 

Proposition 5.2. M[A] forms a lattice under set containment. 

What follows is a sequence of statements which parallel the 
results of [GJ, chapter 2], stated in the context of iP-algebras. 
In most cases the proofs may be constructed just as in [GJ], 
and therefore are omitted. Details may be found in [8]. A filter 
on the lattice M[A], will be called a z-filter. 
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Proposition 5.3. a) If I is an l-ideal of A, then M[I] is a
 
z-jilter.
 
b) If F is a z-jilter on M[A], then M+-[F] is a z-ideal of A.
 

Each member of M(A) is an l-ideal, so by part (2) of [GJ, 
5.3], for each f E A, M(f) = M(lfl). It follows that every 
z-ideal of A is an I-ideal. 

An ultrafilter on the lattice M [A] will be called a z-ultrafilter. 
It is an easy corollary of the above proposition that the max­
imall-ideals of A and the z-ultrafilters of A are in one-to-one 
corespondence via M-imaging. Indeed the maximall-ideals of 
A are precisely 

Mx = {f E A: f E Mx } = {f E A: x E M(f)}, (x E M(A)), 

so the z-ultrafilters of A are precisely 

Ux = M[Mx ] = {M(f) : x E M(f)} (x E M(A)). 

Lemma 5.4. If h, 9 E A, x E M(h), and h(x) ~ g(x) ~ 0, 
then'x E M(g). 

Proof. If x E M(h), and k E A+, then (hk)(x) = 0, and 
(hk)(x) ~ (gk)(x), hence (gk)(x) = 0. It follows from (4.2) 
that 9 E M x , and therefore x E M(g). 0 

Theorem 5.5. Let A be a CP-algebra, I a z-ideal of A. Then 
the following are equivalent. 
1. I is prime. 
2. I contains a prime ideal. 
3. For all g, h E A, if gh = 0, then 9 E I, or h E I. 
4. For every f E A, there is a member of M[I] on which f 
does not change sign. 

Recall that if A is a commutative ring with unity, I an ideal 
of A, and P the collection of all prime ideals of A containing 
I, then np = {f E A : fn E I far some n = 0,1,2, ...}, 
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[GJ, 0.18]. Moreover, [HJ, 1.5] says that if I is an l-ideal of A 
disjoint from a multiplicative system T of A, (that is TeA 
is closed under multiplication, 1 E T, and 0 tt T), then I is 
contained in a prime l-ideal of A disjoint from T. 

Proposition 5.6. Every z-ideal is the intersection of the col­
lection of all prime l-ideals containing it. 

Proof. Let I be a z-ideal of q>-algebra A, P, P' respectively 
the collections of all prime ideals and prime l-ideals containing 
I, J = nP, J' = np'. Suppose f E J. Then for some power 
of n, fn E I. But maximal l-ideals are prime, so M(f) = 
M(fn), and since I is a z-ideal, f E I. Hence I = J. Now 
certainly J c J'. If f tt J, then T = {fn : n = 0,1,2, ... } is a 
multiplicative system disjoint from I, hence f ¢:. J'. Therefore 
J' c J, hence J' = I. 0 

Using the above, just as in [GJ], the following statements 
can be proved. A z-filter F will be called prime if whenever 
the union of two sets from M[A] belongs to F, then at least 
one of them,belongs to :F. 

Proposition 5.7. (1) Intersections of z-ideals are z-ideals. 
(2) Every prime l-ideal is contained in a unique maximal l­
ideal. 
(3) If P is a prime l-ideal in A, then M[P] is a prime z-filter. 
(4) If F is a prime z-jilter, then M+-[F] is a prime z-ideal. 
(5) Every prime z-jilter is contained in a unique z-ultrajilter. 

