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CONNECTIVITY OF STABLY COMPACT SPACES 

Julian Webster* 

Abstract 

Kopperman and Wilson, in [7], have recently 
introduced a definition of approximation of com­
pact metric spaces by inverse sequences of finite 
To-spaces, which introduces a formal notion of 
approximation to (topological) digital topology. 
They propose the consideration of stably com­
pact spaces in this context, and give various re­
sults concerning connectivity. This work is a de­
velopment of that theory. 

1. Introduction 

Freudenthal proved in 1937 that a space is compact metric if 
and only if it is the limit of an inverse sequence of polyhedra 
(see Nagata's account in [11]). Apart from its significance in 
classical topology (and in continuum theory in particular), this 
result is also of interest in computer science. Kopperman and 
Wilson (K & W) have very recently. formulated a version of 
the result in terms of the types of structure considered in dig­
ital topology: where an inverse sequence of spaces is said to 
approximate the T2-reflection of its limit (the T2-reflection of 
a space X consists of a Hausdorff space Y and a continuous 
map f : X ~ Y such that any continuous map from X to 
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any Hausdorff space factors through f in a unique way), they 
proved in [7] that: 

Theorem 1.1. A space is compact metric if and only if it can 
be approximated by an inverse sequence of finite To-spaces. 

Thus a space may be considered in a mathematically pre­
cise way as the limit of its computational models. K & W then 
show that connectivity of a space may be expressed in terms of 
connectivity of its models: a compact metric space is connected 
if and only if it can be approximated by connected finite To­
spaces (in fact, K & W consider the approximation of compact 
Hausdorff spaces by inverse spectra of finite To-spaces, but, for 
simplicity, we will only consider inverse sequences here). More­
over, they argue that the stably compact (the terminology they 
use is skew compact) spaces are an important class of spaces 
to consider in this context, since they are closed under inverse 
limits and include compact metric and finite To-spaces. This 
work is an attempt to develop the theory by expressing fur­
ther connectivity properties of a space in terms of connectivity 
properties of its models, and by developing a theory of con­
nectivity on stably compact spaces in general. Such a theory 
would embrace the standard theory on compact metric spaces 
and would apply equally well to their finite models in digital 
topology. A well-known example in this regard is a connected 
ordered topological space (COTS), which is a connected space 
such that, for any three distinct points, one separates the other 
two, and which is a definition of a line that generalizes the clas­
sical definition and also that of the Khalimsky line (see [5]). In 
fact, we shall argue that the definition of a COTS should be 
adjusted slightly. 

2. Stably Compact Spaces 

We will follow Lawson's description of stably compact spaces 
and proper maps in terms of compact ordered spaces and con­
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tinuous order-preserving maps; see [8] (to which we also refer 
for basic definitions and results in non-Hausdorff topology) for 
a more detailed approach and for the proofs of various stan­
dard results stated below; for a background to compact ordered 
spaces, see Nachbin [9]. 

Notation and Terminology. Where:S is a pa~tial order on 
a set X, for x E X: ix denotes the set {y I x :s y} and lx 
denotes the set {y I y ~ x}. For P ~ X: iP denotes the set 
U{ix I x E P} and lP denotes the set U{lx I x E Pl. P 
is an upper set if P = i P, and is a lower set if P = lP. In 
a compact ordered space, this notation and terminology will 
always be used with respect to the order; in a stably compact 
space, it will always be used with respect to the specialization 
order. The specialization order on a space X is denoted ~x. 

A binary relation on a space is closed if it is a closed subset 
of the product space. A compact ordered space is a compact 
Hausdorff space together with a closed partial order. Associ­
ated are two significant topologies: the collection of all open 
upper sets is called the stably compact topology, and the col­
lection of all open lower sets is called the dual-stably compact 
topology. A space is stably compact if it is the stably com­
pact space corresponding to some compact ordered space. For 
a purely topological characterization: stably compact spaces 
are compact, locally compact, sober, and such that the inter­
section of any two compact upper subsets is compact. Every 
stably compact space is To. Examples include compact Haus­
dorff spaces, which are precisely the stably compact Hausdorff 
spaces, and finite To-spaces, which are precisely the finite sta­
bly compact spaces. 

Any stably compact space X contains all the information 
necessary to reconstruct the compact ordered space to which 
it corresponds. The dual topology on X is the collection of com­
plements of compact upper subsets, and the resultant space is 
called the dual space, which is denoted X D. Any stably com­
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pact space is the dual of its dual, i.e. X = (XD)D. The patch 
topology on X is that which has as subbase the topology on X 
together with the dual topology on X, and the resultant space 
is called the patch space, which is denoted X P (open subsets of 
X D are called dual-open; open subsets of xP are called patch­
open). The patch topology is compact Hausdorff, and ~x is 
closed in the patch topology. This gives a compact ordered 
space (XP, ~x), with respect to which X is the corresponding 
stably compact space, and X D is the corresponding dual-stably 
compact space. 

A subset of a space is stably compact if its subspace topology 
is stably compact; K & W showed that: 

Proposition 2.1. If a subset of a stably compact space is patch­
closed then it is a stably compact subset of X and of XD . 

Examples of patch-closed subsets of a stably compact space 
are the closed sets and the compact upper (= dual-closed) sets. 
For any compact subset C, jC is compact upper and so is 
patch-closed. The result does not have a converse, however: 
even if a subset of a space is stably compact and stably compact 
in the dual-space it is not necessarily patch-closed. 

