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GENERATING DENSE SUBGROUPS OF
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Abstract 

If a discrete subset S of a topological group G 
with the identity 1 generates a dense subgroup 
of G and S U {I} is closed in G, then S is called 
a suitable set for G. It turns out that all "good" 
topological groups have a suitable set, and it 
takes some work to recognize that there are 
groups with no suitable set. We present a survey 
of recent results on the existence of suitable sets 
in topological groups and discuss several open 
problems. 

o. Introduction 

Our aim is to present a survey of recent results in the new 
and fashionable area: Suitable sets for topological groups. It 
is not an exaggeration to say that 95% of all the material ac­
cumulated in the area has been obtained during the last three 
years, while the notion of a suitable set in the present form had 
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been introduced by Hofmann and Morris [HM1] in 1990. An 
intensive study of topological groups with suitable sets started 
after the lecture delivered by Sydney Morris at the Conference 
on Set-Theoretic Topology and its Applications in Matsuyama, 
Japan in December of 1994. The subject has been significantly 
developed since then, so we systematize our knowledge and dis­
cuss some open problems. 

Following Hofmann and Morris [HMl], we call a subset S 
of a topological group G suitable for G if S is discrete in itself, 
generates a dense subgroup of G, and S U {lG} is closed in G, 
where IG is the identity of G. Therefore, every finite subset of 
a topological group G generating a dense subgroup of G is suit­
able for G. It is well-known that a compact connected Abelian 
group of weight less that or equal to c contains a dense cyclic 
subgroup" that is, has a one-point suitable set [HR, Theorem 
25.14]. A non-Abelian topological group cannot have dense 
cyclic subgroups simply because the closure of an Abelian sub­
group is Abelian too. However, by a theorem in [HM1], every 
compact connected group G of weight::; c contains a dense 
subgroup generated by two elements. In other words, such a 
group has a two-element suitable set (the minimal possible one 
if G is not Abelian). 

Clearly, neither finite nor countable subsets of a topologi­
cal group G with w(G) > c can generate a dense subgroup of 
G. This makes the following theorem of Hofmann and Morris 
[HMl] even more intriguing. 

Theorem 0.1. Every locally compact topological group has a 
suitable set. 

It is worth mentioning that some special cases of this deep 
result were known long before 1990. In particular, the existence 
of a suitable set for every compact totally disconnected group 
was mentioned in 1966 by Douady [Do] (attributed to Tate). 
A detailed proof of the latter fact appears in Chapter 12 of 
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[HM2]. 
From 1995, the study of topological groups with a suitable 

set focuses on the non-locally compact case. A significant con­
tribution to the subject is the following theorem proved in 
[CMRST]: 

Theorem 0.2. Every metrizable topological group has a suit­
able set. 

Theorems 0.1 and 0.2 mean that every "basic" topological 
group (i.e., any group we find at the initial period of the study 
of topological groups) does have a suitable set. To emphasize 
how wide the class S of topological groups with a suitable set is, 
we just mention here that the cartesian product of arbitrarily 
many groups in S is again in. S. In Section I we will present 
several results generalizing both Theorem 0.1 and Theorem 0.2. 
In particular, every almost metrizable topological group has a 
suitable set (see Theorem 1.16). 

All this makes the problem of constructing a group with no 
suitable set fairly difficult. The first example of a topological 
group without a suitable set was an infinite countably compact 
group G having no convergent sequences constructed by van 
Douwen under Martin's Axiom MA (see [Doul]). Addition­
ally, van Douwen's group G is separable and boolean, that is, 

2x = Ie for each x E G. The fact that G ff. S was found out 
in [CMRST], and its proof is really easy. Indeed, if S ~ G is a 
suitable set for G then S is infinite because a finite subset of a 
boolean group generates a finite subgroup. Since G is count­
ably compact, S must have an accumulation point in G. The 
unique accumulation point of S can only be the identity Ie of 
G. Therefore, S U {lG} is a closed (hence compact) subset of 
G, so that S converges to Ie. This contradicts the fact that G 
does not have non-trivial convergent sequences. We have thus 
proved the following result (see Theorem 3.15 of [CMRST]): 
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Theorem 0.3. (MA) There exists a separable countably com­
pact topological group without a suitable set. 

We conclude, in particular, that under MA, not every topo­
logical group has a suitable set. In other words, S does not 
coincide with the class of all topological groups. Fortunately, 
the latter conclusion does not require Martin's Axiom. In Sec­
tion II we will present a few examples of topological groups 
without a suitable set, which are based on the use of free topo­
logical groups and the spaces of continuous functions with the 
pointwise convergence topology. One of them will be a boolean 
group G in which the closure of every countable subset is com­
pact, so that G is countably compact but G ¢. S. 

In Section III we discuss the problem whether the class S 
is stable under cartesian products, taking subgroups, quotient 
groups, extensions, etc. 

The existence of a suitable set for free topological groups is 
considered in Section IV. Denote by Cf the class of all spaces 
X such that the free topological group F(X) on X has a suit­
able set. We will see that this class is very wide: it contains all 
metrizable spaces and all polyadic compact spaces (that is, con­
tinuous images of products of compact spaces with at most one 
non-isolated point). In particular, all compact dyadic spaces 
are in Cf . In other words, the free topological group F(K) on 
a compact dyadic space K has a suitable set. 

The minimal and totally minimal topological groups are 
considered in Section V. It turns out that minimality is a very 
useful concept when looking for a suitable set. Section V also 
contains several results on suitable sets in topological groups 
endowed with the Bohr topology. 

Notation and Terminology 

We denote respectively by lR,]I, Z and N the reals, the unit 
interval [0,1], the integers and natural numbers. The circle 
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group ~/Z is denoted by T. The groups ~ and T are assumed 
to carry their usual additive group operations and topology. 

Let G be a group. The neutral element of G is denoted by 1 
or la, or respectively by 0 or Oa if G is Abelian. The minimal 
subgroup of G containing a subset A ~ G is (A). 

Topological groups are assumed to be Hausdorff. We denote 
by G the two-sided (Ralkov) completion of G and by c(G) the 
connected component of 1 in G. A group G is precompact 
(or totally bounded) if G is compact, pseudocompact if every 
continuous real-valued function on G is bounded, and countably 
compact if each open countable cover of G contains a finite 
subcover. 

Let S (resp., 8e) be the class of groups G having a suit­
able (resp., closed suitable) set. It turns out that very often 
a suitable set S for the group G has the stronger property to 
generate G, instead of generating just a dense subgroup of G. 
We denote by 8g and 8eg the corresponding subclasses of 8 
and Se. 

The closure of a subset Y ~ X in X is denoted by clx Y or 
simply cl Y if there is no ambiguity. When convenient, we also 

-x ­use Y or Y for the same purpose. 
A space X is called a P-space if an intersection of countably 

many open sets in X is open. The base of the w-modification 
of the topology of X is defined as the collection of all G8-sets 
in X. A space X with the w-modified topology is obviously 
a P-space. A space X is called w-bounded if the closure of 
every countable subset of X is compact. An w-bounded space 
is countably compact, but not vice versa. A topological group 
G is w-bounded iff every countable subset of G is contained in 
a compact subgroup of G. 

We will frequently use the notions of a- and ~-products both 
applied to spaces and topological groups. Let us describe them 
briefly. Choose a point a E II = IIaEA Xa in the cartesian 
product II of spaces Xa and for each x E II, define supp (x) = 

{Q E A : Xa =1= aa}. Now the a-product and ~-product of the 
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spaces Xo: with the center a are defined respectively as follows:
 

u(A, a) = {x E II: Isupp(x)1 < No} 

and 
~(A, a) = {x ElI: Isupp (x)1 ~ No}. 

The spaces u(A, a) and ~(A, a) are considered with the topol­
ogy inherited from II. If each Xo: is a topological group, we 
will always fix the neutral element 1 of I1 as the central point, 
so the denotations u(A, 1) and ~(A, 1) can be abbreviated re­
spectively to u(A) and ~(A). In the latter case, both u(A) 
and ~(A) are dense subgroups of II, and u(A) is also called 
the direct sum of the groups Xo:, Q E A. 

Let X be a space, Xo E X and S ~ X \ {xo}. We call 
S a supersequence converging to Xo if S is an infinite discrete 
subset of X and S U {xo} is a compact subset of X. In other 
words, S U {xo} is the one-point compactification of S and we 
also call it a compact supersequence. 

The cardinality of continuum 2w will be denoted by c. The 
notation for cardinal functions is standard: w(X), nw(X), 
iw(X), d(X), X(X), 1/J(X), L(X) and t(X) stand for the weight, 
network weight, i-weight, density, character, pseudocharacter, 
Lindelof number and tightness of X respectively. 

The abbreviations CH and MA are used for the Continuum 
Hypothesis and Martin's Axiom respectively. As usual, V = L 
stands for the axiom of constructibility. The syrrlbol 0 refers 
to a special set-theoretic axiom concerning subsets of WI. It is 
well known that V = L ==} 0 ==} CR ==} MA (see [Ku]). 

1. Topological Groups With a Suitable Set 

A non-compact countable space has many infinite closed dis­
crete subsets. It seems natural, therefore, to ask whether every 
countable topological group has a suitable set. The answer is 
in the positive (see Theorem 1.2 of [CMRST]). 
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Theorem 1.1. Every countable topological group G has a 
closed discrete subset 8 such that (8) = G. In particular, 
8 is suitable for G and G E Scg. 

