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CLEAVABILITY OF MANIFOLDS 

P.M. GARTSIDE AND A.M. MOHAMAD 1 

ABSTRACT. The aim of this paper is to investigate Arhangel
skii's idea of cleavability in the context of manifolds. A 
key role will be played by "perfectness" type properties. 

1. INTR,ODUCTION 

The aim of this note is to investigate the preservation of per
fectness (and related properties) and normality (and related 
properties) by cleavability, and the influence of perfectness 
(and its relatives) on the topology of manifolds. As defined 
by Arhangelskii in [1], a space X is cleavable over a class of 
spaces· P if for every subset A of X there is a mappillg f of 
X into Y, where YEP, such that f(A) n f(X - A) == 0. A 
space X is absolutely cleavable over a class P if there exists 
a one-to-one continuous mapping of X into Y, for SOIIle Y in 
P. Plainly, absolute cleavability implies cleavability. When P 
consists of a single space, Y, then X is said to be cleavable 
over Y. 
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Few properties are preserved by absolute cleavability, so, for 
positive results, we need to place additional restrictions on 
X. The most effective such restriction, is to assume X to 
be compact. Two weakenings of compactness then suggest 
themselves. The first is to suppose that X is not only cleavable 
over a class P, but also that there is a perfect map of X onto 
a member of P. The second weakening is to suppose that X is 
locally compact. This condition, is, in general, too weak, but 
we will see that good results follow if we additionally assume 
local connectedness. 

Positive results of the first type: 'X cleavable over P, and 
there is a perfect map of X onto YEP, implies X E P', 
hold for many classes P related to the class of perfect spaces. 
(Among others" spaces with Gs-diagonal, the class of a-spaces, 
and the class of all stratifiable spaces.) Our first new result will 
be to weaken the perfect map to a quasi-perfect map (in other 
words, a continuous closed function, with countably compact 
fibres). We also give examples demonstrating how this fails for 
P == perfect or perfectly normal; and fails for strong separation 
axioms related to perfect normality (hereditarily normal and 
monotonically normal). 

Next, we investigate problems of the type 'X cleavable over 
P, X locally compact and locally connected, implies X in P'. 
This is applied to the special case of manifolds. 

Finally, we explore some issues related to cleavability over 
metrisable spaces. In particular, it is shown how 'normal' in 
two well known results, '(MA(Wl)) normal, perfect manifolds 
are metrisable' and 'nQrmal Moore manifolds are metrisable', 
can be weakened to 'weakly normal', a very weak separation ax
iom clearly possessed by spaces cleavable over separable metris
able spaces. 

Notation and definitions. Most concepts will be described 
as and when they are used. However it is convenient to make 
a few technical definitions at the outset. 

Let X be a space, and (A, B) a pair of subsets of X. A col
lection U of open (closed) subsets of X is T2-separating open 
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(closed) for (A, B) [respectively, separating] [strongly separat
ing] if, given distinct points Xa E A and Xl E B, there are 
Va, VI E U such that Xa E Va, Xl E VI and Ua n if1 == 0 
[respectively, there is V E U such that Xa E V but Xl ~ V] [re
spectively, there is V E U so that Xa E V while Xl ~ U]. A T2

separating family for the pair (X, X) is called a T2-separating 
cover of X. (And similarly for separating covers, and strongly 
separating covers.) A closed subspace, C, of a space X, will 
be called an 3 8 subset (respectively, R8 subset) if there is a 
countable open separating (respectively, strongly separating) 
family for the pair (C, X - C). By hereditary, we meall closed 
hereditary. 

2. PERFECT PRE-IMAGES 

In this section we examine problems of the first tYJ:)e men
tioned in the introduction. 