A continuous map between stably compact spaces is proper 
if it is continuous with respect to the respective dual topolo­
gies. Between compact Hausdorff spaces, or between finite 
To-spaces, the proper maps are precisely the continuous maps. 
Proper maps are called de Groot maps by K & W. The proper 
maps are precisely those that are continuous and order­
preserving as maps between the corresponding compact or­
dered spaces. A further characterization of proper maps was 
given by Escardo in [3]: 

Notation. For any continuous map f : X ~ Y and for any 
U ~ X, 'if(U) denotes the greatest open subset of Y whose 
preimage is a subset of U. 



CONNECTIVITY OF STABLY COMPACT SPACES 587 

Proposition 2.2. A continuous map f : X ~ Y between sta­
bly compact spaces is proper if and only if for all open U ~ X, 
Vf(U) = {y I f-l(jy) ~ U}. 

We now consider inverse sequences of stably compact spaces. 
To recall some standard terminology, a thread of an inverse 
sequence (Xi, fi) is a sequence of points (Xi) such that each 
Xi = fi(Xi+l). Where Xw is the set of all threads, for each j 
the jth-projection is the map Pi: X w ~ Xi, (Xi) 1---+ Xi. The 
limit of the inverse sequence is X w together with the inverse 
limit topology, which has as base the collection of preimages 
of open sets under the projections. Although the limit of an 
inverse sequence of compact Hausdorff spaces is compact Haus­
dorff, the limit of an inverse sequence of compact spaces is not 
necessarily compact (a counterexample is given in [1] Ex.I.9.7). 
The following result was given (with a different proof) by K 
& W, but the idea of considering stable compactness in the 
context of inverse sequences was suggested independently to 
the author by Mike Smyth. 

Proposition 2.3. The limit of an inverse sequence of stably 
compact spaces and proper maps is stably compact, and each 
projection on the limit is proper. 

Proof Consider an inverse sequence ((Xi, :=5i), fi) of compact 
ordered spaces and continuous order-preserving maps. Let X w 

be the limit of the inverse sequence of spaces (Xi, Ii)' with 
(Pi) the projections. Then ::;w= ni(Pi x Pi)-l(::;i) is a closed 
partial order on X w , with respect to which each projection is 
order-preserving. It suffices to show that the stably compact 
topology corresponding to the compact ordered space (Xw , :5w) 
is the inverse limit topology of the stably compact topolo­
gies corresponding to the compact ordered spaces (Xi, ~i). 

For any open upper U ~ (Xi, ~i), p:;l(U) is open upper in 
(Xw , ::;w). Conversely, suppose that U ~ (Xw, ~w) is an open 
upper neighbourhood of the thread (Xi). Then j(Xi) is a subset 
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of U, and is the intersection of the compact sets p;l(ixi), so 
there is some j such that Pjl(jXj) ~ U. Translating Proposi­
tion 2.2 to the context of compact ordered spaces, we have that 
(Xi) E Pjl(Vpj(U)) ~ U and Vpj(U) is open upper in (Xj , ::;j). 
D 

3. Finite Approximation of Spaces 

In this section we give a construction of an inverse sequence of 
finite To-spaces approximating a given compact metric space, 
which is different to the construction given by K & W, but 
which is needed in a later proof. We consider a cover of a space 
X as a finite multiset C of non-empty compact subsets whose 
union is X (multisets are needed for the proof of Theorem 4.9). 
8 ~ C is a simplex if 8 =I 0 and ns. (= n{C ICE 8}) =I 0. 

Definition 3.1. The finite To-space T(C) corresponding to a 
cover C is the set of simplexes together with the (unique) topol­
ogy for which 8 1 ::;T(C) 8 2 if and only if 8 1 ;2 8 2. 

A mapping f : C2 ---+ C1 between covers of the same space is 
an inclusion map if it maps each element to an element that 
contains it, in which case the map T(f) : T(C2 ) ---+ T(C1 ), 

S r---+ j[8] is well-defined and continuous. A cover of a metric 
space an €-cover if each of its elements has diameter ~ €. An 
inverse sequence (Ci , fi) of covers and inclusion maps is approx­
imating if it contains some €-cover for all € > 0; corresponding 
is an inverse sequence (T(Ci ), T(!i)) of finite To-spaces. Every 
compact metric admits an approximating sequence of covers. 

Proposition 3.2. The inverse sequence of finite To-spaces cor­
responding to an approximating inverse sequence of covers of 
a compact metric space X approximates X. 

Proof Suppose (Ci , fi) is an approximating sequence for X; 
let X w be the limit of (T(Ci),T(!i)), with (Pi) the projections. 
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For any thread (Si) E Xw , (nSi) is a decreasing sequence 
of arbitrarily small non-empty compact subsets of X, so the 
function ¢ : X w ---+ X, (Si) ~ x, where {x} = ni(nSi), is 
well-defined. 

If U is an open neighbourhood of ¢((Si)) then there is some j 
such that n Sj ~ U. Then pjl (iSj) is an open neighbourhood 
of (Si) and is a subset of ¢-l(U), so ¢ is continuous. 

An inverse sequence of finite multisets can be considered as 
a finitely branching tree in which the nodes are the elements 
of the sets, and in which x is a leaf of y if y is the image 
of x under some bonding map. For any x E X, by Konig's 
lemma there exists some sequence (Ci ) such that, for all i, 
x E Ci = fi(Gi+1). Then x is the image under 4> of the thread 
({Gi }), so ¢ is onto. Any onto continuous map from a stably 
compact space to a compact Hausdorff space is a quotient map 
(think of the map as a map from the patch space). 

