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ABSTRACT. Over 100 years ago Volterra showed if f 
IR ---+ IR is a function whose sets of points of continuity 
and discontinuity are both dense then there is no function 
9 : IR ---+ IR whose set of points of continuity is precisely 
the set of points of discontinuity of f. This led to the 
definition of Volterra and strongly Volterra spaces. In 
this paper the behaviour of these spaces under taking 
subspaces and superspaces, images and preimages and 
products is studied. These concepts are also tied to other 
concepts related to the notion of a non-empty open set 
not being expressible as the union of few members of an 
ideal of thin subsets of ~ space. 

1. INTRODUCTION 

The decades of the 1860's and 1870's were very fruitful for 
the development of Modern Analysis. In fact, the class of func­
tions satisfying the Lipschitz condition was introduced in 1864, 
Riemann-irltegrable functions were already studied in 1867 and 
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in 1870 H.Hankel [10] introduced pointwise discontinuous func­
tions. Apparently, the latter class of functions became the 
main object of studies in real function theory until, at least, 
the appearance of the works of H.Lebesgue. 

Recall that a function f : IR ~ IR is called pointwise discon­
tinuous, abbreviated PWD, if the set C(f) of points of conti­
nuity of f is dense. 

It can be shown, see, e.g.,[14, Theorem 7.4, p.33], that if 
X == Y == IR then: 

• f	 is PWD if and only if the set D(f) of points of discon­
tinuity of f is of first category. 

Clearly, the definition of pointwise discontinuity can be given 
for functions between topological spaces X and Y. Using the 
same arguments as ones used in the proof given in [14] of the 
statement above, one can show that it holds if X is a (topo­
logical) Baire space and Y is metric. 

In 1881, Vito Volterra who was not yet 20 years old, studied 
properties of PWD real-valued functions of real variable. He 
proved the following result: 

(*)	 Let f : IR ~ IR be a PWD function. Then there is no 
other PWD function 9 : IR ~ IR, which is continuous at 
the points where f is discontinuous and discontinuous at 
the points where f is continuous. 

Observe that (*) is equivalent to the following condition 
which will be labeled "Volterra's theorem" in the sequel [15]: 
Let f : IR ~ IR be a function such that both the set of points 
where f is continuous and its complement are dense. Then 
there is no function 9 : IR ~ IR such that the set of points 
where 9 is continuous is precisely the set of points where f is 
discontinuous. 
Thus, for example, while there is a function whose set of points 
of continuity is precisely the irrationals, there is no function 
whose set of points of continuity is the rationals. Development 
of these ideas in previous work of one or more of the present 
authors, [6, 7, 8], led to the definitions of Volterra and strongly 
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Volterra repeated in section 1 below. Related work 011 Baire 
spaces, which have a close connection with Volterra spaces, is 
fOllnd in [1, 11]. 

In this paper we continue the study of Volterra spaces, look­
ing at their behaviour under taking subspaces and superspaces, 
images and preimages and products. Previously [8] we used 
the term "Volterra" to refer to a property which we consid­
ered to be closest to the statement of Volterra's theorem, and 
"strongly Volterra" to refer to a related but strictly stronger 
property. In this paper we change this terminology to re­
serve the title "Volterra" for the global property (previously 
"strongly Volterra") and what we previously called "Volterra" 
we here call "weakly Volterra". This is the same terminology 
as used in [9]. We obtain a new criterion (Corollary 4.2) for a 
space to be Volterra which parallels the criterion for a space to 
be Baire in terms of the second category of its open subspaces. 
In the final section we connect this and related concepts to 
the notion of a non-empty open subspace not being able to be 
expressed as the union of few members of an ideal or a-ideal 
of thin subsets of the space. 

2. DEFINITIONS 

For any function f : X ---t Y we denote by C(f) the set of 
points at which f is continuous. Throughout we assume that 
our topological spaces are non-empty. 

Definition 2.1. [8] A topological space X is weakly \Tolterra 
if for each pair f, 9 : X ---t IR of functions such that C(f) and 
C (g) are both dense irt X we have C (f) n C (g) i- 0. 

Definition 2.2. [8] A topological space X is Volterra if for 
each pair f,g : X ---t IR of functions such that C(f) artd C(g) 
are both dense in X the set C(f) n C (g) is dense in X. 