Lemma 2.1. Let P be a hereditary class of spaces., whose 
countably compact members are compact and metrisable. Then 
for countably compact X, cleavable o.ver P, with countable 
pseudocharacter, we have IXI ~ 2W 

• 

Proof: We show that X, as in the statement of the lelnma, is 
perfect. For then X has countable spread [Lemma 6.7. [23]], 
and countable pseudocharacter, from which it follows [Theorem 
4.9. [17]], that IXI ~ 2W

• Take any closed A ~ X. As X 
is cleavable over P, there is a continuous surjective ITlapping 
f: X -+ Y, YEP, such that f(A) n f(X - A) == 0. Now Y is 
countably compact and in P, so, by hypothesis, is compact and 
metrisable. Similarly, f(A) is compact and metrisable, and in 
particular is a closed subspace. Since f- l f(A) == A, and f(A) 
is a G8 in Y, we see that A is a G8 in X. 0 

Theorem 2.2. Let P be a class of spaces, such that P is 
hereditary, countably productive, every members ofP has count
able pseudocharacter, and countably compact elements ofP are 
compact and metrisable. If X is a space cleavable over P, and 
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if there is a continuous mapping f: X ---t Y, where YEP such 
that all preimages of points in Yare countably compact, then 
X is absolutely cleavable over P. 

Proof: Since the pseudocharacter of space Y is countable, 
from Proposition 2.1 [2] it follows that the pseudocharacter of 
space X is countable. By the preceeding Lemma all the fi
bres Fy == f- l (y), Y E Y have cardinality no greater then 2W 

• 

Now we can apply Proposition 2.1 [2] to the disjoint family 
{Fy : y E Y}. It follows that there is a continuous map
ping 9 of X into a space Z with a countable pseudocharacter 
satisfying the following condition: if Xl and X2 are in X and 
f(Xl) == f(X2), then g(Xl) =I- g(X2)' Then f~g is a one-to-one 
continuous mapping of X into a space belonging to P. Hence 
X is absolutely cleavable over P. D 

Theorem 2.3. Let X be a space cleavable over a class P, and 
suppose there is a quasi-perfect map of X onto a space in P. 

The space X is in P, for the following classes of spaces: 
spaces 7.vith a regular G8 -diagonal, spaces with a G* 8 -diagonal, 
spaces with a G 8-diagonal, spaces with a R 8 -diagonal, spaces 
with a 5 8-diagonal, spaces with a quasi-G* 8-diagonal, spaces 
with a quasi-G8 -diagonal; semi-stratifiable spaces, a-spaces, 
Moore spaces, stratifiable spaces, spaces with point-countable 
base, metrisable spaces. 

Definitions of the standard classes of spaces mentioned above 
can be found in [15]. The 'quasi' versions are obtained by 
weakening 'open cover' in the standard property to 'open fam
ily'. (So a space has a G8-diagonal if there is a countable 
sequence of open covers {Qn}nEw such that, for all points X, 

nnEw st (x, Qn) == {x} (*); while a space has a quasi-G8-diagonal, 
if it has a sequence of open families {Yn}nEw satisfying (*).) A 
space, X, has an 58 diagonal (respectively, an R8 diagonal) if 
the diagonal in X 2 is an 58 subset (respectively, an R8 subset). 

Proof: This result is known to be true for 'perfect map' in 
place of 'quasi-perfect map' [5] (or is true by minor variations 
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of the proof given there). However the fibres of the quasi
perfect map are in fact compact. To see this observe that by 
[Theorem 2.2], all the fibres are countably compact and abso
lutely cleavable over P. Now recall that a countably compact 
space belonging to any of the classes listed is compact (and 
metrisable). 0 

Perhaps the most interesting example concerning cleavabil
ity is Balogh's example of a normal space, whose every subset 
is a G8 , but which does not have a G8 diagonal [9]. As observed 
by Arhangelskii [2], Balogh's space is cleavable over the space 
of rational numbers. This demonstrates why our additional 
assumption (about quasi-perfect pre-images) is a necessary 
hypothesis in Theorem 2.3. 

We now give some examples of classes of spaces closely re
lated to those mentioned in Theorem 2.3, for which the corre
sponding conclusion is false. 

Example 2.4. There is a space X which is not hereditarily 
normal (hence, not monotonically normal) which is absolutely 
cleavable over a metrisable space and which admits a perfect 
mapping onto a monotonically normal (hence, hereditarily nor
mal) space. 