Now suppose 9 : X w ~ Y is continuous and Y is Hausdorff. 
Any two elements of X w that are related by ~xw have the same 
image under g. If (~), (Si) E ¢-l(X) then (~ U Si) E ¢-l(x) 
and is below both (~), (Si) in ::;xw • Then any two elements 
of Xw that have the same image under ¢ have the same image 
under g. Together with the fact that ¢ is onto, this means 
that 9 : X ---+ Y, x ~ g(y) for any y E ¢-l(X), is the unique 
function such that 9 = 9 0 ¢, and 9 is continuous because ¢ is 
a quotient map. 0 

4. Connectivity of Stably Compact Spaces 

Our intention is to develop a theory of connectivity for sta­
bly compact spaces. Departures from standard terminology 
will be stated explicitly, otherwise standard definitions will 
be assumed thoughout; for example: 'connected', 'locally con­
nected', 'cut-point' mean exactly the same thing here as they 
do normally. We will consider a separation of a subset P of 
a space X as a pair (U, V) of open subsets of X such that 
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p ~ u u V, P n U =1= 0, P n V =1= 0, P nUn V = 0. This 
is slightly different to the standard definition: U, V are usu­
ally considered as subsets of P that are open in the subspace 
topology on P and that satisfy the latter four conditions. Both 
definitions are of course in agreement as to which sets admit a 
separation. 

Terminology. For any connectivity property of a space, a sub­
set or a point, the object in question has the dual-property if it 
has the property in the dual space, has the bi-property if it has 
the property and the dual-property, and has the di-property if 
it has the property or the dual-property. A connectivity prop­
erty is self-'dual if it holds with respect to a topology exactly 
when it holds with respect to the dual topology. 

For example, a subset of stably compact space X is dual­
connected if it is connected in XD, is bi-connected if it is con­
nected in X and in XD, and is di-connected if it is connected 
in X or in XD. 

Definition 4.1. A continuum is a connected stably compact 
space. 

The definition is due to K & W, although they use the term 
skew continuum. A subcontinuum is a connected stably com­
pact subspace. The crucial difference between the above and 
the standard definition is that it allows for non-trivial finite 
continua. K & W showed that: 

Proposition 4.2. A patch-closed subset of a stably compact 
space is connected if and only if it is dual-connected. 

Thus the property of being a patch-closed subcontinuum is 
self-dual, although the property of being a subcontinuum is not 
self-dual. It seems broadly the case that the interesting and 
original part of the theory of connectivity on stably compact 
spaces arises from the fact that the result does not necessarily 
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hold for open sets. There are, however, two very important 
exceptions to this: duality is not an issue in Hausdorff spaces, 
and the theory presented here is, for such spaces, exactly the 
standard theory; secondly, every subset of a finite To-space is 
patch-closed, and so every connectivity property is self-dual on 
such spaces. A further result of K & W's is that: 

Proposition 4.3. The intersection of any collection of patch­
closed subcontinua that is totally ordered by inclusion is a patch­
closed subcontinuum. 

The terminology of continuum rather than stably compact 
continuum is justifed, we shall argue, because continua have 
many properties similar to those of Hausdorff continua, the 
following result being our first example of this. 

A patch-closed subcontinuum C is irreducibly connected 
about a set P if P ~ C and there is no patch-closed sub­
continuum D such that P ~ DeC. 

Theorem 4.4. The following properties of compact Hausdorff 
spaces also hold for stably compact spaces: 

1.	 Any subset of a continuum has a patch-closed subcontin­
uum irreducibly connected about it; 

2.	 The components are the quasi-components. 

Proof The proof of either result is analogous to the proof of 
the corresponding classical result (see Hocking &Young [4] Th. 
2-11 and Nadler [10] Ex. 5.18). For 1: the (non-empty) col­
lection of patch-closed subcontinua containing some subset P 
ordered by inclusion contains some maximal totally ordered set 
C, and nC is a patch-closed subcontinuum irreducible about 
P. 

For 2. it suffices to show that each quasi-component is con­
nected. A quasi-component Q is the intersection of clopen 
sets and so is patch-closed and upper. If Q is disconnected 
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then it is dual-disconnected: when (U' ,V') is a separation of 
Q in the dual space then C = Q - U' and D = Q - V' are 
disjoint non-empty patch-closed upper sets whose union is Q. 
Then there exist disjoint open sets U, V such that C ~ U and 
D ~ V (because there exist disjoint patch-open sets contain­
ing C, D respectively and, for any patch-open set U, the set 
{x I jx ~ U} is open). Each x E X - Q is contained in some 
clopen set that is disjoint from Q (this is true in any space), so 
the compact set X - (U UV) is contained in some clopen set W 
that is disjoint from Q. But this is impossible because Q then 
intersects both the disjoint clopen sets U U Wand V - W. 0 

4.1. Local Connectivity 

As an example of the non-trivial role of duality in the theory of 
connectivity on stably compact spaces, the property of being 
locally connected is not self-dual: 

Example 4.5. Take any point a in the Cantor space, and put 
x < a for all other points. The reflexive closure of this relation 
is a closed partial order. The corresponding stably compact 
space is locally connected because all of its open sets are con­
nected; however, the dual space is only locally connected at 
the point a. 