A key to the proof of this theorem is the following simple 
observation: 

Lemma 1.2. Let G be a non-discrete Hausdorff topological 
group and U a non-empty open subset which generates G. Then 
every point x E U has an open neighborhood Vx ~ U such that 
(U\ Vx ) ~ G. 

To prove Theorem 1.1, it suffices to consider the case when 
G is infinite and non-discrete. Being countable, G is zero­
dimensional, that is, G has a base of clopen sets. We enumerate 
the elements of G, say G = {gn : nEw} and construct by 
induction the sequence {Vn : nEw} of clopen subsets of G 
and the sequence {8n : nEw} of finite subsets of G satisfying 
the following conditions for each nEw: 
(i) gn E YO U Vi U · · · U Vn; 
(ii) G = (G \ (YO U Vi U··· U Vn )); 

(iii) Vi n Vn = 0 if i < n; 
(iv) Vi n 8n = 0 if i < n, and 
(v) gn E (80 U 81 U · · · U 8n). 

All this is possible because of Lemma 1.2. One easily verifies 
then that the set 8 = UnEw 8n is closed discrete in G and 
(8) = G. We conclude, therefore, that G E SCg. 

Suppose that G is a separable topological group and A ~ G 
is a countable dense subset of G. Then H = (A) is a count­
able dense subgrOtlP of G, and by Theorem 1.1, there exists a 
suitable set 8 for H. However, 8 can have many accumulation 
points in G, so the following problem arises (see Open Ques­
tion 1 of [CMRST]): 
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Problem 1.1. Does there exist in ZFC a separable topological 
group with no suitable set? 

Note that Theorem 0.3 of Introduction gives us such a group, 
but under the assumption of Martin's Axiom. 

More generally, suppose that H is a dense subgroup of a 
topological group G and H has a suitable set. Will then G 
have a suitable set? Combining Theorems 0.3 and 1.1 we im­
mediately conclude that the answer is negative, but again this 
argument requires MA. We will see in Section II, however, that 
there exists a relatively simple way to construct such groups G 
and H without the use of additional set-theoretic assumptions. 

The following problem arises if one tries to extend Theorem 
1.1 to all topological groups of cardinality < c. 

Problem 1.2. Is it true that every topological group of cardi­
nality less than c has a suitable set? 

As we know, separable topological groups need not have a 
suitable set (at least under MA). What kind of additional con­
ditions can we impose on a separable group G in order to have 
G E S? It turns out that it suffices to assume that either G is 
not totally bounded or G has countable pseudocharacter (see 
Corollary 5.8 and Theorem 5.13 of [CMRST]). 

Theorem 1.3. Let G be a separable topological group. Then: 
(a) ifG is not totally bounded, then it has a closed suitable set; 
(b) if G is of countable pseudocharacter, then it has a suitable 
set. 

Let us give a sketch of the proof of Theorem 1.3. We will 
use the following simple but important observation. 

Lemma 1.4. Let H be an open subgroup of a topological group 
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G. If H has a (closed) suitable set, then G also has a (closed) 
suitable set. 

Suppose now that G is a separable topological group which 
is not totally bounded. There exists a neighborhood U of the 
identity in G such that G =I F· U for each finite subset F of G. 
Therefore, we can construct a sequence {xn : nEw} ~ G such 
that X n rt. Xk • U whenever k < n. Choose an open symmetric 
neighborhood V of the identity in G such that V 4 ~ U. It is 
easy to see that for each x E G, x . V intersects at most one 
element of the family I = {xn . V : nEw}. This means that 
the family I is discrete. Since G is separable and V is open 
in G, there exists a countable set {Yn : nEw} ~ V which is 
dense in V. Define 

8 = {xn : nEw} U {xn · Yn : nEw}. 

Then 8 is closed and discrete in G. Denote by H the subgroup 
of G generated by V U {xn : nEw}. It is clear that H is open 
in G and 8 ~ H. In addition, {Yn : nEw} ~ (8), so that 
(8) is dense in H. We conclude, therefore, that 8 is a closed 
suitable set for H. By Lemma 1.4, G has a closed suitable set. 

The case where G is a separable group of countable pseu­
docharacter requires another strategy. We can assume without 
loss of generality that G is totally bounded. Let L be a count­
able dense subgroup of G, say L = {xn : nEw}. Choose a 
decreasing sequence {Un : nEw} of open neighborhoods of 
the identity 1G in G satisfying the conditions: 

(1) U~+l ~ Un for each nEw; 
(2)	 {lG} = nnEw Un· 

Since G is totally bounded, one can construct by induction 
a sequence {8n : nEw} of finite subsets of L to satisfy the 
following conditions for each k E w: 

(i)	 Xk E (Sk); 
(ii) Sk+l \ Sk ~ Uk; 
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(iii) G = (Sk) · Uk· 
Put 8 = UkEW 8k. From (ii) it follows that 8 \ Uk ~ 8k is 

finite for each k E w. The latter, together with (1) and (2), 
implies that S is a closed discrete subset of G \ {lG}. Finally, 
we apply (i) to conclude that L = (8), so S is suitable for G. 
This finishes the proof of Theorem 1.3. 

As an immediate corollary to Theorem 1.3 we have the fol­
lowing. 

Corollary 1.5. Every topological group with a countable net­
work has a suitable set. 

Indeed, a topological group with a countable network is sep­
arable and has countable pseudocharacter, so Theorem 1.3 (b) 
applies. 

Theorem 1.3 suggests the question whether every topolog­
ical group of countable pseudocharacter is in S. Theorem 
2.2.4 (a) of Section II answers the question in the negative: 
there exists a Lindel6f topological group L of countable pseu­
docharacter with L ¢ S. However, every a-compact group of 
countable pseudocharacter has a suitable set, because such a 
group has a countable network (note that every compact sub­
space of a topological group of countable pseudocharacter has 
a diagonal of type G6 , and hence is metrizable). On the other 
hand, not every a-compact topological group is in S (see Corol­
lary 2.1.5). However, the things change in the separable case. 

Proposition 1.6. A separable a-compact topological group has 
a suitable set. 

In fact, we prove here a more general result which appears 
as Lemma 3.5 of [DTT1]. 

Theorem 1.7. If a separable topological group G is not pseu­
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docompact, then G has a closed suitable set. 

Proof Let P = {xn : nEw} be a countable dense sub­
group of G. Since G is not pseudocompact, there exists a 
sequence {Un: nEw} of non-empty open subsets of G such 
that Un+l ~ Un for each nEw and 0 = nnEw Un. We can 
assume without loss of generality that G is totally bounded 
- otherwise the conclusion follows from Theorem 1.3 (a). The 
construction that follows: is close to that in the proof of Theo­
rem 1.3 (b), but we give more details. 

We will construct an increasing sequence {Sk : k E w} of 
finite subsets of P satisfying the following conditions for each 
k Ew: 

(1) Xk E (Sk); 
(2) Sk+l \ Sk ~ Uk; 
(3) G = (Sk) . Uk. 

Since P is dense in G, we have G = p. Uo. By our assump­
tion, G is totally bounded, so there exists a finite subset Ko of 
P such that Ko· Uo = G. In particular, there are ao E Ko and 
Uo E Uo such that Xo = ao . Uo. Then Uo = ao1 

. Xo and we put 
So = KoU {uo}. 

Suppose that for some nEw we have defined an increasing 
sequence So, ... ,Sn of finite subsets of P which satisfies (1) and 
(3) for each k ~ nand (2) for every k < n. Since P is dense 
in G, the set Un n P generates a dense subgroup of the group 
Gn = (Un). Therefore, we have the equality (Un n P) · Un+1 = 
Gn . Using total boundedness of Gn , we find a finite subset 
Fn+1 of (Un n P) such that Fn+1 · Un+1 = Gn. Choose a finite 
subset Kn+1 of Un n P with Fn +1 ~ (Kn+1 ) and note that 
(Kn+1) • Un+1 = Gn. Define S~+l = Sn U Kn+1 and apply (3) 
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(with k = n) to obtain 

(S~+l) · Un+1 = (S~+l) · (Kn+1 ) · Un+1 

= (S~+l) · Gn 2 (8n) · Un = G. 

By (*), there are an+l E (S~+l) and Un+l E Un+1 such that 
Xn+l = an+l . Un+l. Since an+l E (S~+l) ~ P and Xn+l E P, 
we conclude that Un+l E P and put Sn+l = 8~+1 U {Un+l}. 
Clearly, Sn+l is a finite subset of P and Sn ~ Ln+1 . From 
(*) it follows that (8n+1) . Un+1 = G. This gives (1) and (3) 
for k = n + 1. Since 8n+1 \ Sn ~ Kn+1 U {Un+l} ~ Un' the 
condition (2) holds for k = n as well. 

Put S = U{Sn : nEw}. It follows from (2) that S\Uk ~ Sk 
is a finite set for each k E w. The latter, along with nnEw Un = 
oimplies that S is a closed discrete subset of G. It remains to 
apply (1) in order to conclude that (8) = P. D 

As we have mentioned before Proposition 1.6, neither sepa­
rability nor a-compactness, nor countable pseudocharacter im­
ply the existence of a suitable set. However, by Theorem 1.3 
and Proposition 1.6, any two of the three properties do imply 
this. 

An important corollary of Theorem 1.7 concerns Problem 
1.1: if a separable topological group has no suitable set, then 
it has to be pseudocompact. This observation makes Problem 
1.1 even more intriguing. We can also note that if a topological 
group G with IGI < c is separable, then G ESe. Indeed, this 
is trivial if G is finite. Otherwise G is not pseudocompact, be­
cause infinite pseudocompact groups have cardinality greater 
than or equal to c. It remains to apply Theorem 1.7 to con­
clude that G has a closed suitable set. Thus, we have obtained 
the positive answer to Problem 1.2 in the special case when 
G is separable. We do not know, however, if one can replace 
"separable" by "a-compact" (or "of countable pseudocharac­
ter") : 
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Problem 1.3. Let G be a a-compact topological group with 
IGI < c. Is it true that GE S? 