Recall·from [HJ], the l-ideal 

N x = {f E A : f vanishes on a neighborhood of x} 

= {f E A : x E intM(f)}· 

It follows easily from the second part of the Henriksen-Johnson 
Representation Theorem that nM[Nx ] = {x}, and so Nx is 
contained in the unique maximal l-ideal M x • 
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Proposition 5.8. For each x E M(A), 
1. N x is a z-ideal. 
2. f E N x if and only if fg = 0 for some 9 ¢ Mx . 

Proof. 1. is clear. 
2. If f E Nx , then x E intM(f). By the Henriksen-Johnson 
representation theorem, there is agE A, 0 ~ 9 ~ 1 with 
g[M(A)\intM(f)] = 0 and g(x) = 1. Then 9 tt Mx and 
f 9 = O. Conversely suppose that 9 tt M x and f 9 = o. Then 
x tt M(g), yet M(g) UM(f) = M(fg) = M(A). Therefore 
M(A)\M(g) is an open set containing x that is contained in 
M(f), hence x E intM(f). Therefore f E Nx . 0 

Theorem 5.9. An l-ideal 1 of A is contained in a unique max­
imall-ideal M x if and only if 1 :) N x • 

Proof. Since M x is the unique maximall-ideal containing N x , 

sufficiency is clear. Conversely suppose that Mx is the unique 
maximall-ideal containing I and let f E Nx • Take 9 tt Mx such 
that fg = O. Since 9 f/; Mx , (1, g)l = A, where (1, g)l denotes 
the smallest l-ideal containing both I and g. Therefore there 
is an h E 1, and 8 E A+ such that 1 ~ h + 8[gl. Therefore 
h 2:: 1- slgl, hence hlfl 2:: Ifl- slgllfl = If1- slgfl = If I· But 
hlfl E 1, and 1 is an l-ideal, so If I E 1, hence f E I. 0 

The following corollary is [HJ, 2.10]. 

Corollary 5.10. Let P be a prime l-ideal ofCP-algebra A. Then 
there is a unique x E M(A) such that N x c P c Mx , and N x 

is the intersection of all prime l-ideals containing it. 

Proof. N x is a z-ideal, hence the last statement. It has already 
been shown that every prime l-ideal is contained in a unique 
maximal l-ideal, so by the above theorem the result follows. 0 

We conclude this section by generalizing the results of sec­
tion one, concerning prime ideals and closure in C(X) to arbi­
trary CP-algebras. 
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Proposition 5.11. For every x E M(A), N x = M x . 

Proof· Let x E M(A). Since N x c M x , N x c M x . To prove 
the reverse containment let a E Mx and let c > o. Then 
a(x) = 0 and since a : M(A) ~ ,R is continuous, U = 
a~[( -c, c)] is an open neighborhood of x in M(A). Let b = 
[(a - c) V 0] + [(a + c) /\ 0]. Then b E A, Ib - al ~ 2e and 
b[U] = {Ole Hence b E Nx , and so a E Nx . Therefore Mx c Nx , 

whence M x c N x . 0 

Now if P is a prime ideall-ideal of A, then there is a unique 
x E M(A) such that Nx c P c M x . By the proposition Nx == 
P = Mx , from which it follows that non-maximal prime l-ideals 
of A are never closed. Suppose however that A is a uniformly 
closed <P-algebra. Then by [P, 2.6] the closed maximall-ideals 
of A are precisely the reall-ideals of A. Thus if Mx is a real 
l-ideal of A with P c M x , then Nx = P = M x . Hence we have 

Corollary 5.12. Let A be a uniformly closed q>-algebra. 
1. If M x is a reall-ideal of A, then N x = M x . 

2. If P is a prime l-ideal of A, then P is a (necessarily max­
imal) I-ideal if and only if the unique maximal I-ideal M con­
taining P is real; in this case P = M. 

6. An Application: P-algebras 

A <P-algebra A will be called a P - algebra if every prime l­
ideal of A is a maximall-ideaI. By the definition of a P-space, 
[GJ, 4J], C(X) is a P-algebra if and only if X is a P-space. 