A standard result proved by Capel in [2] is that the limit 
of an inverse sequence of locally connected compact Hausdorff 
spaces and monotone bonding maps is locally connected. We 
will use the following generalization of monotonicity: 

Definition 4.6. A proper map between stably compact spaces 
is monotone if the preimage of every connected upper set is 
connected. 

The preimage of an upper set under a continuous map is 
upper, so the composition of two monotone maps is monotone. 
For a map between compact Hausdorff spaces to be monotone, 
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it is sufficent that the preimage of each point be connected, 
which is generalized by: 

Proposition 4.7. A proper map f : X ~ Y between sta­
bly compact spaces is monotone if and only if for all y EY, 
f- 1(IY) is connected. 

Proof (=»: For any Y E Y, IY is a connected upper set. (-¢::): 
Suppose P ~ Y is an upper set, and that (U, V) is a separation 
of f-l(P). For any YEP, if f-1(IY) is connected then it must 
be a subset of whichever one of U, V it intersects, otherwise it 
is separated by these sets. It then follows from Proposition 2.2 
that ('Vf (U), Vf (V)) is a separation of P. 0 

Proposition 4.8. The limit of an inverse sequence of locally 
connected stably compact spaces and monotone bonding maps is 
locally connected, and each projection on the limit is monotone. 

Proof Let (Xi, fi) be such an inverse sequence, with 
limit X w and projections (Pi). For any x E Xi, fi-1(IX), 
(!i+l)-l (fi-1(Ix)), ... is a sequence of patch-closed subcontinua; 
this sequence together with the relevant restrictions of bond­
ing maps is then an inverse sequence of continua and proper 
maps whose limit is P-;l(lx) (see [2] for the details of this prop­
erty in the context of Hausdorff spaces). K & W showed that 
the limit of an inverse sequence of continua and proper maps 
is a continuum, so each projection Pi is monotone. If U is a 
neighbourhood of the thread (Xi), there is some j and some 
open neighbourhood V of Xj such that Pjl(V) ~ U. Then 
there is some connected open set W such that Xj E W ~ V. 
Then Pjl(W) is a connected open neighbourhood of (Xi) that 
is contained in U. D 

Theorem 4.9. A compact metric space is locally connected if 
and only if it can be approximated by an inverse sequence of 
finite To-spaces and monotone bonding maps. 
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Proof. ({:=): Every finite space is locally connected, K & W 
showed that the T2-reflection of a stably compact space X is a 
quotient of X, and any quotient of any locally connected space 
is locally connected. 

(:::»: Nadler in [10] (Th. 8.9) showed that, for any E > 0, 
any locally connected compact metric space X admits an E­

cover by compact connected and locally connected sets; let C1 

be such a I-cover. Each C E C1 admits a 1/2-cover C2(C) by 
connected and locally connected sets whose union is C. Let 
C2 be the cover of X that is the multiset union of the sets 
C2(C), for all C E C1, and let 11 : C2 ----+ C1, D ~ C, where 
D E C2 (C). In this way may be obtained an approximating 
inverse sequence (Ci, Ii) by covers consisting of connected sets, 
and such that each map fi has the property that, for any C E 

Ci , C = U{D IDE fi-1(C)} (multisets are used in order to 
obtain this property). 

It remains to show that each map T(/i) is monotone. For 
S E T(Ci ), let 'R = (T(/i))-l(jS) and suppose (U, V) is a 
separation of 'R. Because the elements of Ci are connected and 
because S is a simplex, US (= U{C ICE S}) is a connected 
subset of X. From the above-mentioned property of the maps 
Ii it follows that US = U{C E Ci +1 I {C} E R}. Then there 
exist {C}, {D} E R such that {C} E U, {D} E V, and such 
that enD =f 0. But then {C, D} E R, and {C, D} is below 
both {C}, {D} in ~T(Ci)' so whichever of U, V contains {C, D} 
must contain both {C} and {D}. 0 

Theorem 4.10. A compact metric space is a Peano contin­
uum if and on'ly if it can be approximated by an inverse se­
quence of finite continua and monotone bonding maps. 

Proof. (-<=): Is a consequence of the previous result and K & 
W's result that an inverse sequence of finite continua approx­
imates a connected space. (:::»: In the construction used in 
the previous proof, if X is connected then each space T(Ci ) is 
connected. 0 
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4.2. Cut-points 

A cut-point of a continuum is any point whose complement 
is disconnected; points that are not cut-points are called end­
points. The property of being a cut-point is not self-dual: the 
point a in Example 4.5 is an endpoint in the stably compact 
topology, but is a cut-point in the dual topology. This neces­
sitates the use of some fairly unusual terminology: 

Terminology. For any subset P of a stably compact space 
X, (U, V) is a dual-separation of P if it is a separation of P 
in X D, and is a di-separation of P if it is a separation or a 
dual-separation of P. A point x of a continuum X is a dual­
cut-point if it is a cut-point of X D, and is a di-cut-point if it is a 
cut-point or a dual-cut-point. Points that are not di-cut-points 
are bi-endpoints. The point x separates the points a, b if there 
exists a separation (U, V) of X - {x} such that a E U - {x} 
and bE V - {x} (in which case x separates a,b via (U, V)); x 
dual-separates a, b if it separates a, b in X D; x di-separates a, b 
if it separates or dual-separates a, b. 