Let us turn to metrizable topological groups. We can refine 
Theorem 0.2 of Introduction as it appears in [CMRST]: 

Theorem 1.8. Every metrizable topological group G has a 
suitable set. Further, if G is not compact, it has a closed suit­
able set. 

We present here the proof of the first part of Theorem 1.8 
which depends on a couple of simple lemmas. 

Lemma 1.9. Let X be a subset of a topological group G and 
U an open neighborhood of the identity in G. Then there exist 
an ordinal/and a subset Y = {xa : Q < /} of X such that 
x{3 ~ X a . U whenever Q < (3 < / and X ~ Y · U. Further, ifV 
is a symmetric neighborhood of 1G in G with V4 ~ U, then the 
set Y is uniformly V -discrete in G (i. e., the set x . V contains 
at most one point of Y for each x E G). 

The proof of Lemma 1.9 is straightforward: if the sequence 
A{3 = {xa : Q < (3} has been defined for some ordinal (3 and 
X \ A{3 . U i= 0, we simply choose a point x{3 E X \ A{3 . U. 

Lemma 1.10. If {On: nEw} is a symmetric open basis at 
the identity of a topological group G, and for each nEw the 
set Fn ~ G satisfies Fn · On = G, then F = UnEw Fn is dense 
in G. 

Indeed, if W is a non-empty open subset of G, then there 
are x E G and nEw such that x·On ~ W. Then x E y·On for 
some y E Fn, whence y Ex· O~l = x· On ~ W. This implies 
that yEW n Fn S; W n F i= 0. 
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Proof of Theorem 1.8. Let {Vn : nEw} be a base at the 
identity in G satisfying Vo = G, Vn\l ~ Vn and Vn-l = Vn for 
each nEw. By Lemma 1.9, for every nEw we can define a 
subset Fn = {xn,o: : a < In} of Vn so that 
(i)	 Vn ~ Fn . Vn +1; 

(ii) xn,{3 fj. xn,o: . Vn+1 whenever a < (3 < In· 

Put 8 = UnEw Fn . We claim that the set 8 is suitable for 
G. First, we prove that 
(1)	 (8)· Vn = G for each nEw. 

Indeed, it suffices to show that 

(2)	 Fo · F1 · · · · . Fn . Vn+1 = G for each nEw. 

We prove (2) by induction on n. The equality Fo . V1 = G 
follows from (i). If the equality (2) is valid for some nEw, 
then (i) implies that 

Fa· Fl····· Fn · Fn+1 . Vn+2 2 Fo· Fl····· Fn · Vn+1 = G. 

This proves (2), and hence (1). Since the sets Vn form a base 
at the identity of G, the definition of 8, (1) and Lemma 1.10 
together imply that (8) is dense in G. It remains to show that 
8 is closed and discrete in G \ {I}. Let x E G be arbitrary, 
x -# 1. There exists nEw such that x fj. Vn . Since Fk ~ Vk 

for each k E w, we have Fk n (G \ Vn ) = 0 whenever k > n. 
Therefore, G \ Vn can intersect only the sets Fo, F1,· .. , Fn . 

From (ii) and V:+2 ~ Vn+1 it follows that the set Fn is uni­
formly Vn +2-discrete in G, and hence is closed discrete in G, 
nEw. Therefore, the union F = Fo U F1 U · · · U Fn is a closed 
discrete subset of G, and there exists an open neighborhood 
W of x in G whose intersection with F contains at most one 
point. Clearly, the neighborhood 0 = W n (G \ V n) of x has 
the property 10 n 81 ::; 1. This proves that 8 is closed and 
discrete in G \ {I}. 0 

Theorem 1.8 admits several generalizations obtained in 
[DTT1] and [OTk]. Let us call a subset Y of a space X strictly 
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a-discrete (in X) if Y can be represented as a countable union 
of closed discrete subsets of X. It is clear that every separa­
ble space contains a dense strictly u-discrete subset. Since a 
metrizable space has a a-discrete base, we conclude that such a 
space also contains a dense strictly u-discrete subset. It is well 
known that a pseudocompact topological group of countable 
pseudocharacter is compact [OS, lemma 3.1], and hence it has 
a suitable set by a result of Hofmann and Morris [HM]. So, the 
following result generalizes both Theorem 1.7 and Theorem 1.8. 

Theorem 1.11. Let G be a non-pseudocompact topological 
group. If G has a dense strictly a-discrete subset then it has a 
closed suitable set, i. e., G ESe. 

In fact, the proof of the latter result leans on Theorem 1.7 
(see [DTT1, Theorem 3.6]), but much work is required in this 
case. 

Theorem 1.11 implies several corollaries (see [DTT1]). 

Corollary 1.12. Any locally separable non-pseudocompact 
topological group has a closed suitable set. 

Corollary 1.13. Every topological group with a a-discrete net­
work has a suitable set. 

To make the last assertion clearer, note that a group G 
with a a-discrete network has countable pseudocharacter. If 
G is not pseudocompact, the conclusion follows from Theorem 
1.11. Otherwise G has countable character by Lemma 3.1 of 
[eS] and the Birkhoff-Kakutani metrization theorem implies 
that G is compact metrizable, so that G E S by Theorem 0.1. 

Corollary 1.14. If a topological group is a union of countably 
many closed metrizable subspaces, then it has a suitable set. 
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Note that such a group has a a-discrete network. There­
fore, the above assertion follows from Corollary 1.13. It is not 
known if one can omit "closed" in Corollary 1.13. We thus 
have the following open problem posed in [DTT1]: 

Problem 1.4. Suppose that a topological group G is a union 
of countably many metrizable subspaces. Does G have a suit­
able set? 

Metrizable spaces form a proper subclass of a (significantly 
wider) class of stratifiable spaces. Stratifiable spaces were 
introduced by Ceder [Ce] under a different name, and their 
present name is due to Borges [Bo]. Since every stratifiable 
space has a a-discrete network [Gr, Theorem 5.9], Corollary 
1.13 implies the following. 

Corollary 1.15. Every stratifiable topological group has a suit­
able set. 

The ideas used in [HM] and [CMRST] to prove respectively 
that locally compact and metrizable groups are in S were com­
pletely different. It appears interesting, therefore, to unify 
these results in a single assertion. An idea of such a unification 
can be the use of the notion of an almost metrizable topologi­
cal group introduced in [Pal. A topological group G is said to 
be almost metrizable if it contains a non-empty compact set 
K of countable character in G. It is easy to verify that G is 
almost metrizable iff it contains a compact subgroup N such 
that the quotient space GIN is metrizable [Pal. Clearly, all 
locally compact and all metrizable groups are almost metriz­
able. Therefore, the following result (see [OTk, Corollary 1.2]) 
generalizes Theorems 0.1 and 0.2. 

Theorem 1.16. Every almost metrizable topological group has 
a suitable set. 
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Linearly ordered topological groups form a very special sub­
class of topological groups (see [NR] for basic information on 
this subject). It is very likely that these groups are in S. 

Problem 1.5. Does every linearly orderable topological group 
have a (closed) suitable set? 

Let us now turn to topological groups which have no suitable 
set. 

2. Topological Groups Without a Suitable Set 

The reader has probably seen that the technique used in Sec­
tion I to prove "positive" results does not take too much from 
algebra, but has a topological origin. The explanation of this 
phenomenon is quite easy: the notion of a suitable set is "al­
most" topological. The results of this section go in the same 
topological direction, but they are more sophisticated from 
both topological and algebraic sides. 

Theorems 1.3, 1.7, 1.8 and their generalizations presented 
in Section I make it clear that any topological group with no 
suitable set has to be complicated in some sense. The tools 
we use for construction of counterexamples are free topological 
groups and spaces of continuous functions. 

2.1. Application of Free Topological Groups. Let X 
be a space. Recall that a topological group G with a fixed 
topological embedding i : X ~ G is called the free topological 
group on X if G satisfies the following conditions: 
(1) i(X) algebraically generates G; 
(2) given a continuous mapping f: X ~ H of X to an arbitrary 
topological group H, there exists a continuous homomorphism 
j: G ~ H such that j 0 i = f. 

The free topological group on X is usually denoted by F(X). 
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It is a common practice to identify X with its image i(X) ~ 

F(X) and we shall follow that. Then (2) can be reformulated 
by saying that every continuous mapping f: X ---+ H extends 
to a continuous homomorphism j: F(X) ---+ H. 

If the groups G and H in the above definition are Abelian, 
we obtain the definition of the free Abelian topological group 
on X which is denoted by A(X). 

The elements of F(X) are the "irreducible words" 9 = x11 
• 

... ox;n, where Xl, ... , Xn E X and cl, ... , cn = ±1. The num­
ber n is the length of g. It is known that for each nEw, the 
subset Fn(X) of F(X) consisting of all words of length:::; n is 
closed in F(X) (see [Gra]). 

Let X be the free sum of X, its copy X-l and the iden­
tity e of F(X). Then for every nEw, the subspace Fn(X) 
of F(X) is a continuous image of. xn under the multiplica­

• • ( . cl Cn ) cl Cn Th ~ ·f X ·tIon mappIng Xl' .. 0 ,Xn ~ Xl · .. 0 ·Xn erel0re, 1 IS• 

a compact space, then Fn(X) is also compact for each nEw. 
By a theorem of Graev [Gra] , the free topological group 

F(X) on a compact space X has the following remarkable 
property: a set K ~ F(X) is closed in F(X) iff K n Fn(X) is 
compact for each nEw. This result plays a crucial role in our 
considerations. 