The following equivalent conditions are shown in [8]. . 

Proposition 2.3. For any non-empty topological space the fol­
lowing are equivalent: 



170 GAULD, GREENWOOD AND PIOTROWSKI 

1.	 X is weakly Volterra; 
2.	 for each pair A, B of dense Gs subsets of X we have A n 

B =I 0; 
3.	 for each pair C, D c X of Fa subsets such that CUD = 

X, either (; or b is non-empty; 
4.	 for each pair Y, Z of developable spaces and each pair f : 

X ~ Y and 9 : X ~ Z of functions for which C(f) and 
C(g) are dense in X, the set C(f) n C(g) is non-empty. 

Recall that a subset SeX is boundary or code'nse if its 
complement in X is dense. 

Proposition 2.4. For any topological space the following are 
equivalent: 

1.	 X is Volterra; 
2.	 for each pair A, B of dense Gs subsets of X the set A nB 

is dense; 
3.	 for each pair C, D c X of boundary Fa subsets of X the 

set CUD is boundary; 
4.	 for each pair Y, Z of developable spaces and each pair f : 

X ~ Y and 9 : X ~ Z of functions for which C(f) and 
C (g) are dense in X, the set C (f) n C (g) is dense. 

Recall also the following definition. 

Definition 2.5. A topological space is Baire if the intersection 
of a sequence of open dense subsets is dense. 

Remarks. Gruenhage and Lutzer ([9]) have shown that a 
space that is T 3 and has a dense metric subspace, or is T 3, 

metacompact, first countable and is a a-space, is Volterra if 
and only if it is Baire. 

As noted in [8] we have the following relationship between 
the four properties Baire, second category, Volterra and weakly 
Volterra, with no other relationships between individual pairs 
of the properties. 
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/volterra~ 

Baire~ /weaklY Volterra 

second category 

3. EXAMPLES 

In this section we present.a number of examples whiclL illus­
trate some of the behaviour of Volterra and weakly Volterra 
spaces. 

Example 3.1. The discrete and indiscrete spaces. 

As Baire spaces, both of these spaces are Volterra. Thus, 
as there are examples of spaces which are not weakly Volterra, 
it follows that reducing or enlarging the topology may destroy 
the (weak) Volterra property. 

Example 3.2. The rational numbers. 

The space Q is not weakly Volterra. Indeed, letting 

Qo == {~ I q is odd}, Qe == {~ I q is even}, 

when P. 
q 

are in their lowest terms, we see that Qo and Qe are 
disjoint, dense G8 subsets of Q. 

Example 3.3. A space which is not weakly Volterra but has 
disjoint dense G8 -subspaces which are Volterra. 

Let X == N. Let 0 denote the odd positive integers and 
E the even positive integers. For each pair (m, n) of positive 
integers let 

Um,n == {x E X I either x ~ 2m - 1 and 

x E 0 or x ~ 2n and x E E}. 

Then {0} U{Um,n 1m, n E N} is a topology on X. It is readily 
checked that the two subsets 0 and E are dense G8-subsets 
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and as subspaces are Volterra. From 0 nE = 0 it follows that 
X is not weakly Volterra. 

Example 3.4. A space which is Volterra and has disjoint dense 
subspaces which are Volterra. 

Let (X, T) be a separable, completely metrisable space with 
no isolated points. As completely metrizable, it is Baire, thus 
Volterra. It is known [13, p.514], see also [11, Theorem 2.6, 
p.21], that there is a subset Z C X such that: both Z and 
X -Z are dense in X, have cardinality continuum and are Baire 
spaces in the strong sense (= every nonempty closed subspace 
is of second category in itself). To get such a subset Z just use 
the following construction due to Bernstein:the cardinalities of 
X and T are both the continuum. Thus, each G8 subset of 
X without isolated points has cardinality the continuum and 
there are exactly continuum many of them. Then construct Z 
by well-oTdering X and the collection of G8 sets and carefully 
remove points from G8 sets. Thus both Z and X - Z are 
Baire spaces, see [11, Proposition 2.1, p.18], and comments 
above. Thus both the sets are Volterra. It is interesting that 
the sets Z and X - Z cannot be completely metrisable, since a 
Hausdorff space X cannot be the union of two or more pairwise 
disjoint, topologically complete, dense subspaces, [16]. 