Lemma 4.11. Let x be a di-cut-point of a continuum X, with 
(U, V) a di-separation of X - {x}. Then 

1.	 x is maximal or minimal in ~x; 

2.	 If x is minimal in ~x then U U { x} and V U {x} are closed; 

3.	 If x is maximal in ~x then U U {x} and V U {x} are 
dual-closed; 

4.	 U u {x} and V U {x} are subcontinua. 

Proof Suppose first that x is a cut-point of X and that (U, V) 
is a separation of X - {x}. Either U nV = {x} (in which case 
x is maximal) or U n V = 0 (in which case x is minimal), 
otherwise (U, V) would be a separation of X. U U {x} is the 
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union of the patch-closed sets {x} and X - V, and so is patch­
closed. If x is minimal then U U {x} is lower and so is closed; 
if x is maximal then U U {x} is upper and so is dual-closed. 
That U U {x} is connected is given by a standard result which 
holds for any space (see [10] Prop. 6.3). 

Now suppose that x is a dual-cut-point of X and that (U, V) 
is a dual-separation of X - { x }. In other words, x is a cut-point 
of X D and (U, V) is a separation of XD - {x}. For any stably 
compact space X it is the case that ::;XD= (::;X)-l. The proof 
that each of the four properties holds may then be obtained 
from the proof of the first part of this result. 0 

Lemma 4.12. If (U, V) is a di-separation of the complement 
of a di-cut-point x and if C is a patch-closed subcontinuum 
such that x tt C then C ~ U or C ~ V. 

Proof. Patch-closed subcontinuua are bi-connected, and so 
admit no di-separation. If C intersects both U and V then 
(U, V) is a di-separation of C. 0 

Lemma 4.13. If x, yare distinct di-cut-points of a contin­
uum, with (Ux , Vx ), (Uy , Vy ) di-separations of their respective 
complements, then 

1.	 Ilx E Uy andy E Vx then Ux ~ Uy and~ ~ Vx ; 

2.	 Ifx E Vy andy E Vx then Ux ~ ~ and Uy ~ Vx • 

Proof 1: Ux U {x} is a patch-closed subcontinuum that inter­
sects Uy and does not contain y, and similarly for Vy U {y}. 2. 
is simply 1. in a different form, stated for convenience. 0 

Theorem 4.14. The following properties of Hausdorff con­
tinua also hold for stably compact continua: 

1.	 Both sets in a di-separation of the complement of a di-cut­
point contain a bi-endpoint; 
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2.	 Every continuum with ~ 2 points has ~ 2 bi-endpoints; 

3.	 Every continuum is irreducibly connected about its set of 
bi-endpoints. 

Proof The proofs are similar to·the proofs of the correspond­
ing classical results (see [10] Ch. 6). 1: Suppose c is a di­
cut-point of a continuum, with (U, V) a di-separation of its 
complement. Suppose that, for each x E U - {e}, there exists 
a di-separation (Ux , Vx ) of the complement of {x} such that 
e E Vx . From the previous result it follows that Ux ~ U for all 
x E U-{e}. Also, ify E Ux-{x} then Uy ~ Ux (if x E Uy then 
Vx ~ Uy , which is impossible because then e E Uy : therefore 
x E V;, in which case Uy ~ Ux ). The collection of patch-closed 
subcontinua {Ux U {x} I x E U - {e}} ordered by inclusion 
contains some maximal totally ordered set C, and nC =1= 0. 
If p E nC then Up ~ nC, in which case C is not maximal 
because it does not contain UqU {q} for q E Up - {p}. 

2. Is an immediate corollary of 1. 3: By Theorem 4.4 there 
is some patch-closed subcontinuum C irreducibly connected 
about the set of bi-endpoints. If x ¢. C then there exists some 
di-separation (U, V) of its complement: C is a subset of one 
of U, V, which is impossible because the other contains a bi­
endpoint. 0 

4.3. The Separation Order 

For any two points a, b of a continuum, the set of all points that 
di-separate a, b is denoted (a, b), and [a, b] denotes the union 
of this set with {a, b} (it is then obvious what sets are denoted 
by [a, b) and by (a, b]). 

Definition 4.15. For any two points a, b of a continuum, the 
separation order on [a, b], defined on distinct points, is the re­
lation x -< y if x = a or x di-separates a, y. 

The definition differs from the standard definition only in 
its use of di-separation rather than separation. As with the 
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standard definition, there are in fact two separation orders, 
one with bottom element a (as defined above), and one with 
bottom element b. It is not usually important which order is 
considered, since one is the inverse of the other. A total order 
is a transitive relation -< such that, for all x, ,(x -< x), and 
such that, for all x =I y, x -< y or y -< x. 

Proposition 4.16. The separation order is a total order. 

Proof The proof is very similar to the proof of the correspond­
ing classical result (see [10] Prop. 6.15). Let a, b be points of 
a continuum, and let -< be the separation order on [a, b]. That 
-< is transitive: suppose x -< y and y -< z. If x = a then 
x -< z; otherwise, suppose that x di-separates a, y via (Ux , Vx ), 

and that y di-separates a, z via (Uy, Vy). If x E ~ then, by 
Lemma 4.13(2), Uy ~ Vx • But then a E Vx , which is impossible 
because a E Ux , therefore x E Uy • Then, by Lemma 4.13(1), 
Vy ~ Vx , in which case x -< z. 

Suppose x, yare distinct points of [a, b]: if x = a or y == b 
then x -< y, and if x = b or y = a then y -< x. Otherwise, 
suppose that x, y di-separate a, b via (Ux , Vx ), (Uy,Vy) respec­
tively. If y E Vx then x -< y; if x E Vy then y -< x; if x E Uy and 
y E Ux then Vy ~ Ux , in which case b E Ux , which is impossible 
because b E Vx . 0 

With respect to a total order -<, a point y is between the 
points x, z if x -< y -< z or z -< y -< x. 