For. Let X == (w + 1) x (R, M), Y == (R, M) and Z == 
(w + 1) x (R, £), where M is the Michael line topology, and 
£ is the usual Euclidean topology. Then X is not hereditarily 
normal, Y is monotonically normal, and Z is metrisable. Fur
ther, f == 7ry: X ---+ Y is a perfect mapping and i: X ---+ Z, the 
identity map, witnesses that X is absolutely cleavable over a 
metrisable space. 

Example 2.5. There is a space X which is neither perfect 
nor hereditarily normal, but which is absolutely cleavable over 
a perfectly normal space and admits a perfect mapping onto a 
perfectly normal space. 

For. Write DA for the double arrow space, and let X == DA x 
(1, S), Y == (1, S), Z == DA x (1, E); where S is the Sorgenfrey 
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topology, and £ is the standard Euclidean topology. Note X is 
not hereditarily normal, Y and Z are perfectly normal (recall 
that the product of a perfect space and a second countable 
space is perfect), f == 7ry : X --t Y is perfect and i : X --t Z, 
the identity, demonstrates absolute cleavability. 

It remains to show X is not perfect. Recall that DA == 
I x {O, I}, with basic open neighbourhoods of (x, 0) E I x {O} 
having the form {(x - t, x +t] x {O} }U {( x - t, x + E) X {I} } and 
basic open neighbourhoods of (x, 1) E I x {I} are {(x - E, ±+ 
E) x {O}}U{(X-E,X+E] x {I}}. Let ~1 == {((x,O),x): x E I}, 
~2 == {((x, 1), x) : x E I}. 

Then ~1 is closed in DA x (I, S), we show that ~1 is not 
a G8 . Let U be an open set such that U ~ ~1' For all x E I 
pick a basic neighbourhood {(ax, x] x {O}} U {(ax, x) X {I}} ~ 

U. As ~1 is homeomorphic to the Sorgenfrey line, which is 
Lindelof, there is a countable set Su ~ I such that ~1 ~ 

UsEsu{(aS's] x {O}} U {(as,s) X {I}} ~ U. Note trlat ~2
(Su x {I}) ~ UsEsu((aS' s] X {O}) U ((as, s) X {I}) ~ U. Thus, 
if {Un}nEN is any sequence of open set containing~l, then 
~2-UnEN(SUnX {I}) ~ nnENUn, and so ~2-UnEN(SUn X {I}) 
is uncountable (hence non-empty). 

Example 2.6. There is a compact space X 'l.vhich is absolutely 
cleavable over a compact space Y with a dense G8-~) such that 
X does not have a dense G8-~. (The map identifyin,g X to a 
point is a perfect map onto a space with a dense G8 diagonal.) 

2W1For. Let X == Then X is a compact space without a• 

dense G8-~. Let Y == D(X) == X x {O, I}, the Alexandrov 
duplicate of X. Note that X x {O} is homeomorphic to X. 
Then Y is compact, and X is absolutely cleavable over Y. 
Further, X x {I} an open dense metrisable subset of Y. So by 
Arhangelskii's lemma [4], Y has a dense G8-~. 

3. CLEAVABILITY OVER, MANIFOLDS 

The starting point for our investigation is the following el
egant theorem of Arhangelskii, and a companion result which 
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easily follows from a theorem of Balogh & Bennett and (inde
pendently) Rudin. 

Theorem 3.1. (Arhangel'skii) [2] Let M be a separable n
dimensional manifold cleavable over Rn, where n is a positive 
integer. Then X is homeomorphic to an open subspace of Rn. 

Theorem 3.2. If X is locally compact, locally connected and 
ab.solutely cleavable over the class of metrisable spaces. Then 
X is metrisable. 

Proof of Theorem 3.2 By absolute cleavability over lnetris
able spaces, there is a coarser metrisable topology on the space 
X. This metrisable topology has a a-discrete base, hence X 
has a a-discrete open T2-separating family. The claim follows 
from Theorem 1.1 [10]. 0 

Theorem 3.3. Let X be a locally compact, locally cor~nected 
space. If X is cleavable over the class P, such that P is count
ably productive, hereditary, additive and every compact space 
cleavable over P is metrisable, then X is absolutely cleavable 
over P. 