The following fact about suitable sets in free topological 
groups was established in [CMRST]. 

Theorem 2.1.1. The free topological group F(X) on a sepa­
rable space X has a closed suitable set. The same is true for 
the free Abelian topological group A(X). 

The idea of the proof is rather easy. Let D = {xn : nEw} 
be a dense subset of X. For every n ~ 1, define the element 
gn = Xl · .... xn' of F(X). Then the set 8 = {gn : nEw} 
generates the subgroup (8) of'F(X) which contains D, so (8) 
is dense in F(X). To see that 8 is closed and discrete in F(X), 
consider the free topological group F((3X) on the tech-Stone 
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compactification (3X of X. The identity mapping ix: X ~ X 
extends to a continuous monomorphism ix : F(X) ~ F({3X). 
Clearly, for each nEw the intersection ix(S) n Fn ((3X) con­
sists exactly of n elements, and hence is compact. By Graev's 
theorem, ix(S) is closed in F((3X). Since i x is a continuous 
one-to-one mapping, S is closed in F(X). The same argument 
applied to an arbitrary subset T of S shows that T is closed in 
F(X). We conclude, therefore, that S is closed and discrete in 
F(X). In particular, S is suitable for F(X). One easily ver­
ifies that this reasoning also works for the free Abelian group 
A(X). 

Recall that X is called an F-space if every Fu-set in X is 
C*-embedded in X. It is well known that for every infinite 
discrete space D, (3D and (3D \ Dare F-spaces (see pp.210 
and 215 of [GJ]). 

The following theorem provides a large number of a-compact 
topological groups without suitable sets (see Theorem 3.8 of 
[CMRST]). 

Theorem 2.1.2. Let X be a non-separable compact F-space. 
Then the free Abelian topological group A(X) does not have a 
suitable set. 

Note that "non-separable" appears here because of Theorem 
2.1.1. The proof of Theorem 2.1.2 is based on the following 
auxiliary topological result (see Lemma 3.5 of [CMRST]): 

Lemma 2.1.3. Let X be a compact F -space, and let n be any 
positive integer. Denote by Yn the subspace of xn consisting 
of all points in general position or, in other words, a point 
Y = (Xl, · .. ,xn ) E xn belongs to Yn if all coordinates of yare 
pairwise distinct. Then Yn is countably compact. 

An analysis of the proof of Lemma 2.1.3 given in [CMRST] 
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shows that the result remains valid for a compact space X in 
which countable discrete subsets are C*-embedded. Therefore, 
the conclusion of Theorem 2.1.2 also holds for such a space X 
(see Remark 3.9 of [CMRST]). In fact, the argument in the 
proof of Theorem 3.8 of [CMRST] gives even more: 

Theorem 2.1.4. Let X be a compact space in which ev­
ery countable discrete subset is C* -embedded. Then the free 
Abelian topological group A(X) does not have non-trivial con­
vergent sequences. 

A relation between convergent sequences and suitable sets is 
not evident, but one can show that a non-separable a-compact 
topological group with a suitable set has many convergent se­
quences. A partial result in this direction is Lemma 4.6 of 
Section IV. On the other hand, the problem of the existence of 
non-trivial convergent sequences in free topological groups on 
compact spaces is well-studied (see [EOY]). 

All this leaves, however, the following open problem. 

Problem 2.1. Let X be a non-separable compact space with­
out non-trivial convergent sequences. Is it true that A(X) fJ: S? 

Note that the conclusions of Lemma 2.1.3 and Theorem 2.1.4 
are false for the spaces as in Problem 2.1: the Alexandroff 
duplicate Y of ,BN \ N is a counterexample (nevertheless, the 
group A(Y) does not have a suitable set by Corollary 4.11 of 
Section IV). 

Since j3N \ N is a non-separable compact F-space, Theorem 
2.1.2 immediately -implies the following. 

Corollary 2.1.5. The free Abelian topological group A(,BN\N) 
does not have a suitable set. 

A generalization of Theorem 2.1.2 has recently been ob­
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tained by Tomita and Trigos-Arrieta [TT]. They show that 
if X is a non-separable compact F -space and H is a sequen­
tially compact topological group, then the product A(x)n x H 
does not have a suitable set. In particular, no finite power of 
A(X) has a suitable set. 

The free Abelian topological group A(j3N) on the separable 
compact space j3N has a closed suitable set by Theorem 2.1.1. 
Note that the group A(j3N\N) is topologically isomorphic to a 
closed subgroup of A(j3N) (extend the embedding i: j3N \ N ~ 

,8N to a continuous monomorphism i: A(,8N \ N) ~ A(,8N) 
and apply the Graev's description of closed subsets of the free 
topological group on a compact space to conclude that i is a 
topological embedding). We have obtained, therefore, the fol­
lowing result. 

Corollary 2.1.6. A closed subgroup of a topological group with 
a closed suitable set does not necessarily have a suitable set. 

Let us mention that a dense subgroup of a topological group 
with a closed suitable set can also fail to have a suitable set. 
We will see later more convincing examples of this kind, but 
this is a good place to mention here a tricky one which makes 
use of free topological groups (see Remark 3.13 of [CMRST]). 

Recall that a variety of topological groups is a class of topo­
logical groups closed under formation of subgroups, quotient 
groups, and arbitrary cartesian products. An analysis of the 
proof of Theorem 2.1.2 given in [CMRST] shows that the result 
remains valid if we replace free Abelian topological group by 
free topological group in the variety B(T) of topological groups 
generated by the circle group, 'Jr. In particular, if X is one of 
the two connected components of j3~ \ ~ (which is an a com­
pact F-space), then the group A(X, B(T)) has no suitable set. 
This group, however, is a a-compact connected dense subgroup 
of its closure in 1I'c, and this closure, like every compact con­
nected Abelian group of weight ~ c, is monothetic by Theorem 
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25.14 of [HR] and hence has a one-element suitable set. This 
argument proves the following result. 

Corollary 2.1.7. A dense subgroup of a monothetic group 
need not have a suitable set. 

A similar problem posed in [CMRST] as Open Question 2 
was to find out whether there exists (in ZFC) an example of 
a Hausdorff topological group G which has a dense subgroup 
H with a suitable set, but G itself does not have a suitable 
set. The answer again is negative. A simple example based 
on Theorem 2.1.2 was suggested by A. Tomita. Let D be an 
uncountable discrete space and let G = A((3D) be the free 
Abelian topological group on (3D. Denote by H the subgroup 
of A(f3D) algebraically generated by D. Then H is dense in G, 
the discrete set D generates H algebraically, and D = H n f3D 
is closed in H. Therefore, D is a closed suitable set for H, 
while f3D is a compact non-separable F-space, and according 
to Theorem 2.1.2, the group G has no suitable set. Our con­
clusion is the following: 

Corollary 2.1.8. There exist a a-compact topological group 
G and a dense subgroup H of G such that H ESe, but G fj: S. 

The latter result motivates the problem that follows. 

Problem 2.2. Is it true that every a-compact topological group 
has a dense subgroup with a suitable set'? 

We will show below that under <> there exists a hereditarily 
Lindelof non-separable topological group G such that no dense 
subgroup of G has a suitable set (see Theorem 2.2.4 (b)). We 
do not know, however, if it possible to construct in ZFC a 
topological group with no dense subgroups in S. This might 
indicate that the answer to Problem 2.1 is positive. 
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2.2. Application of Cp-techniques. Let X be a space. De­
note by Cp(X) the space of all real-valued continuous functions 
on X equipped with the topology of pointwise convergence. 
This means that Cp(X) is considered as the subspace of lRx 

and the latter carries the product topology. The space Cp(X) 
with the usual sum of functions and multiplication by reals 
becomes a locally convex topological linear space [Arl] , and 
hence a topological group. 

Given another space Y, one can define in a similar way the 
space Cp(X, Y) of continuous functions from X to Y identify­
ing it with the corresponding subspace of the product Y x. If 
Y is a topological group, then Cp(X, Y) is also a topological 
group (being a subgroup of the product group yX). 

A continuous bijection f: X ~ Y is called a condensation 
of X onto Y. We will also say that f condenses X onto Y. If 
g: X ~ Y is a continuous map and g: X ~ g(X) is one-to­
one, we say that 9 condenses X into Y. 

We present here a short list of the main facts of Cp-theory 
which will be used in the sequel (the proofs and discussions 
can be found in [Arl]). 

Theorem 2.2.1. (REFERENCES TO Cp-THEORY.) Let Y be ]I, 1r 
or JR. Then: 

(a) nw(Cp(X, Y)) = nw(X); 
(b) X is separable iff Cp(X, Y) condenses onto a second 

countable space; X condenses onto a second countable space iff 
Cp(X, Y) is separable; 

(c) Cp(X, Y) has countable tightness iff all finite powers of 
X are Lindelof; all finite powers of Cp(X, Y) are hereditarily 
Lindeloj iff all finite powers of X are hereditarily separable; 

(d) If X is the one-point compactijication of a discrete 
space, then Cp(X) topologically embeds into a ~-product of unit 
segments. 

Topological groups with a suitable set satisfy certain cardi­
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nal constraints as the following result from [DTTl] shows. We 
will use it to construct a special topological group without a 
suitable set. 