Proposition 4.17. For any two points a, b of a continuum X 
and for all x, y, z E [a, b], y di-separates x, z in X if and only 
if y is between x, z in the separation order on [a, b]. 

Proof. ({=): Suppose x -< y -< z in the separation order on 
[a, b]. Then y di-separates a, z via some pair (U, V) and x E U 
(because if x E V then y -< x). 

(=?): Suppose y di-separates x,z via (Uy, ~), and assume 
that x -< z. If y -< x then there is some pair (Ux , Vx ) via which 
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x di-separates y, z. But then V; ~ Ux , which is impossible 
because then z E Ux . If z -< y then there is some pair (Uz , ~) 

via which z di-separates x, y. But then Uy ~ ~, which is 
impossible because then x E ~. 0 

5. Arcs 

Definition 5.1. An arc is a continuum such that, for any three 
distinct points, one di-separates the other two. 

The definition is clearly based on that of a COTS, the differ­
ence being in the use of di-separation rather than separation. 
The two definitions are, however, equivalent on finite To-spaces 
and on compact Hausdorff spaces. 

We will now show that arcs can be described in terms of 
a total order (the separation order) together with a partial 
order (the specialization order). Let -< be a total order on 
a stably compact space X. For any point x, Lx denotes the 
set {y I y -< x}, and Rx denotes the set {y I x -< y}. The 
points x, yare adjacent if there is no point between them (thus 
adjacency is a reflexive and symmetric relation). x is left­
adjacent to y if x -< y and x, yare adjacent. An open ray is 
any set of the form Lx or Rx, when x is minimal in <x; a 
dual-open ray is any such set when x is maximal in ::;x. The 
order topology on X is that which has subbase the collection 
of open rays, and the order dual-topology is that which has 
subbase the collection of dual-open rays. (Our definition of 
'order topology' is non-standard: the order topology is usually 
the topology having as subbase all open rays, regardless of 
whether or not points are maximal or minimal.) 

A stably compact space X is orderable if it admits a total 
order -< for which the order topology is the topology on X, 
and the order dual-topology is the topology on XD (in which 
case -< is said to order X). 

Theorem 5.2. The following properties of a continuum with 
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2:: 2 points are equivalent: 

1. It is an arc; 

2. It contains exactly two bi-endpoints; 

3. It is orderable. 

Proof (3 =} 1): Let X be a continuum ordered by -<; we claim 
that every point is maximal or minimal in ~x. If x <x Y then, 
because X is To, there is some open set U containing y but not 
x. Assuming that x -< y, we may also assume that U is a 
subbasic open set Rz for some minimal z. But then z = x, 
otherwise x E Lz and -,(x <x y). So every point that is below 
some other point in :::;x is minimal, and our claim follows. 
Then when x -< y -< z, y di-separates x, z via (Ly, Ry). 

(1 => 2): Every arc has :::; 2 bi-endpoints and every contin­
uum has 2:: 2 bi-endpoints (by Theorem 4.14). 

(2 =} 3): If a, b are the two bi-endpoints of the continuum 
X then, by Theorem 4.14 (1), [a, b] is the underlying set in X. 
We claim that X is ordered by the separation order -< on [a, b]. 

Take x E (a, b): x di-separates a, b via some pair (U, V). 
For any y E U - {x}, x di-separates y, b, so y ~ x --< b by 
Proposition 4.17. Conversely, for any y --< x, if y E V then 
x --< y, so Y E U. Therefore U - {x} = Lx, and therefore 
V - {x} = Rx. x is maximal or minimal in :5x: if x is minimal 
then Lx U {x} and Rx U {x} are closed, in which case Lx and 
Rx are open; similarly, if x is maximal then Lx and Rx are 
dual-open. 

The point a is maximal or minimal in ::;x: if x <x a <x Y 
then x cannot di-separate a, y and y cannot separate a, x. If 
a is minimal then Ra is open, and if a is maximal then Ra is 
dual-open. Similar reasoning applies to b, and therefore the 
order topology is refined by the topology on X, and the order­
dual topology is refined by the dual topology on X. 

We have shown that every point of X is maximal or minimal 
in <x and that, for all x, Lx, Rx are disjoint sets which are 
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either both open (if x is minimal) or both dual-open (if x is 
maximal). It follows that if x ~x Y then x, yare adjacent 
with respect to -<. Conversely, if x -< yare adjacent and 
unrelated by ::;x, then both the disjoint non-empty patch-open 
sets Rx, Ly are upper, and therefore form a separation of X. 
So x, yare adjacent with respect to -< if and only if x, yare 
related by ~x. 

For all x -< y, by Proposition 4.17 the set (x, y) is the set 
(Rx n Ly). Then [x, y] is the complement of Lx U Ry: Lx and 
Ry are patch-open, so [x, y] is patch-closed. 

Now suppose that U is an open neighbourhood of x in X. 
We claim that if x i= a then either (a, x] ~ U or there is 
some p -< x such that p is minimal in ~x and (p, x] ~ u. 
If a, x are adjacent then (a, x] ~ U, otherwise the collection 
{[P, x] Ip -< x, p, x not adjacent} is non-empty. This collection 
is totally ordered by inclusion, and its intersection is the set 
C containing x together with, if it exists, the point y that is 
left-adjacent to x, together with, if it exists, the point z that 
is left-adjacent to y. If y exists and y ~ U then y is minimal 
(otherwise x ~x Y and y E U) and (y, x] ~ U. If y, z exist and 
y E U and z ~ U then, similarly, z is minimal and (z, x] ~ U. 
If C ~ U then there is some p -< x such that p, x are not 
adjacent and [P, x] ~ U. If p is not minimal then there is some 
minimal pi adjacent to p, in which case pi i= x and (pi, x] ~ U. 