Proof: Since X is locally connected, it is the disjoiIlt sum 
of clopen connected subspaces (its connected components). 
Hence, by additivity of P, it is absolutely cleavable over P pro
vided each component is absolutely cleavable over P. As each 
connected component of X is connected, locally connected, lo
cally compact and cleavable over P, we may assume, without 
loss of generality, that X is connected. 

By hypothesis, compact spaces cleavable over Pare metris
able. The proof of Theorem 2.9 of [18] (manifolds have car
dinality the continuum) demonstrates that T3 , locally second 
countable, connected spaces have cardinality no more than the 
continuum. Thus our particular X has cardinality no more 
than the continuum. 

Consider X as a subset of.R. Then by second countability 
of R, there is a countable family C of subsets of X which are 
T2-separating. 
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For each C E C, pick fe : X ~ Ye a continuous map of 
X into a space Ye E P, such that fe(C) n fe(X - C) == 0. 
Define ¢J : X ~ IIeEcYe to be the diagonal map of the family 
{fe }CEC, Then ¢J is a one-to-one continuous map of X into a 
space which belong to class P. In other words, X is absolutely 
cleavable over class P. 0 

Corollary 3.4. Let M be a manifold. If M is cleavable over 
the class P, such that P is countably productive, hereditary and 
additive, then M is absolutely cleavable over P. 

Corollary 3.5. Let X be a locally compact, locally conn.ected 
space. 

1.	 If M is cleavable over class of spaces with Gs-diagonal, 
then M has Gs-diagonal. 

2.	 If M is cleavable over class of spaces with G'8-diagonal, 
then M is developable. 

3.	 If M is cleavable over class of spaces with regular Gs
diagonal, then M is metrisable. 

Proof: Suppose, first, M is cleavable over class of spaces with 
Gs-diagonal. Then, by Theorem 3.3, M is absolutely cleavable 
over a space with Gs-diagonal, and hence M has a Gs-diagonal. 

Similarly, if M is cleavable over class of spaces with G'8
d.iagonal, or regular Gs-diagonal, then M has the same prop
erty. By well known results [15], the claim follows. 0 

In contrast to Corollary 3.5, in [16] there is an example of a 
p-adic analytic manifold, absolutely cleavable over the class of 
metrisable spaces, which is quasi-developable but not perfect 
(hence not developable). A p-adic analytic manifold, is a space 
locally homeo;rnorphic to the Cantor set, with these Cantor sets 
'sewn together' by 'smooth' functions. 

4. RELATED TOPICS 

The main aim of this section is to prove the following two 
results which are generalisations (respectively) of famous the
orems of Rudin [21] and Reed-Zenor [19]. A space X is said to 
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be weakly normal [3] if, for every pair of disjoint closed subsets 
A and B of X, there is a continuous map f of X into a separa
ble metrisable space such that f(A) n f(B) == 0. Clearly nor
mal spaces are weakly, normal, as is any space cleavable over 
the class of separable metrisable spaces. That such a weak 
separation property can replace normality in the theorems of 
Reed-Zenor and Rudin, was a surprise to the authors. 

Theorem 4.1. (M A(Wl)) Locally compact, locally cortnected, 
perfect and weakly normal spaces, are paracompact. 

Hence, perfect, weakly normal manifolds are metrisable.· 

Theorem 4.2. Every weakly normal, locally compact, 'locally 
connected Moore space is metrisable. 

We start by elucidating the connection between weak nor
mality, cleavability overthe class of separable metrisable spaces, 
and two properties related to perfectness introduced by Balogh 
& Bennett. 

A space X is called 5-perfect (respectively, R-perfect) if 
every closed subset A of X is an 58 subset (respectively, a R8 

subset) [11]. It is convenient to introduce two related notions. 
We shall say that a space X has property (A) (respectively, 
(A)c) if for every subset A (respectively, closed subset A) of 
X there is a countable closed family C which T2 -separates the 
pair (A, X - A). 

Arhangelskii [3] has shown that a space is cleavable over the 
class of separable metrisable spaces if and only if it is weakly 
normal and has property (A). It is plain that perfectly normal 
spaces are R-perfect, spaces with property (A) have property 
(A )c, and a space is 5-perfect if it is either perfect or has 
property (A). We also remark that the Prufer manifold has 
a countable closed T2-separating family, hence it has property 
(A), but, as it is not metrisable, cannot be weakly normal. 