Lemma 2.2.2. A topological group G E S satisfies d(G) :::; 
L(G) . 'l/J(G). In particular, a non-separable Lindelof topologi­
cal group of countable pseudocharacter does not have a suitable 
set. 

Proof Suppose that A is a suitable set for G. If U is an open 
neigllborhood of the identity in G, then A\U is closed and 
discrete in G, and hence IA \ UI :::; L(G). Fix a family, of 
open sets in G such that n, = {I} and 1,1 = 'ljJ(G). It follows 
from 

A \ {I} ~ U{A\U) : U E ,} 

that IAI ~ L(G) ·'lj;(G). The subgroup H = (A) of G obviously 
satisfies IHI ~ IAI . ~o. Since A is a suitable set, the group H 
is dense in G which implies that 

d(G) ::; IHI ~ IAI· ~o ~ L(G) · 'ljJ(G). 

The rest of the lemma is immediate. o 

By a result of Okunev and Tamano rOTa], there exists a a­
compact separable space X such that nw(X) > No and Cp(X) 
is Lindelof. We use this space to prove the following. 

Theorem 2.2.4. (a) There exists a Lindelof non-separable 
linear topological space L of countable tightness and countable 
i-weight (and hence of countable pseudocharacter). Thus, L 
considered as a topological group does not have a suitable set. 
(b) Under 0 there exists a hereditarily Lindelof non-separable 
linear topological space L of countable tightness. Therefore, L 
considered as a topological group does not have a suitable set. 
In addition, no dense additive subgroup of L has a suitable set. 
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Proof. (a) Let X be the space constructed by Okunev and 
Tamano rOta] and L = Cp(X). Then L is Lindelof. Since 
X is a-compact (and hence all finite powers of X are Lin­
del6f), Theorem 2.2.1 (b) implies that t(L) ~ ~o. In addition, 
iw(L) ~ ~o because X is separable. However, L can not be 
separable for otherwise the i-weight of X would be countable 
by Theorem 2.2.1 (d1) and X would have countable network 
- a contradiction with the choice of the space X. 
(b) Under 0, Ivanov [Iv] constructed a compact non-metrizable 
space X such that xn is hereditarily separable for each n EN. 
If we put L = Cp(X), then L is hereditarily Lindelof by Theo­
rem 2.2.1 (c), and hence L has countable pseudocharacter. The 
space Cp(X) is not separable, because otherwise the compact 
space X would be metrizable by Theorem 2.2.1 (b). If H is 
a dense additive subgroup of L, then H is a Lindel6f non­
separable group of countable pseudocharacter, so Lemma 2.2.2 
implies that H does not have a suitable set. 0 

By Theorem 0.3, there exists under MA a countably com­
pact topological group with no suitable set. It was natural, 
therefore, to ask whether one can construct in ZFC a pseudo­
compact topological group which has no suitable set (see Open 
Question 3 of [CMRST]). This question was recently solved 
in the positive in [DTT1]. The group constructed in [DTT1] 
is not only pseudocompact, it is w-bounded (hence countably 
compact). We present here a brief description of the construc­
tion given in [DTT1]. 

Theorem 2.2.5. There exists a connected, locally connected 
Abelian topological group G with the following properties: 
(1) G is w-bounded; 
(2) G is a dense subgroup ojy2

c 
; 

(3) G'" does not have a suitable set for each ~ ~ 1; in particu­
lar, G tt s. 
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It is quite easy to define the group G as in Theorem 2.2.5, 
but the proof of the fact that it satisfies (1)-(3) requires a lot 
of work. Let X be the Tikhonov cube 'Ire with the w-modified 
topology and G = Cp(X, 'Ir). Then G is a dense subgroup of 
']['2 

c 

Note that X is a P-space, so one can apply the following • 

assertion proved in [DTT1] to conclude that G is w-bounded 
(and hence countably compact): 

Proposition 2.2.6. Let Y be a compact metrizable space. If 
X is a P-space, then Cp(X, Y) is w-bounded. 

Since G is dense in ']['X and countably compact, the pro­
jections of G cover all countable faces of 1['x. Therefore, G is 
connected by a result of [Tk]. A similar argument gives local 
connectedness of G. 

To show that G does not have a suitable set, we first note 
that G is not separable - otherwise X would condense onto 
a second countable space by Theorem 2.2.1 (b), and we would 
have IXI ::; c, a contradiction. Thus, a suitable set S for G 
must be uncountable. Since the group G is countably compact, 
y = S U {DG } is the one-point compactification of S. 

The second step of the proof is to note that Y separates 
points of X, that is, for any distinct x, y E X there exists 
fEY such that f (x) # f (y). If this were not so, the dense 
subgroup H = (Y) of G generated. by Y would not separate 
points of X either, which is obviously impossible. It is a stan­
dard fact of Cp-theory (see Proposition 0.5.4 (a) of [Ar1]) that 
if a family E ~ Cp(X, Z) separates the points of X, then the 
diagonal product cp of the mappings of E is a one-to-one con­
tinuous mapping of X to Cp(E, Z). But Cp(Y,1[') embeds into 
a ~-product ~(Y) of circles by Theorem 2.2.1 (d). Thus, cp 
condenses X into ~ (Y), and this contradicts the following re­
sult of [DTT1]: 

Lemma 2.2.7. The space 'Ire with the w-modified topology does 
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not admit a condensation into a ~-product of second countable 
spaces. 

This proves that G does not have a suitable set. To show 
that G"" does not have a suitable set for each ~ 2: 1, we 
use a simple but important fact below (see Proposition 2.7 
of [DTTl]): 

Lemma 2.2.8. Let f: K ~ L be a continuous epimorphism 
of countably compact groups. Then K E S implies L E S. 

So, let p: G"" ~ G be a projection where ~ ~ 1. Then 
G"" is w-bounded and hence countably compact. If G"" had a 
suitable set, Lemma 2.2.8 would imply that G has a suitable 
set, a contradiction. This proves Theorem 2.2.5. 0 

The group G in Theorem 2.2.5 has the cardinality 2', so it 
is natural to ask whether there exists a topological group hav­
ing similar properties to G, but of cardinality c. The answer 
is "yes". By Corollary 2.9 of [DTTl], the group G contains a 
dense, connected, locally connected subgroup H with IHI = c 
such that H"" does not have a suitable set for each ~ satisfying 
1 ::; K ::; w. This leaves, however, the following problems. 

Problem 2.3. Does there exist a topological group H of size 
c such that H"" has no suitable set for each K 2:: I? 

Problem 2.4. Does there exist an w-bounded topological 
group of size c without a suitable set? 

Let us mention here that a group H as in Problem 2.2 has 
to be countably compact. In fact, the following theorem proved 
in [DTTl] implies even more. 

Recall that a cardinal 7 > No is called measurable if there 
exists an ~o-complete free ultrafilter on the set 7. It is consis­



560 M. Tkacenko 

tent with ZFC that there are no measurable cardinals: V = L 
implies that all cardinals are non-measurable. All small cardi­

2No 2cnals such as No, C = , , etc., are non-measurable. 

Theorem 2.2.9. Let G be a topological group of non­
measurable cardinality. If no positive power of G has a suitable 
set, then GK is countably compact for each K ~ 1. 

A key to the proof of Theorem 2.2.9 is the following simple 
lemma. 

Lemma 2.2.10. Let G be a topological group. 
(a) If G contains a closed discrete subset A such that IAI > 
d(G), then G x G has a closed suitable set. 
(b) If G contains a closed discrete subset A of size IGI, then 
G x G has a closed generating set, that is, G x G E Scg. 

Proof. Let us prove the first part of the lemma. Suppose that 
A is a closoo discrete subset of G with IAI 2:: d(G). Choose 
a dense subset D of G with 1 fI. D satisfying IDI = d(G) and 
denote by <p any mapping of A onto D. We define a subset S 
of G x G by 

S = (A x {I}) U ({I} x A) U {(x, cp(x)) : x E A} U {(cp(x), x) : 
x E A}. 

It is clear that S is closed discrete in G x G and the sub­
group (8) of G x G generated by S is dense in G x G. The 
second assertion of the lemma can be proved in a similar way. 
o 

Let us turn to Theorem 2.2.9. Suppose that GT is not count­
ably compact for some cardinal 7. Then, by a theorem of 
Ginsburg and Saks [GS], a2c is not countably compact either. 
Therefore, G2

c 

contains an infinite closed discrete subset, say, 
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1t 1t

a copy of N. Denote K = IGI · c. Since (G2C
)2 G2 , therv 

group G21t contains a closed homeomorph of N21t 
• By a result 

of Juhasz [Ju], N21t contains a closed discrete subset of size 
2K.. We conclude, therefore, that G21t contains a closed discrete 
subset of cardinality 2K.. It remains to note that d(G2

1t 
) ::; 2K.,

1t 1t 
so Lemma 2.2.10 implies that the group G21t x G2 hasrv G2 

a closed suitable set. This proves Theorem 2.2.9. 

Was connectedness (or local connectedness) of the group G 
in Theorem 2.2.5 important to imply that G tt. 8? The answer 
is negative as the following theorem of [DTTl] shows. In the 
sequel we denote the discrete two-element group {a, I} by 2. 

Theorem 2.2.11. There exists a zero-dimensional topological 
group G with the following properties: 
(1) G is w-bounded; 
(2) G is a dense subgroup of2'; 
(3) GK. does not have a suitable set for each K 2: 1. 

The construction of such a group G is very much like to 
that in Theorem 2.2.5. Let ~(c) be the ~-product of c many 
copies of the discrete doubleton 2 with an arbitrary center, 
~ ~ 2'. Consider the w-modification X of the space ~(c). 