Example 3.5. A space which is not of second category, hence 
not Baire, but is Volterra. 

Let X = [0,(0) with topology having basis
 

{[a, (0) - F I a E X and F is a finite subset of X}.
 

Example 3.6. A space which is not Volterra, hence not Baire, 
but is of second category, hence weakly Volterra. 

Let X = lR_ U Q+ with topology inherited from the re­
als, where lR_ denotes the non-positive reals and Q+ the non­
negative rationals. 

Example 3.7. [5] Another space which is weakly Volterra but 
not Volterra. 
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Retopologise the plane by taking as subbasis the usual topol­
ogy together with the set Qx {Ole This space is weakly Volterra 
because its open subspace consisting of the plane less the x-axis 
is Baire. However the two sets 

{(x,y) I either x E Qo or y # 0 } and {(x,y) I 

either x E Qe or y # 0 }, 

where Qo and Qe are as in Example 3.2, are dense Go subsets 
whose intersection is not dense. 

Example 3.8. The countable cloud space. 

Let X = Y U Z be the subspace of the plane where 

y = {(x,O) I x E Q}, Z = {(~, ~) I ~ E Q}. 

The countable cloud space appears in [1] as an example of a 
metric Baire space. Therefore, it is Volterra. Notice that the 
countable cloud space contains a closed subspace which is not 
weakly Volterra, viz the rationals in the x-axis. 

Example 3.9. [4] A metric Baire space whose squarf~ is not 
even weakly Volterra. 

This example is described in [3, 4]. For any function f : 
W ~ WI set f* = sup{f(n) I nEw}. For any stationary subset 
A C WI define 

A == {f : w ~ WI I f* E A}. 

A is topologised by the metric p given by p(!, g) = 2-n when­
ever !, 9 E A, where n is the least integer so that fin f gin. 
Then by [3, 4] A is Baire. Now suppose that At, A 2 C Wt 

are two disjoint stationary subsets: then Al x A2 is not even 
weakly Volterra. Indeed, for each nEw let 

Un == {(fI, f2) E At X A2 I fl(n) < f; and f2(n) < f;}· 

Each set Un is open in Al X A2. Thus the set U e == nnEwU2n 

is Gs. Ue is also dense in Al x A2 • To verify this, suppose given 
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Then gi = ai, so when n is even we have gl(n) < g; and 
g2(n) < g;; thus (gl,g2) E Ue • Note also that gil m = Iilm so 
(gl, g2) E V. Thus V n Ue =I- 0, so Ue is dense in Al x A2. 
Similarly Uo = nnEwU2n+I is a dense G8 subset of Al x A2. 
However Ue nUo = 0 because if we had (11,12) E Ue nUo then 
for all nEw we would have II (n) < I; so that I; :::; I; so 
by symmetry I; = I;, contrary to Al n A2 = 0. We conclude 
from Proposition 2.3(2)that Al x A2 is not weakly Volterra. 

4.	 PRESERVATION UNDER SUBSPACES, SUPERSPACES AND 

PRODUCTS 

Example 3.2 shows that the property of being (weakly) 
Volterra need not be inherited by arbitrary subspaces. In this 
section we show that for some classes of subspace these prop­
erties are inherited. This leads to a new characterisation of 
when a space is Volterra., We also find circumstances in which 
a union of spaces which are (weakly) Volterra is also (weakly) 
Volterra. 

Theorem 4.1. Suppose that X is a Volterra space and SeX 
a subset containing a Gs-subset G such that intG is dense in 
S. Then S is a Volterra space. Furthermore) if X is merely 
assumed to be weakly Volterra and SeX is a dense Gs-subset 
then S is also weakly Volterra. 

Proof: Since intG is dense in S we have S = S n intG, so that 

G eSc S n intG C G, hence G = S. 
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Let A and B be Gs sets in X which are dense in ~~ (i.e. 
S n A == 5 == s n B). Define G' == GU(X-5), A' == AU(X-5) 
and B' == B U (X - 5). Then G', A' and B' are dense G.§ set~ 
in X and hence so is G' nA' nB' as X is Volterra. From G == S 
it follows that intO C G nAn B. Therefore 

5 C Sn intG C intO c G nAn B c SnAn B, 

so that A n B is dense in S. 
Finally if X is weakly Volterra and SeX is a dense Gs­

subset then the conclusion follows from Proposition 2.3(2)., 
o 
Note that S satisfies the hypothesis of Theorem 4.1 if S is 

an open ,or a regular closed or a dense Gs-subset of X. 