There follows a series of results in which weak normality 
'lifts' the weaker perfectness type conditions to R-perfectness. 

Lemma 4.3. A weakly normal space X with property (A)c is 
R-perfect. 
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Proof: Take any closed A ~ X. Then there is C, a countable 
family of closed sets T2-separating points of A from points 
of X-A. For each pair (01 , O2 ) such that 0 1 , O2 E C and 
0 1 n O2 == 0, There is, by weak normality, a continuous map 
f(Ol,02): X ~ RW such that f(OI) n f(02) == 0. 

Fix a countable base, B, for RW, and define 9 == {f(~1 C )(B) : 
1, 2 

B E B, C1 , C2 E C}. One can easily show that 9 is an open 
family, strongly separating points of A, from points of X-A. 
D 

Proposition 4.4. Every hereditarily weakly normal space X 
with a countable point separating open cover has a countable 
strongly separating open cover. 

Proof: Taking complements it follows that X has a countable 
point separating closed cover C. By hereditary weak normal
ity, for each pair (C1 , C2 ) such that C1 , C2 E C, there is a 
continuous map f(c1 ,C2 ): Y == X - C1 - C2 n C2 - C1 ~ RW, 
such that f( C2 - 0 1 ) n f( C1 - C2 ) == 0. Note that Y is an 
open subspace of X. 

Fix a countable base, B, for RW. Define 9 = {f(c~,c2)(B) : 
B E B,01,02 E C}. 

We claim that 9 is an open family, strongly separating points 
of A, from points of X-A. To see this, take any x E A, y ~ A. 
There are C1 , C2 E C such that x E C1 - C2 , y E C2 --C1 . But 
x' == f(c1 ,c2 )(x) =1= f(cl,c.2 )(y) == y' and there is aBE B such 
that x' E B, y' tt B. 

Let U == f(~1 0 )(B), then U E 9 and x E U and y ~ U. D 
1, 2 

The same method of proof as Proposition 4.4 yields the fol
lowing: 

Proposition 4.5. Every hereditarily weakly normal S -perfect 
space X is R-perfect. 

Proposition 4.6. Every perfect and weakly normal space X 
is R-perfect 
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Proof: Perfect spaces are S- perfect. From the preceeding 
proposition, if we can show X is a hereditarily weakly normal, 
then X is R- perfect. 

Actually, we only need to show every open subspace of X is 
weakly normal. Let Y be open subspace of X. As X is perfect, 
there is a countable family C == {Cn}nEN of closed subsets of 
X such that Y == UnEwCn. 

Let A, B be closed disjoint sets in Y. Define, for each b E w, 
An == A n Cn, Bn == B n Cn. Note that theAns and Bns are 
closed in X. So can find, for each n, mEw a continuous map 
f(n,m): X --t RW such that f(n,m) (An) n f(n,m) (Bn) == 0. 

Define f: Y --t (RW)WXW by f == ~(n,m)Ewxwf(n,m), in other 
words, f(x) == (f(n,m)(x))(n,m)Ewxw. The map f is continuous. 
We claim f(A) n f(B) == 0. If not, let ~ == (Y(n,m))(n,m)Ewxw be 
in f(A) n f(B). Then there is a E A, and there is b E B such 
that f(a) == ~ == f(~). As a E A, and A == UnEwAn, there is 
no E w such that a E Ano . Similarly, there is mo E w such that 
b E Bmo . Now f(a)(no,mo) == f(no,mo)(a) E f(no,mo)(A no ) and 
f(b)(no,mo) == f(no,mo)(b) E f(no,mo)(Bmo ), but f(no,mo)(.t4 no ) n 
f(no,mo)(Bmo ) == 0 and this is a contradiction. D 

Theorem 4.1 follows from Proposition 4.6 and Balogh & 
Bennett's [10], '(MA(Wl)) Every locally compact, locally con
nected, R-perfect space is paracompact'. Similarly, Theorem 
4.2 follows from Proposition 4.6 and Balogh & Bennett's [10], 
'Every locally compact, locally connected, R-perfect, quasi
developable space is metrisable'. 