One can verify (see Theorem 2.11 of [DTT1]) that the group 
G = Cp(X, 2) has all required properties. 

It is worth mentioning that Lemma 2.2.10 has many other 
applications to suitable sets. One can slightly generalize it 
as follows. Let G and H be topological groups such that G 
contains a closed discrete subset A with IAI 2: d(H) and H 
contains a closed discrete subset B with IBI 2: d(G). Then 
G x H contains a closed suitable set. In particular, the follow­
ing result is valid (see [TT]). 

Corollary 2.2.12. Let G and H be two separable topological 
groups that are not countably compact. Then G x H has a 
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closed suitable set. 

We will see in Section V how Lemma 2.2.10 works for the 
study of Bohr topologies on locally compact Abelian groups. 

3. Categorical Properties of The Classes 8 and 8 c 

We study here the problem whether the classes 8, 8c , 8g and 
Scg are closed under cartesian and direct products, taking quo­
tients and (open or closed) subgroups, etc. 

The following result is proved in [CMRST]. 

Theorem 3.1. Let {Gi : i E I} be a family of topological 
groups in S. Then the direct sum a(I), the ~-product ~(I) 

and the cartesian product III = TIiEI Gi of this family have a 
suitable set. 

Note that both a(I) and ~(I) are dense subgroups of III, 
so it suffices to show that III has a suitable set S contained in 
a (I) . For every i E I, let Ii be the identity of Gi and 1I\{i} 

the identity of TIjEI\{i} Gj • Denote by Si a suitable set for Gi, 
i E I. One can easily verify that the set 

s = U Si X {lI\{i}} 
iEI 

is as required. 

Note that if Si is a generating suitable set for Gi for each 
i E I, then the set S defined above is a generating suitable set 
for a(I). This implies Corollary 3.2.4 of [DTT2]: 

Corollary 3.2. The classes 8 and 8 g are closed with respect 
to arbitrary direct sums. 

The previous corollary is not valid for the classes Sc and 
Seg as we will see below. In the countable case, however, the 
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conclusion still holds by Theorem 3.1.2 of [DTT2]: 

Assertion 3.3. The classes Se and Seg are closed with respect 
to countable direct sums. 

The proof of Theorem 3.1 does not work in this case, so we 
have to change the construction. Let {Gi : i E w} be a family 
of topological groups in 8e, and let G = a(w) be the direct 
sum of these groups, a(w) ~ TIiEw Gi . For each i E w, choose 
a closed suitable set Si for Gi and define 

where Ii is the identity of the group TIj>i Gj . A direct verifi­
cation shows that S = UiEW Ai is a closed suitable set for a(w). 
In addition, if each Si generates the group Gi , then S generates 
a(w). Therefore, G E Beg in the latter case. 

If the index set I in Theorem 3.1 is infinite, the set S in (*) 
has the identity 1 of III as a cluster point, so S chosen in that 
way cannot be closed. It turns out that no closed suitable set 
can exist for a product group in some cases (see Proposition 
3.2.5 of [DTT2]): 

Theorem 3.4. The classes 8 e, 8 g and Seg are closed with 
respect to finite products but fail to be closed with respect to 
infinite products. 

In fact, the construction of the set S given after Theorem 
3.1 still works to prove the first assertion of Theorem 3.4. As 
for the second one, we present a single counterexample which 
serves for the three classes. The key is the following simple 
fact, the proof of which is left to the reader: if a compact 
group G is in some of these three classes, then G has a dense 
finitely generated subgroup. Now let C be a finite cyclic group 
with lei> 1 (so that C E Seg), and put G = ew 

• Then every 
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finitely generated subgroup of G is finite, whence G fj. Sc and 
G tt 8g • 

It is worth mentioning that the product operation can im­
prove the properties of topological groups. For example, by 
Theorem 2.2.9, if a G is a topological group of non-measurable 
cardinality and G is not countably compact, then G'" has a 
suitable set for some cardinal K (while G is not necessarily in 
8). The following result is another example of this kind. 

Theorem 3.5. Let {Gi : i E I} be an infinite family of non­
trivial topological groups each of which has a dense strictly 0'­
discrete subset. Then the direct sum 0'(1) of these groups has 
a suitable set. 

Proof Suppose first that III = ~o. One easily verifies then that 
0'(1) has a strictly a-discrete subset and is not pseudocompact. 
By Theorem 1.11, a(1) has a suitable set. If III > ~o, we can 
partition the index set I into countably infinite subsets and 
then apply Corollary 3.2. 0 

Corollary 3.6. The direct sum of infinitely many non-trivial 
separable topological groups has a suitable set. 

If the family {Gi : i E I} in Theorem 3.5 (or in Corollary 
3.6) is countably infinite, then the direct sum a(1) has a closed 
suitable set by Theorem 1.11. If, however, the index set I is 
uncountable, the latter conclusion can be false. Indeed, let 
G = a(wl) be the direct sum of Wl copies of the two-element 
group {a, I}. The group G is a-compact and non-separable, 
so that a suitable set S for G has to be uncountable. Let 
G = UiEW Ki be a union of compact sets Ki . If S were closed, 
every intersection S n K i would be finite, and hence S would 
be countable, a contradiction. 

By Corollaries 2.1.6 and 2.1.7, neither a closed nor dense 



565 GENERATING DENSE SUBGROUPS... 

subgroup of a group in Se has to be in S. It turns out that 
even open subgroups of the groups in Seg can be arbitrarily 
bad (see Theorem 4.7 of [CMRST]). 

Theorem 3.7. For every topological group G, the group H = 
G x Gd belongs to Seg, where Gd denotes the group G equipped 
with the discrete topology. So, if G ¢. S, then the projection 
p : H ~ G is an open homomorphism which does not preserve 
the classes S, Se, Sg and Seg. 

The proof of Theorem 3.7 is straightforward. Indeed, define 

s = {(x,x) : x E G} U {(l,x) : x E Gd }. 

Then 8 generates G x Gd algebraically. It is easy to see that 
S is closed and discrete in G x Gd• Note that G x {I} is an 
open subgroup of the group G x Gd , so we have the following. 

Corollary 3.8. Every topological group can be embedded as an 
open subgroup into a group in Seg. 

Theorem 3.7 shows that a quotient group of a group in Seg 
need not even belong to S. Closed homomorphisms are much 
better, as the following result of [DTT2] shows. 

Theorem 3.9. The classes S, Se, Sg and Seg are invariant 
with respect to closed homomorphic images. 

Indeed, let f : G ~ H be a closed continuous surjective 
homomorphism, and 8 a suitable set for G. Define 81 = 

j(8) \ {lH}. Since S ~ S U {lG} and j is closed, we have 
81 U{lH} = j(8 U{lG}, and the latter set is closed in H. A 
similar argument applied to an arbitrary subset 8' of 8 shows 
that 81 is discrete, and the identity IH of H can be the only 
accumulation point of 81, i. e., 81 is suitable for H. It remains 
to note that if 8 is closed (generating), then 81 has the same 
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property. 

Corollary 3.10. If G E Sand K is a compact normal sub­
group of G, then GIKE 8. The same is true for the classes 
Se, 8 g and Seg. 

Recall that every continuous homomorphic image of a group 
G E S belongs to S if G is countably compact (see Lemma 
2.2.8). 

Another interesting problem posed in [DTT2] is to investi­
gate whether the class S is invariant under extensions. 

Problem 3.1. Let C be one of the classes S, 8e, Sg or Seg. 
Suppose that N is a closed normal subgroup of a topological 
group G such that GIN E C and N E C. Is it true that G E C? 
What is the answer if N is either compact or metrizable? 

By Theorems 3.4 and 3.1, the answer to Problem 3.1 is "yes" 
if N is a topological direct summand, i. e., G ~ N x GIN. 
This remains valid for semidirect products as well (see Corol­
lary 3.13 below). Note that Lemma 1.4 answers Problem 3.1 
affirmatively for both Sand Se when N is open, i. e., when 
G / N is discrete. This observation suggests us to impose some 
additional restrictions on the quotient group GIN in order to 
get G E S. The first positive general result was obtained for 
the class Se (see Theorem 3.4.5 of [DTT2]). 

Theorem 3.11. Let N be a closed normal subgroup of a topo­
logical group G such that H = GIN E See Then (a) if N E 8, 
then G E S; (b) if N ESe, then G ESe. 

It is also possible to show that if GIN E Seg and N E Sg 
(resp., N E Seg), then G E Sg (resp., G E Seg). 

Let us present another condition to ensure the positive an­
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swer to Problem 3.1. We say that a homomorphism f : G ~ H 
has a closed section if there exists a closed subset X of G such 
that f(X) = H, i. e., there exists a (not necessarily continu­
ous) section s : H ~ G such that X = s(H) is closed in G. 
The following result coincides with Lemma 3.4.7 of [DTT2]. 

Theorem 3.12. Let f : G ~ GIN be a quotient homomor­
phism with a closed section, and N E S. Then GIN E S 
implies G E S. 

The following corollary to Theorems 3.11 and 3.12 is imme­
diate. 

Corollary 3.13. The classes Sand 5e are closed under the 
semidirect product operation. 

In fact, Corollary 3.13 remains valid for the classes 5g and 
Seg as well - this follows from the construction of a suitable 
set given in the proof of Lemma 3.4.7 of [DTT2]. 

A quotient group of a pseudocompact topological group 
G E 5 (or even G ESe) does not necessarily have a suit­
able set (see Corollary 3.4 of [DTT1]). The situation changes 
if G is connected and the kernel of the corresponding homo­
morphism is sufficiently big. 