Theorem 6.1. The following are equivalent for a <P-algebra A. 
1. A is a P-algebra. 
2. Every z-ideal is an intersection of maximall-ideals. 
3. For each x E M(A), N x = M x • 

4. For each f E A, M(f) is open. 
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Proof 1. =} 2. Every z-ideal is an intersection of prime l­
ideals. 
2. =} 3. N x is a z-ideal contained in precisely one maximal l­
ideal, namely M x . It follows from 2. that Nx = Mx . 

3. =} 4. Let f E A. If M(f) = 0, then M(f) is open, otherwise 
take x E M(f). Then f E M x = Nx , whence x E int(M(f)). 
Therefore M(f) = int(M(f))· 
4. =} 3. M x = {f E A : x E M(f)} = {f E A : x E 
intM(f)} = N x • 

3. ::;> 1. If P is a prime l-ideal of A, then there is an x E M(A) 
such that N x c P c M x ; by 3., P = M x • 0 

In the event that A is uniformly closed we may say more. 
Recall that a (commutative) algebra A is called regular if for 
every f E A there is agE A such that f = g f2. The following 
generalizes [GJ, 14.29]. 

Theorem 6.2. If A is a uniformly closed q,-algebra, then the 
following are equivalent. 
(1) A is a P-algebra. 
(2) For every x E M(A), N x = M x • 

(3) For every f E A, M(f) is open. 
(4) Every l-ideal is a z-ideal and every I-principal ideal is prin­
cipal. 
(5) Every ideal of A is a z- ideal. 
(6) For every f,g E A, the ideal (f,g) is the principal ideal 
(f2 + g2). 
(7) A is a regular q,-algebra. 
(8) Every prime ideal in A is a maximal ideal. 

Proof (This proof is as suggested by the referee. A proof 
which uses the Henriksen-Johnson representation theorem may 
be found in [8]). 
The equivalence of (1), (2) and (3) was established in (6.1). 
The equivalence of (4) through (7) is essentially [M, 1.2]. It is 
well-known that a commutative ring is regular if and only if 
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every prime ideal is maximal. Hence (1) implies (7) holds in 
4>-algebras in which 
(*) every prime ideal is an l-ideal. 
In [L] it is shown that an f-ring in which 0 ::; x ::; y2 implies 
x is a multiple of y satisfies (*). In particular this holds in a 
uniformly closed ~-algebra. That (8) implies (1) is clear. 0 

Corollary 6.3. If A is a uniformly closed P -algebra, 
then every ideal of A is an l-ideal. 

Evidently, amongst uniformly closed <I>-algebras, the 
P-algebras are precisely the regular <I>-algebras, and as such in­
teresting examples abound. As mentioned earlier, C(X), where 
X is a P-space, is one such example. Others include the Baire 
functions on R and the Lebesgue measurable functions on R, 
each of which if desired may be taken modulo its ideal of func­
tions that vanish almost everywhere, [HJ, 3.10]; yet another 
example of a uniformly closed regular <I>-algebra is the epimor­
phic hull of C(X) which is examined in the preprint [RW], by 
Raphael, and Woods. B. Brainerd in the late fifties studied 
regular F-rings, (F-rings are uniformly closed ~-algebras, see 
[P] for references), and, as they pertain to z-ideals, regular 
rings were studied by Mason in [M]. The following is due to 
the referee. 

Example. (1) implies (7) need not hold in ip-algebras that fail 
to be uniformly closed. 

Let aN = NU{oo} denote the one-point compactification of 
the discrete space of positive integers, and let A = {f E C(N): 
there is an n j E N such that f is a polynomial when restricted 
to [nj,oo)}. Using (6.1), it is easy to see that the prime ideals 
of A are the maximal ideals Mn for n E N and the prime l­
ideal 0 00 = {f E A : Z(f) contains a tail of N }. Clearly 0 00 

is a maximall-ideal, so A is a P-algebra that is not regular. 
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7. z-Ideals, Z-ideals, and Strong Divisibility 

At this point we attempt to generalize the characterization 
(1.4) of closed ideals of C(X) to various types of <P-algebras. 
To begin we consider another extension of the notion of z-ideal 
in the context of a <I>-algebra. 