Additionally, we observe that from Proposition 4.4 and The
orem 1.1 of [10] follows: 

Theorem 4.7. Every locally compact) locally connected) hered
itarily weakly normal space with a countable point-separating 
open cover is metrisable. 

The existence of a normal manifold with a countable point 
separating open cover which is not metrisable is independent of 
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set theory. Using 0, Rudin [20] constructed a hereditarily sepa
rable Dowker manifold which has a countable point-separating 
open cover. 

We finish with some remarks on spaces with 58 or R8 diag
onal, and their relationship to quasi-developable spaces. 

Lemma 4.8. A space X has a quasi-G8-diagonal if and only 
if there is a countable sequence {Un}nEN of open subsets in 
X 2 

) such that for all (x, y) ~ ~ there is n E N such that J 

(x, x) E Un but (x, y) ~ Un. 

Proof: Let {(in}nEN be a quasi-G8-diagonal sequence for X. 
Define Un = U{G X G : G E (in}. Then the Uns are open 

in X 2
• Further, if (x, y) E X 2 such that x # y, then there 

is n E N, such that x E st(x, (in) and y t/:. st(x, (in). Then 
(x,x) E Un but (x,y) ~ Un. 

Conversely suppose we have a sequence {Un }nEN as in the 
statement of the Lemma. Define (in = {G : G is open and 
G x G ~ Un}. Suppose distinct x and yare in X. Pick n E N 
so that (x,x) E Un but (x,y) t/:. Un. Then x E st(x, (in) while 
y t/:. st(x,(in). D 

Corollary 4.9. Every space with a S8 diagonal has a quasi-G8 

diagonal. 

Prompted by the above corollary, and by analogy with 'reg
ular G8 diagonal', we make the following definition. A space 
X has a quasi-regular G8 diagonal if and only if there is a 
countable sequence {Un}nEN of open subsets in X 2 , such that 
for all (x,y) t/:.~, there is n E N such that (x,x) E Un but 
(x, y) t/:. Un. 

Lemma 4.10. Every space with a R 8 diagonal has a quasi
regular G8 diagonal.
 

Lemma 4.11. Every space with a quasi-regular G8 diagonal
 
has a quasi-G'S diagonal.
 

Proof: Suppose we have a sequence {Un}nEN as in the defini
tion of quasi-regular G8 diagonal. Define (in = {G : G is open 
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and G x G ~ Un}. Suppose distinct x and yare in X. Pick 
n E N so that (x,x) E Un but (x,y) ~ Un' Then x E st(x,9n) 
while y ~ st(x,9n)' 0 

Theorem 4.12. Let X be locally compact and locally co'nnected. 
If X has a quasi-G'S diagonal, then X is quasi-developable. 

Proof: Let {9n}nEN be a quasi-G'S diagonal sequence for X. 
Let cg(x) = {n : st(x, 9n) # 0}. LFrom the definition of quasi-

Gs diagonal, nnEc(x)st(x,9n) = {x}. Define by induction a 
sequence of open families H n as follows: let HI = 91, and 
Hn +1 = {G n Hi : for some x E X, x E G E 9n+l and i 
maximal, i :::; n such that x E UHi and x E Hi E Hi}. 

It	 is easy to check that {Hn}nEN satisfies the following: 

1.	 for each n E N, H n is open. 
2.	 Cg = C1{. 

3.	 if x E H E Hn, then H ~ G for some G E 9n. 
4.	 st(x,Hm ) ~ st(x,Hn), if m > n,m,n E c(x). In other 

words, for m > n, H m refines H n , where both are defined. 

So, the sequence {Hn}nEN is a quasi-Gsdiagonal for ..X", such 
that st(x, Hm ) ~ st(x, Hn), if m > n, m, n E c(x). Passing to 
component (using local connectedness), we may assume that 
each member of Hn is connected. We show that {Hn}nEN 
is quasi-development for X. Suppose x E X, U is a compact 
neighborhood of x , but st (x, Hn ) is not. a subset of U, for every 
n E c(x). Then since st(x, Hn) is connected, st(x, Hn) n au # 
0, for each n E c(x). Since the boundary of U is compact, 
au n nnEc(x)st(x, Hn) # 0, a contradiction. 0 

The proof of our next results relies on a metrisation theorem 
of Collins & Roscoe [13]. 