Corollary 3.14. lfG is a connected pseudocompact group and 
N E S (resp. N ESe) is a closed normal G6-subgroup of G, 
then G ~ S (resp. G ESe). 

Indeed, in this case GIN is a compact connected metrizable 
group by Theorem 3.2 of [CR], so that GIN has a two-element 
suitable set by a theorem of Hofmann and Morris [HM1]. We 
conclude, therefore, that GIN E 5e, and Theorem 3.11 implies 
that G E S. 

We do not know, however, if Corollary 3.14 remains valid 
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without the assumption that G is connected. 

Several interesting results related to Problem 3.1 have re­
cently been obtained by Dikranjan and Trigos-Arrieta [DTr]. 
They showed that if H is closed normal subgroup of a topolog­
ical group G and the quotient group G/ H has a closed suitable 
set S such that d(H) ::; /SI, then G also has a closed suitable 
set. It is worth to mention that the subgroup H of G need not 
belong to S. 

A topological group G has a closed suitable set if it contains 
a discrete normal subgroup H such that G/ H E Se (no addi­
tional restrictions on H are required in this case). Finally, if H 
is again a discrete normal subgroup of G and G/ H E S, then 
G E S [DTr]. 

4. Free Topological Groups 

By Theorem 2.1.2, the free Abelian topological group A(X) on 
a non-separable compact F-space X does not necessarily have 
a suitable set. In fact, the proof of this result presented in 
[CMRTS] works in the non-Abelian case as well. It seems in­
teresting, therefore, to characterize the spaces X for which the 
free topological group F(X) (or the free Abelian topological 
group A(X)) has a suitable set. It is not difficult to show that 
if X is compact and F(X) E S, then A(X) E S. The converse 
is not evident and apparently is an open problem. 

We denote by Cf the class of spaces X such that F(X) has 
a suitable set. According to Theorem 2.1.2, not every compact 
space is in Cf: the spaces of the form /3D \ D with D discrete 
and infinite do not belong to Cf . On the other hand, all sep­
arable spaces are in Cf by Theorem 2.1.1. The class Cf also 
includes all metrizable spaces according to Corollary 3.14 of 
[DTTl]: 

Theorem 4.1. The free topological group F(X) on a metriz­
able space X has a closed suitable set. 
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It is known that for a metrizable space X, the group F(X) is 
a countable union of its closed metrizable subspaces (see Fact 
Ql of [Ar2]). Since F(X) is never pseudocompact, Theorem 
1.11 implies that F(X) has a closed suitable set. 

We call a X a a-space if it has a a-discrete network [Oku]. 
By a result of Arhangel'skiI [Ar2] , the free topological group 
F(X) on a paracompact a-space X is also paracompact a­
space, and hence has a a-discrete network. Therefore, Theorem 
1.11 implies the following result which generalizes Theorem 4.1: 

Theorem 4.2. If X is a paracompact a-space, then the free 
topological group F(X) has a closed suitable set. 

Since every stratifiable space is a paracompact a-space [Grul, 
we conclude that all stratifiable spaces are in Cf . 

It is very easy to show that every compact supersequence (a 
one-point compactification of a discrete space) is in the class 
Cf · In fact, a more general result holds (see Theorem 17 of 
[TT]): 

Assertion 4.3. If a space X has at most one non-isolated 
point, then F(X) E Cf . 

Indeed, let X = Y U {a}, where all points of Yare isolated 
in X. Then S = {a} U {a-I. y : y E Y} is a suitable set for 
F(X). 

Ordinal spaces form another subclass of Cf . By an ordinal 
space we mean any ordinal Q endowed with the order topology, 
and the corresponding space is denoted by T(Q). The following 
result has been proved independently in [OTk] and [TT]. 

Theorem 4.4. T(Q) E Cf for every ordinal Q. 

It is not surprising that the set S = {O} U {,B-1. ({3 + 1) : 
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j3 +1 < a} is suitable for F (T(a) ). The proof of this fact given 
in [OTk] depends on the following property of ordinal spaces: 

Lemma 4.5. If a is an ordinal with cf (0) =I w, then the set 
R = {((3, f3 + 1) : (3 + 1 < o} converges to the diagonal D. 
in T(a)2. In other words, every neighborhood of 6. in T(a)2 
contains all but finitely many points of R. 

Assertion 4.3 and Theorem 4.4 suggest the hypothesis that 
all "good" compact spaces are in Cf. For example, we can 
ask whether Tychonoff cubes, Cantor cubes or their contin­
uous images (i. e., dyadic spaces) belong to Cf. Surprisingly, 
the answer to this question is in affirmative. The first step in 
the proof of this fact is the following simple characterization 
of compact spaces in Cf (see [OTk, Lemma 2.2]): 

Lemma 4.6. For a compact space X the following conditions 
are equivalent: 
(i) X E Cf ; 
(ii) there is a subset S ofF(X) that generates a dense subgroup 
of F(X) and is a countable union of compact supersequences. 

The second (still simple) step is to show that continuous im­
ages of compact spaces in Cf are in Cf (Lemma 2.3 of [OTk]). 

Lemma 4.7. If X is compact, X E Cf and Y is a continuous 
image of X, then Y E Cf. 

In fact, Lemma 4.7 follows directly from Lemma 4.6. The 
third and the most difficult part of the proof that all dyadic 
compact spaces belong to Cf is the productivity of compact 
spaces in Cf (Theorem 2.15 of [OTk]). 

Theorem 4.8. If {Xi: i E I} is a family of compact spaces 
and Xi E Cf for each i E I, then TIiEI Xi E Cf. 
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By Theorem 2.1.1, every separable space is in C/, so Theo­
rem 4.8 and Lemma 4.7 imply the following result (see [OTk, 
Corollary 2.16]). 

Corollary 4.9. Every continuous image of a product of sepa­
rable compact spaces belongs to C/ . 

A compact space is called polyadic [Mr] if it is a continuous 
image of a product of compact supersequences. Obviously, the 
class of polyadic spaces contains the class of all dyadic spaces. 
Since every compact supersequence is in C/ (Assertion 4.2), 
Theorem 4.8 and Lemma 4.7 together imply that all polyadic 
spaces belong to C/ : 

Corollary 4.10. Every polyadic, in particular, every dyadic 
space belongs to the class C/ . 

Note that every compact supersequence is a continuous im­
age of an ordinal space of the form T(o: + 1) (identify all limit 
ordinals::; 0: to a point). Therefore, the class of spaces X as 
in Corollary 4.11 below contains all polyadic spaces. 

Corollary 4.11. If 0: is an ordinal and X is a continuous im­
age of an arbitrary power of the space T(a + 1), then X E C/. 

Again, Corollary 4.11 is immediate if we use Theorems 4.4, 
4.8 and Lemma 4.7. Corollaries 4.10 and 4.11 are due to 
Okunev and Tkacenko [OTk]. 

Since t3N \ N tt C/ by Corollary 2.1.5, we conclude that 
,BN \ N is not a continuous image of any power of any ordinal 
space T(a + 1). 

Recall that two spaces X and Yare called M-equivalent if 
the free topological groups F(X) and F(Y) are topologically 
isomorphic [Gra] , [Ok]. The proof of Theorem 4.8 given in 
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[OTk] essentially depends on this useful notion. It is known 
that the Alexandroff duplicate of an infinite compact space X 
is M-equivalent to the free sum X €I' C, where C is a compact 
supersequence of cardinality IXI. Since the class Cf is closed 
under finite sums, we obtain the following result: 

Corollary 4.12. The Alexandroff duplicate of a compact space 
from Cf also belongs to Cf. 

As we have seen, the class Cf is very wide (even if we restrict 
ourselves only to considering compact spaces). However, the 
following problems still remain open (see [OTk]): 

Problem 4.1. Does every scattered compact space belong to 
Cf ? Is every compact space of cardinality less that C in Cf ? 

Problem 4.2. Does every Eberlein (Corson) compact space 
belong to Cf ? 

Problem 4.3. Does Cf contain the class of linearly ord·ered 
compact spaces? 

5. Minimal Groups and Bohr Topologies 

By a theorem of Hofmann and Morris [HM], every locally com­
pact group has a suitable set. None of the other compact-like 
properties considered so far (w-boundedness, completeness, be­
ing Lindelof, a-compactness) imply the existence of a suitable 
set. 

The property of a topological group to be minimal or totally 
minimal is close in some sense to local compactness: minimal 
groups often have a suitable set. A topological group (G, T) is 
called minimal if '( is a minimal element of the partially or­
dered (with respect to inclusion) set of Hausdorff group topolo­
gies on the group G. We say that G is totally minimal if every 
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Hausdorff quotient group of G is minimal. To stress the re­
lation between minimality and compactness, we just mention 
here a fundamental result of Prodanov and Stoyanov [PS]: ev­
ery minimal Abelian group is totally bounded, or equivalently, 
precompact. 

All results of this Section were proved in [DTT2], so in the 
sequel we often omit the references to the authority. The fol­
lowing result summarizes several facts on preimages of topo­
logical groups taken from different sources (see Lemma 4.1.1 
of [DTT2]). 

Proposition 5.1. Let f : G ~ GI be a continuous surjective
 
homomorphism of compact groups and HI a dense subgroup of
 
GI . Then the subgroup H = f-l(H1) of G is dense in G and:
 
(aJ HI rv Hiker f;
 
(bJ H is totally minimal if HI is totally minimal;
 
(c) H is minimal if HI is minimal; 
(d) H is countably compact if HI is countably compact; 
(e) H is w-bounded if HI is w-bounded; 
(f) HI E S (resp., HI ESe, 8g, Seg) if H E S (resp., H E 

Be' 8g, 8eg). 