Let A be a <I>-algebra. Let R(A) denote the space of real 
maximall-ideals of A, and for each a E A, let S(a) = {M E 

R(A) : a EM}. As before, let M(a) = {M E M(A) : a EM}. 

Definition 7.1. Let A be a ~-algebra, and let I be an ideal of 
A. I will be called a Z -ideal if 
(S(b) :J S(a) and a E I) =} b E I. 

Clearly then, every Z-ideal is a z-ideal. It is a well-known 
result that if X is a topological space, then the above definition 
of z-ideal agrees with the usual notion of a z-ideal in C(X), 
[GJ, 4A]. In fact: 

Proposition 7.2. If X is a topological space, and I is an ideal 
of C (X), then I is a z-ideal if and only if I is a Z -ideal. 

Proof Suppose I is a z-ideal of C(X) and suppose 5(g) 
:) 5(/), / E I. Let p E Z(f). Then f E Mp and Mp is real. 
Therefore 9 E Mp , whence P E Z(g). Therefore Z(f) C Z(g), 
and Z(f) E Z[I]' Z[I] a z-filter. It follows that Z(g) E Z[I]. 
But I is a z-ideal in C(X) and therefore 9 E I, showing that 
I is a Z-ideal. 0 

Recall from [HJ] that a <P-algebra A is called an algebra of 
real-valued functions if its space of real maximal ideals R(A) 
is dense in M(A). Equivalently A is a <P-algebra of real-valued 
functions if the intersection of its real ideals is {O}; in this case 
A can be embedded as a sub-<P-algebra of C(R(A)). We re­
mark that the algebra of Lebesgue measurable functions mod­
ulo the ideal of functions that vanish almost everywhere is 
a <I>-algebra that has no real (maximal) ideals. A <P-algebra 
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of real-valued functions A is closed under inversion if, for all 
a E A, a~(O) nR,(A) = 0 implies (a)l = A, where (a)l denotes 
the smallest l-ideal in A containing a. Note that by (4.3), given 
a E A, and x E M(A), x E S(a) if and only if Mx is real and 
a(x) = O. Thus S(a) = a~(O) n R(A). The following is [HJ, 
4.6]. 

7.3. If A is a iP-algebra ofreal-valued functions which is closed 
under inversion, then for each x E M(A), 

Mx = {a E A : x E S(a)}. 

Theorem 7.4. Let A be a CP-algebra of real-valued functions. 
Then A is closed under inversion if and only if z-ideals in A 
are Z -ideals. 

Proof Suppose I is a z-ideal' and S(b) :) S(a), a E I. Let
 
x E M(A) and suppose a E M x . Then x E S(a) hence
 
x E S(b). Thus b E Mx , showing that M(a) c M(b). But
 
a E I and I is a z-ideal, so b E I. This shows that I is a
 
Z-ideal.
 
For the converse, supposing that A is not closed under inver­

sion, we may take a E A such that S(a) = 0, yet (a)z =I A.
 
Thus a maximall-ideal Mx may be found such that (a)z C Mx .
 

Therefore, if b E A\M,then S(b) :) S(a), a E Mx , yet b ~ Mx .
 

It follows that the z-ideal Mx is not a Z-ideal. 0
 

Example. A uniformly closed iP-algebra of real-valued func­
tions in which z-ideals need not be Z -ideals. 