Similarly, if x i= b then either [x, b) ~ U or there is some 
minimal q >- x such that [x, q) ~ U. This suffices to show 
that the order topology refines the topology on X, and the 
proof that the order dual-topology refines the topology on X D 

is similar. 0 

Proposition 5.3. In any arc: (1) Every point is maximal 
or minimal in the specialization order; (2) Two points are 
adjacent in the separation order if and only if they are related 
by the specialization order; (3) Every patch-closed subset has a 
top and a bottom element with respect to the separation order. 
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Proof. (1) and (2) were proved in the proof of the previous 
result. (3): If the patch-closed subset C has no bottom element 
then {Rx I x E C} is a cover of C by patch-open sets. There 
is some finite D ~ C such that {Rx I xED} is a cover of C. 
Then, where d is the bottom element of D, C ~ Rd, which is 
impossible because dEC - Rd. The proof that C has a top 
element is similar. 0 

Various definitions of an ordered topological space, or of an 
ordered bi-topological space, which is a space (or bi-topological 
space) together with a total order have been proposed in [6]. 
Our definition of an 'arc' is essentially that of a bi-topological 
space which has a meaningful intrinsic total order (the separa­
tion order), and upon which an extraneous order does not need 
to be added. Moreover, the definition of a continuous order­
preserving map between ordered spaces has a purely topolog­
ical characterization with regard to our definition, as will be 
shown in the following section. 

The final result of this section concerns the internal struc­
ture of arcs. An interval of an arc is any subset P such that 
x, yEP implies [x, y] ~ P. 

Proposition 5.4. A subset of an arc is an interval if and only 
if it is bi-connected. 

Proof. (¢=): If P is not an interval then there is some y tj. P 
and some x, z E P such that y is between x and z in the 
separation order, in which case (Ly, Ry) is a di-separation of 
P. 

(=>): If (U, V) is a di-separation of an interval P of an arc X , 
then it is a di-separation of some [x, y] ~ P. Then [x, y] is the 
disjoint union of the non-empty patch-closed sets C = [x, y]-U 
and D = [x, y] - V. Moreover, no element of C is related to 
any element of D by ::;x. Assume without loss of generality 
that x E C. If y E D then X is the disjoint union of the non­
empty patch-closed sets C U (Lx U {x}) and D U (Ry u {y}), 
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both of which are lower by Proposition 5.3. If y E C then X 
is the disjoint union of the non-empty patch-closed lower sets 
CU(Lxu{x})U(Ryu{y}) andD. 0 

5.1. Inverse Sequences of Arcs 

A proper map is dual-monotone if the preimage of every con­
nected lower set is connected, and is bi-monotone if it is both 
monotone and dual-monotone. A function f : X ~ Y be­
tween arcs is order-preserving if there exist separation orders 
-<x, -<yon X, Y respectively such that f is order-preserving 
with respect to the respective reflexive closures of -<x, -<y. The 
definition is stated as such to take into account of the fact that 
there are two separation orders on an arc, one of which is the 
inverse of the other. 

Proposition 5.5. A proper map f : X ~ Y between arcs is 
bi-monotone if and only if it is order-preserving. 

Proof. (¢=): For y E Y, the set jy is an interval by Proposition 
5.3. Then j-l(jy) is an interval (and therefore connected) 
because j is order preserving, so f is monotone. The proof 
that the dual of Proposition 4.7 holds is straightforward, and 
then the proof that f is bi-monotone is similar to the proof 
that f is monotone. 

( =}): Choose a separation order -<x on X, and let a, b be its 
respective bottom and top elements. Let -<y be the separation 
order on Y such that f(a) -<y f(b) or f(a) = f(b), and let 
c be its top element. For any x E X, if f(x) -<y f(a), then 
(Lx, Rx) is a di-separation of f-l([f(a), c]). But [f(a), c] is a 
patch-closed subcontinuum, and is upper (if f(a) is maximal) 
or lower (if f(a) is minimal), in which case f- 1([f(a),c]) is a 
patch-closed subcontinuum. So either f(a) = f(x) or f(a) -<y 
f(x) and, similarly, either f(x) = f(b) or f(x) -<y j(b). It 
follows that if x -<x Y and f(x) >-y f(y) then (Ly, Ry) is a 
di-separation of the patch-closed subcontinuum j-l([f(x), c]). 
o 
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The limit of an inverse sequence of COTS is not necessarily a 
COTS, even when the spaces in the sequence are finite; a coun­
terexample is given by Smyth in [12]. Moreover, the bonding 
maps in Smyth's counterexample are bi-monotone. However, 
our adjustment to the definition of COTS allows: 

Proposition 5.6. The limit of an inverse sequence of arcs and 
bi-monotone bonding maps is an arc. 

Proof. Suppose (Xi, Ii) is such a sequence, with limit Xw and 
projections (Pi). There exists a sequence (-<i) such that each 
-<i is a separation order on Xi and such that each Ii is order­
preserving. For any two threads, put (Xi) -<w (Yi) if there is 
some j such that Xk -<k Yk for all k ~ j. Then -<w is a total 
order on X w . 