Theorem 4.13. (Collins & Roscoe) A space X is metrisable 
if and only if for each x EX, there is a decreasing local base 
{U (n, x) }nEN at x such that if x E U open then there is an open 
set V, x E V, and n such that ify E V then x E U(n,y) ~ U. 
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Theorem 4.14. Let X be a space with a sequence {Yn}nEN of 
open families such that) for each x E X, {st 2 (x, Yn) }nEN - {0} 
is a local base at x. Then X is metrisable. 

Proof: By'the same procedure as that used in the proof of 
Theorem 4.12, there is no lose of generality if we assume that: 

1. Ym refines Yn if m < n where both are defined. 
2. c(x)=={nEN:xEUYn} 

Define U(n, x) == st(x, Ym), where m is minimal, m ~ n, m E 
c(x). It is easy to see that U(n, x) is a decreasing local base 
at x, for all x E X. By hypothesis, there is n E N, such that 
x E st2 (x, Yn) ~ U. Let V == st(x, Yn), take y E V, then 
x, y E G, for some G E Yn' So, x E st(y, Yn) ~ st2 (x, (in) ~ 
U. Then, U(n,y) == st(x,Yn),m is minimal, m ~ n, and 
m E c(y), (y E UYn)' From the definition, m == n and so 
st(y, Yn) == st(x, Ym)' Hence, by Theorem 4.13, the claim is 
done. 0 

Theorem 4.15. Let X be a locally compact) locally connected 
space. If X has a quasi-regular G8 -diagonal) then X is metris
able. 

Proof: By Theorem 4.14, we only need to show that X has 
a quasi-development {Yn}nEN such that, for each x E X, 
{st2 (x, Yn)}nEN - {0} is a local base at x. 

We know already that X has a quasi-development {Yn}nEN 
(Theorem 4.12). Let {Un}nEN be as in the definition of quasi
regular G8 diagonal. So, the Uns are open in X 2 and for all 
(x,y) ~ ~,there is n E N such that (x,x) E Un but (x,y) ~ 

Un. We may suppose the following about {gn}nEN: 

1. st(x,Qm) ~ st(x,Yn), if m 2: nand m,n E c(x). 
2. members of gn are connected (for all n). 
3. if x E G E Ym, m ~ n and (x, x) EUn, then G x G ~ Un 

(for all m, n E c(x)). 

We prove the claim. Take any x E X and suppose x E V is 
open and V is compact. Suppose, for a contradiction, for all 
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n E C(X),st2(X,Yn) C X-V. Since st2(x,Yn) is connected 

when n E c(x), st2(x, Yn) n av =I- 0 (for all n E c(x)). By (1), 
the family {st2 ( X, Yn) }nEN of closed subsets of a compact space 
av has the finite intersection property (in fact are decreasing), 

hence there is y E nnENst2(x,Yn) n avo Of course x =I- y. So 
by the definition of quasi-regular G8 diagonal, there is n such 
that (x, x) E Un but (x, y) ~ Un' We know that, st(x, Yr) ~ 

st(x,Ymx) if r 2: mx and r E c(x). Hence (because {Qn}nEN 
is a quasi-development of X), there is mx , my, mx 2: n (note 
that c(x) is infinite), and 

st(x,Ymx) x st(y,Ymy) nUn == 0. 

Pick, G3 E Ymy such that y E G3 . As Y E st2 (x, Yn), there 
exists, G1 , G2 E Ymx such that x E G1 , G1 n G2 =I- 0 and 
G2 n G3 =I- 0. Let Zl E G1 n G2 and Z2 E G2 n G3 • Then 
(Zl' Z2) E (G1 x G3 ) n (G2 x G2). Now, G1 E Ym x' G3 E Ymy, 
so G1 X G3 E st(x,Ymx) x st(y,Ymy)' Also, G2 E Ymx,m x 2:: n, 
so G2 X G2 ~ Un' In other words, (Zl' Z2) E (st(x, Ymx) x 
st(y,Ymy)) n Un, and this is a contradiction. 0 
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