An example of Henriksen and Johnson [HJ, 4.5], does the 
job. Let A = {f E C(R+) : limx~oof(x)e-aX = 0 for all real 
a > O}. Then A is a uniformly closed CP-algebra of real­
valued functions. A* and C(R+) are isomorphic, so M(A) = 
M(A*) = M(C*(R+)) = ,BR+. Take g(x) = e-x , (x E 
R+). Clearly then 9 E A. Moreover, g~(O) = ,BR+\R+ = 
M(A)\R,(A), therefore, M(g) c M(A)\~(A), and hence 
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S (g) == 0. But 1/g f/.: A, so (g) =f A, and therefore there is 
a maximal l-ideal M containing g. M is then a z-ideal but 
is not a Z-ideal. For take any h f/.: M. Then S(h) ::) S(g), 
gEM, but h tt: M. 0 

To prove the next few theorems, the following definitions 
and results from the papers [H] by M. Henriksen and [P] by D. 
Plank are needed. 

In (H] an ideal set is defined to be a closed subset !::1 of 
the space M(A) of maximall-ideals of <P-algebra A such that 
whenever a E A and a[!::1] = 0, then (ab)[!::1] == 0 for all b E A. 
It is shown that: 

[H, 2.4] An l-ideal I of a uniformly closed ~-algebra A is 
closed if and only if there is an ideal set !::1 of M(A) such that 
I == {a E A : a[!::1] = O}. 

[P, 2.6] If A is a uniformly closed g)-algebra, then a maximal 
l-ideal of A is closed if and only if it is real. 

[P, 3.7] If I is either a closed or maximal ideal in the uni­
formly closed <P-algebra A, then I is an l-ideal. 

Recall also from section four, that if A is uniformly closed 
then its sub-<P-algebra of bounded elements A* is l-isomorphic 
to C(M(A)), and as such C(M(A)) may be regarded as a 
sub-<P-algebra of A. 

These results are used in the proofs that follow. 

Theorem 7.5. (1) Closed ideals ofuniformly closed <P-algebras 
are strongly divisible z-ideals. 
(2) Any strongly divisible Z -ideal of a <P-algebra A is closed in 
A. (Here A is not assumed to be uniformly closed). 

Proof (1) Let I be a closed ideal of uniformly closed ep­
algebra A. Let I* == I nA*. Then I* is a closed ideal of 
A* == C(M(A)), and therefore is strongly divisible by (1.4). 
Let (an) be a countable subset of I. A is closed under bounded 
inversion, so for each n, (1 + lanl)-l exists in A. But each 
l.;j~nl E A* nI = 1*, so by the strong divisibility of I* there is 
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abE I*, and (bn ) C A* such that for each n, b· bn = I-N~nl' 

Hence b E I and for each n, b· bn · (1 + lanl) = an, proving that 
I is strongly divisible. As a closed ideal of uniformly closed 
A, I is an l-ideal, [P, 3.7], so let ~ be an ideal set such that 
I = {a E A : a[~] = O}. Suppose M(b) :) M(a) and a E I. 
If x E ~ then for all c E A, (ac)(x) = 0, hence a E M x , by 
(4.2). Therefore b E Mx , hence b(x) = o. Thus b[L.i.] = 0 and 
therefore b E I. This proves that I is a z-ideal. 

(2) Let I be a strongly divisible Z-ideal of <I>-algebra A, let 
b E 1. Take (bn ) a countable subset of I such that for each 
n E N, Ib - bn \ < lin. Then by the strong divisibility of I, 
there is an a E I and (an) C A such that for each n, a· an = bn. 
Suppose a E Mx , where M x is a real ideal of A. Then a(x) = 0 
and therefore for each n E N, a · an(x) = o. Therefore for all 
n, lin> la· an(x) - b(x)1 = Ib(x)l, hence Ib(x)1 = 0; therefore 
b E Mx by (4.3). This shows that S(a) c S(b). But a E I and 
I is a Z-ideal, so b E I. Therefore I = I, hence I is closed. 0 

One might ask whether or not strongly divisible z-ideals in 
4>-algebras are always closed. Certainly an argument similar 
to the one given above will not answer the question in the 
affirmative; however, if we assume that A is a P-algebra, then 
the full converse to (8.6, part one)) holds. 