It is the case that ::;xw = ni(Pi x Pi)-l(::;Xi) (this is true 
for any inverse sequence). From Proposition 5.3 it follows that 
every thread is maximal or minimal in ::;xw ' and that if two 
threads are not adjacent in -<w then they are not related by 
::;xw Then, for any thread (Xi), L(Xi) and R(Xi) are both• 

upper or both lower; it now suffices to show that both are 
patch-open. If (Yi) E L(Xi) then there is some j such that 
Yj E LXj. From the fact that each bonding map is order­
preserving, pjl(Lxj) ~ L(Xi). The set LXj is patch-open, and 
the preimage of a patch-open set under a proper map is patch­
open. D 

Say that an inverse sequence of finite To-spaces is non­
degenerate if the space it approximates contains ~ 2 points: 

Theorem 5.7. Any non-degenerate inverse sequence of finite 
COTS and bi-monotone bonding maps approximates the unit 
interval. 

Proof. Let X be the limit of such a sequence: K & W showed 
that the T2-reflection of (any stably compact space) X is its 
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quotient by the smallest equivalence relation that contains ~x 

and is closed in X P; let R denote this relation, and let ~ denote 
the separation order on X. We claim that, for all x EX, the 
set R(x) = {y I xRy} is an interval. 

The relation S = {(x,z) I xRz /\ \ly. y between x,z => 
xRy} is a subset of R, is clearly reflexive and symmetric, and 
contains :S;X by Proposition 5.3. If xSy and ySz then xRz 
and (assuming that x ~ z) if x ~ p ~ z and -,xRp then either 
-,xSy (if p ~ y) or -,ySz (if y ~ p), so S is an equivalence 
relation. 

We claim that S is closed in X P, in which case it is equal to 
R and our original claim follows. Suppose -,xSz: if -,xRz then 
there is an open neighbourhood of (x, z) in xP x xP that is 
disjoint from R and therefore from S. If xRz then (assuming 
that x ~ z) there is some y such that x ~ y ~ z and -,xRy. 
The set R(y) is closed (this is true for any closed equivalence 
relation on any space), so the set R(y) n [x, z] is patch-closed 
and non-empty, and so has a bottom element p and a top 
element q with respect to -<a Then x, z are elements of the 
patch-open sets Lp, Rq respectively; we claim that (Lp x Rq) n 
S = 0. Suppose U E Lp and v E Rq and uSv: then u ~ y -< v 
so uRy. Then u -< x because u -< p and u E R(y). Then uRx 
because u -< x -< v, which is impossible because then xRy. 

Where </J : X ~ X / R is the canonical quotient map then, 
for all x E XIR, ¢-l(X) is a patch-closed (because ¢ is proper) 
interval [P, q]. If x is not the image of an endpoint of X then 
both Lp, Rq are non-empty. Then by Proposition 2.2 and its 
dual, ('i<p'(Lp) , 'i</>(Rq)) is a separation of XIR - {x}. Then 
X IRis ~ connected metric space that has exactly 2 endpoints. 
o 

6. Related & Further Work/Questions 

Many of the results given here have been obtained by adapt­
ing similar results in the context of the approximation of spaces 
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by inverse sequences of finite graphs, a construction that was 
introduced by Smyth in [13]. Given a cover C of a space, 
one considers its intersection graph G(C), in which the ver­
tices represent the elements of C, and in which the relation 
represents non-empty intersection. Corresponding to an ap­
proximating inverse sequence of covers (Ci , Ii) of a compact 
metric space X is an inverse sequence (G(Ci ), G(!i)) of finite 
graphs and relation-preserving maps (where the vertex repre­
senting C E Ci+1 is mapped by G(!i) to the vertex representing 
Ii (C)). This inverse sequence is considered in the category of 
topological graphs (also introduced by Smyth: the objects are 
spaces together with closed relations; the morphisms are con­
tinuous relation-preserving maps), where the set of vertices in 
each G(Ci ) is considered with the discrete topology. The limit 
of this inverse sequence is a topological graph (Xw , R) (Xw is 
typically Cantor space) in which R is an equivalence relation. 
Then X is (homeomorphic to) the quotient space X w/ R, and 
the inverse sequence of graphs is said to approximate X. The 
quotienting operation is analogous to taking the T2-reflection 
in K & W's work, although we will not state this analogy for­
mally here. 

In [15] we showed that many basic and some more esoteric 
properties of Hausdorff continua - such as dendrites; simple 
closed curves; arc-like, circle-like and tree-like continua; weakly 
chainable continua; indecomposable continua - could all be ex­
pressed in terms of properties of finite graphs and bonding 
maps in approximating inverse sequences. It seems reason­
able to conjecture that most, if not all, of these results can be 
translated to the context of approximation by finite To-spaces. 

Smyth in [14] has also given an analysis of lines in the con­
text of topological graphs; such structures are closed under 
inverse limits and may be characterized using total orders. 

We finish with two questions which we have not been able 
to answer one way or the other, but which express results we 
feel would be essential (in some form) to any well-developed 
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theory of connectivity for stably compact spaces. Where a bi­
Peano continuum is a 2nd-countable connected and bi-Iocally 
connected continuum: 

Question 1. Is every bi-Peano continuum arcwise connected? 

Question 2. Is every bi-Peano continuum the continuous (or 
proper) image of an arc? Is there an arc that is universal in 
this respect? 
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