By Theorems 0.2 and 3.1, a cartesian product of metrizable 
topological groups has a suitable set. On the other hand, dense 
subgroups of such a product group can fail to have a suitable 
set even if all the factors are second countable (see Theorems 
2.2.5 and 2.2.11). It turns out that total minimality improves 
the situation. 

Proposition 5.2. A dense totally minimal subgroup of a prod­
uct of metrizable groups has a suitable set. 

The proof of Proposition 5.2 is based on the fact that a dense 
totally minimal subgroup H of a product group contains the 
direct sum of the factors, so that we can apply the construction 
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given after Theorem 3.1 to obtain a suitable set for H. 
By IvanovskiI-Kuz'minov theorem, all compact topological 

groups are dyadic, i. e., continuous images of 2~ for a suffi­
ciently big cardinal K. If, however, a compact group G is not 
boolean (that is, x2 =1= 1a for some x E G), there is no homo­
morphism of 2~ onto G by the obvious algebraic reason. We can 
still represent compact groups as continuous homomorphic im­
ages of cartesian products of compact second countable groups 
in two important cases. 

Theorem 5.3. Let G be a compact topological group which is 
either Abelian or connected. Then G is a quotient group of a 
cartesian product of compact metrizable groups. In addition, 
if G is Abelian (connected), then the factors can be chosen 
Abelian (connected). 

Note that Theorem 5.3 immediately implies that compact 
Abelian groups and compact connected groups are dyadic. Our 
aim, however, is different: we apply Theorem 5.3 to deduce the 
following. 

Theorem 5.4. Every totally minimal Abelian group has a 
suitable set. 

Proof. Let G be a totally minimal Abelian group. Then the 
completion Gof G is a compact Abelian group by Prodanov­
Stoyanov theorem [PS]. By Theorem 5.3, there exists a continu­
ous surjective homomorphism f: K ~ G, where K = TIiEI K i 

and every Ki is a compact metrizable group. According to 
Proposition 5.1, H = f-l(G) is a dense totally minimal sub­
group of K and H/N rv G, where N is the kernel of f. From 
Proposition 5.2 it follows that H E S. Now Proposition 5.1 (f) 
completes the proof. 0 

It is not known if "Abelian" is essential in Theorem 5.4: 
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Problem 5.1. Does the class S contain all totally minimal 
groups? Are all precompact totally minimal groups in S? 

The following result gives a partial positive answer to Prob­
lem 5.1. 

Theorem 5.5. Every totally minimal connected precompact 
group G has a suitable set. 

Proof Since the completion G of G is a compact connected 
group, we can find a continuous surjective homomorphism 
f: IliEI K i ~ G, where every K i is a compact metrizable 
group. It remains to apply the final part of the reasoning in 
the proof of Theorem 5.4 based essentially on Proposition 5.1 
to obtain G E S. 0 

An interesting example of a totally minimal topological 
group can be obtained as follows. Consider the group S(X) 
of all permutation ofaan infinite set X. This group is endowed 
with the topology of pointwise convergence a base at the iden­
tity of which consists of the sets UK of all functions f : X ~ X 
that do not move the points of a finite set K ~ X. Total min­
imality of S(X) was established by Dierolf and Schwanengel 
[DS]. A short proof of the fact that S(X) has a closed suitable 
set in given in [DTT2, Example 4.1.7]. Note that the group 
S(X) is very far from being Abelian or precompact. 

The wider class of minimal topological groups contains many 
groups without a suitable set. The following example is taken 
from [DTT2]. 

Example 5.6. There exists an w-bounded (and hence count­
ably compact) minimal Abelian group H without suitable sets. 
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Let G be the w-bounded dense subgroup of Z(2)C with G tJ. s 
constructed in Theorem 2.2.11. The group G is not minimal 
(since a minimal group of exponent 2 must be compact, see 
[DPS, Example 2.5.3 (b)]). In order to correct this, we consider 
a surjective continuous homomorphism f : K --+ Z(2)C where 
K is a totally disconnected compact Abelian group. Then by 
Proposition 5.1 (e), (f) the subgroup H = f-l(G) of K is w­
bounded and H tJ. S. To guarantee the minimality of Hone 
has to choose f in such a way that every closed non-trivial sub­
group of K meets ker f (cf. [DPS, Theorem 2.5.1]). The group 
K = Z(4)C and the homomorphism f : Z(4)C --+ Z(2)C defined 
by f (x) = x + x satisfy the latter condition, thus finishing our 
construction. 

As in the case of totally minimal.groups, connectedness im­
proves the properties of minimal groups. 

Theorem 5.7. Every minimal countably compact connected 
Abelian group has a suitable set. 

The proof of this result is based on Theorem 5.3 and Corol­
laries 3.2 and 3.14 (see [DTT2, Theorem 4.2.1]). The non­
Abelian case again. presents difficulties: 

Problem 5.2. Is it true that every minimal countably compact 
connected group has a suitable set'? 

We finish with a discussion of topological groups equipped 
with the Bohr topology. Given a topological group (G, 7), 
consider the weakest group topology 7+ on G which makes 
all 7-continuous homomorphisms of G to compact groups 7+­
continuous. The new topology 7+ is called the Bohr topology 
on G. Clearly, 7+ is weaker that 7 and the group G+ = (G,7+) 
is totally bounded. However, the topology 7+ is not necessarily 
Hausdorff. When it is, the group G is said to be maximally al­
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most periodic (MAP). It is well known that all discrete Abelian 
groups as well as Abelian totally bounded groups are MAP. 

Pontryagin-van Kampen duality theory is based on the fact 
that all locally compact Abelian groups are in the class MAP. 
Furthermore, continuous homomorphisms of a locally compact 
Abelian group G to the circle group]' separate the elements 
of G. It is also known that for an Abelian group (G, T), the 
Bohr topology T+ on G is the weakest one which makes the T­

continuous homomorphisms to the circle group T+ -continuous. 
There are many totally bounded topological groups which 

have no suitable set; one can even find an w-bounded mini­
mal Abelian group which is not in S (see Example 5.6). On 
the other hand, every locally compact group has a suitable set 
by Theorem 0.1. The following result (proved independently 
in [DTT2] and [TT]) shows that the functor + assigning to a 
group G its modification G+ preserves the latter property of 
locally compact Abelian groups. 

Theorem 5.8. G+ has a suitable set for every locally compact 
Abelian group G. 

We do not know, however, if Theorem 5.8 remains valid for 
maximally almost periodic groups (see [TT]): 

Problem 5.3.. Does H+ E S for every locally compact MAP 
group H? 

Note that the group G in Theorem 2.2.5 is MAP and G+ = 
G, so there exist Abelian MAP groups H with H ~ s. 

If a group G is discrete, we follow van Douwen [Dou2] and 
write G# instead of G+. Clearly, every discrete group belongs 
to Scg, i. e., has a closed generating suitable set. By Theorem 
5.7 of [DTT2], the functor # preserves this property in the 
Abelian case. 
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Theorem 5.9. G# E Scg for every discrete Abelian group G. 

Theorem 5.8 admits one generalization that gives a partial 
positive answer to Problem 5.3. To present it, we first note 
that the functor + preserves arbitrary products of locally com­
pact Abelian group, that is, (IIiEI Gi )+ IIiEI Gt for every rv 

family {Gi : i E I} of locally compact Abelian groups (see 
Theorem 5.1 (d) of [DTT2]).Combining this fact with Theo­
rems 5.9 and 3.1, we obtain the following result. 

Theorem 5.10. Let G be a cartesian product of locally com­
pact Abelian groups. Then G+ E S. 

The study of Bohr topologies on topological groups concern­
ing suitable sets is far from being completed, and we present 
here only one (of many other) open problems in this area (see 
[DTT2]): 

Problem 5.4. (a) Let G be a locally compact Abelian group. 
Does G E Se always imply G+ E Se? 
(b) Does every Abelian topological group that satisfies the 
Pontryagin-van Kampen duality admit a suitable set? 

Very recently Dikranjan and Trigos-Arrieta [DTr] gave a 
complete solution to Problem 5.4. First, they proved that for 
every locally compact Abelian group G, the conditions G E Sc 
and G+ E Se are equivalent, thus answering (a) of Problem 
5.4 in the positive. To answer (b) of Problem 5.4, Dikranjan 
and Trigos-Arrieta applied the following fact established by 
Pestov in [Pe]: the free Abelian topological group A(X) on 
a zero-dimensional compact space X satisfies Pontryagin-van 
Kampen's duality. Therefore, by Corollary 2.1.5, the group 
A(,BN \ N) on t3N \ N is a counterexample to the conjecture in 
(b) of the problem. 

It is also showen in [DTr] that Theorem 5.8 admits a gen­
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eralization to the class of locally compact Moore groups, that 
is, G+ E S for every locally compact Moore group G. Recall 
that a topological group G is called Moore if every contin­
uous unitary irreducible representation of G is finite dimen­
sional. The class of Moore groups contains all locally compact 
Abelian groups and all compact groups, and it is closed un­
der the operations of taking closed subgroups, quotients, finite 
products and extensions. Since locally compact Moore groups 
are MAP, the above result of [DTr] gives a partial positive an­
swer to Problem 5.3. In addition, for every locally compact 
Moore group G, the conditions G E Se and G+ E Se are equiv­
alent [DTr]. 
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