Theorem 7.6. If A is a P-algebra, then strongly divisible z­
ideals in A are closed. 

Proof Letting I be a strongly divisible z-ideal in A, choose 
b E 1. As in the proof of (8.6, part two), we may find a E I 
and (an) C A such that for each n E N, la· an - bl < lin. 
Taking x E M(a), for each n, (a . an)(x) = 0, hence b(x) = 
0, and therefore M(a) C b~(O). But A is a P-algebra, so 
by (6.1), M(a) is open, hence M(a) c int(b~(O)), and since 
int(b~(O)) C M(b), we have M(a) c M(b). [We note that 
were A not assumed to be a P-algebra, M(a) c M(b) could 
not be shown in this manner]. But I is a z-ideal in A and 
a E I, hence bEl, proving that 1=1. 0 
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As a consequence of the above we get the following charac­
terization of the closed ideals in two broad classes of <P-algbras. 

Corollary 7.7. Let A be a uniformly closed q,-algebra that is 
either 
(i) a ~-algebra of real-valued functions that is closed under 
inversion, or 
(ii) regular. 
Then 
1. An l-ideal I of A is closed if and only if it is a strongly 
divisible z-ideal. 
2. A maximal l-ideal of A is real if and only if it is strongly 
divisible. 

The Henriksen-Johnson representation theorem has been 
used to characterize C(X), for various homeomorphism classes 
of spaces X, algebraically within the class of ~-algebras. Char­
acterizations of several such classes of (realcompact) Tychonoff 
spaces may be found in [HJ] and many other papers. Neverthe­
less a longstanding open problem concerning ~-algebras asks, 
'find an internal characterization of C(X) for X a Tychonoff 
space within the class of q,-algebras', [H2, problem 5]. The fol­
lowing is a reformulation ofD. Plank's theorem, [P, 3.6] which 
phrased in terms of strongly divisible rather than closed ideals, 
perhaps seems more algebraic in character. The bracketed z is 
meant to indicate that it is optional. 

Theorem 7.8. A non-trivial <P-algebra A is I-isomorphic to 
C(X) for some LindelOf space X if and only if 
(i) A is uniformly closed, 
(ii) every z-ideal in A is a Z -ideal, and 
(iii) every strongly divisible (z- )ideal of A is contained in a 
strongly divisible maximall-ideal of A. 

Recall that C(X) is (I)-isomorphic to C(vX), and X is 
weakly Lindelof if and only if vX is weakly Lindelof. Hence a 
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<P-algebra A is l-isomorphic to C(X) for some weakly Lindelof 
space X if and only if A is l-isomorphic to C(Y) for some real­
compact weakly Lindelof space Y. With this in mind we offer 
the following 

Conjecture 7.9. A non-trivial <P-algebra A is l-isomorphic to 
C(X) for some weakly LindelOf (realcompact) space X if and 
only if 
(i) A is uniformly closed, 
(ii) every z -ideal in A is a Z -ideal, and 
(iii) every nsd ideal in A is contained in a strongly divisible 
maximall-ideal of A. 

We note by way of evidence to support the validity of this 
statement, Theorem 3.4, which under the additional hypothe­
sis of realcompactness of X equivalently reads: 
X is weakly Lindelof if and only if every nsd ideal of C(X) is 
contained in a strongly divisible maximal ideal of C(X). 
Hence the conditions (i), (ii), and (iii) of (7.10) are certainly 
necessary. We also note that arguing as in the proof of [P, 3.1], 
it follows from (i), (ii ) and (iii) that A is a 4>-algebra of real­
valued functions; unfortunately it seems that a proof of (7.10) 
would at this point require an alternative to Plank's methods. 
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