In Theorem 4.1 we cannot extend the hypothesis concerning 
S to just "closed". Indeed, the cloud space of Example 3.8 
shows that a closed subspace of a Volterra space need not even 
be weakly Volterra: the space X is Volterra but its closed 
subspace Y is not weakly Volterra, as noted in Example 3.2. 

It is not the case that an arbitrary open or regular closed 
subspace of a weakly Volterra space need be Volterra, so the 
weakly Volterra analogue of Theorem 4.1 does not hold. In­
deed, we may take X == IR_ U Q+ as in Example 3.6 and 
S == Q+ n (0, (0) (respectively Q+ ). Then S is an open (respec­
tively regular closed) subspace of the weakly Volterra space X, 
but, as noted in Example 3.2, S is not weakly Volterra. 

The following corollary of Theorem 4.1 emphasises how the 
relationship between weakly Volterra and Volterra parallels 
that between second category and Baire. Recall that a space is 
Baire if and only if each non-empty open subspace is of second 
category. 

Corollary 4.2. The space X is Volterra if and only if each 
non-empty open subspace is weakly Volterra. 

Proof: By Theorem 4.1 we need only show that if each non­
empty open subspace is weakly Volterra then X is Volterra. 
Suppose that A and B are two dense Gs-subsets of X. Let U 
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be a non-empty open subset of X. Then UnA and U n B 
are two Gc5 -subsets of U which are dense in U. It follows that 
UnA nB == (U n A) n (U n B) =1= 0 as U is weakly Volterra. 
Thus A n B is dense in X so X is Volterra. 0 

We now consider whether the property of being (weakly) 
Volterra is preserved when we pass to superspaces. Note from 
Example 3.3 that we may have a space E which is Volterra yet 
is a dense Gc5-subspace of a space X which is not even weakly 
Volterra. 

Proposition 4.3. Suppose that U is a collection of open sub­
sets of the space X whose union is dense in X. Then: 

1.	 if there is some non-empty U E U such that U is weakly 
Volterra then X is weakly Volterra; 

2.	 if each member ofU is Volterra then X is Volterra. 

Proof: Because each member of U is open, it follows that for 
any dense subset D of X, the set D nU is dense in U whenever 
U E U. Suppose that A and B are two dense Gc5 -subsets of 
X. Let V be either the whole space X in case 1 or any non­
empty open subset of X in case 2: it suffices to show that 
V nAn B =I 0. Choose U E U such that U n V =1= 0. Then 
Un V is all of U in case 1 and is a non-empty open subset of U 
in case 2. By the observation at the beginning of the proof we 
have that UnA n B are both dense in U. Thus by hypotheses 
in either case 1 or case 2 we have U n V nAn B =1= 0, from 
which the results follow. 0 

Corollary 4.4. The topological sum of a family of (weakly) 
Volterra spaces is (weakly) Volterra. 

Example 3.9 shows that in general the product of Baire 
spaces need not even be weakly Volterra. 
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5.	 PRESERVATION UNDER IMAGES AND PREIMAGES OF 

FUNCTIONS 

Let X be any space \Yhich is not. weakly ·Volterra. As noted 
in Example 3.1, when X is retopologised with either the dis­
crete or indiscrete topology, X becomes Volterra. Thus the 
identity function from X with the discrete (respectively indis­
crete) topology to X with the original topology is a continuous 
(respectively open) function from a Volterra space to a space 
which is not weakly Volterra. It follows that the image of a 
Volterra space under either a continuous function or an open 
function need not even be ·weakly Volterra. Note that Example 
3.7 also gives us an open function (viz the identity) from the 
(Volterra) plane to a space which is not Volterra. 

Compare the following proposition with [5], theorem 1. We 
recall that a function f : X -+ Y is feebly open if for each set 
A C X having non-empty interior we have int f(A) f:. 0. 

Proposition 5.1. Suppose that f : X -+ Y is continuous and 
feebly open. If X is weakly Volterra then so is Y. If X is 
Volterra and f is surjective then Y is Volterra. 

Proof: Let A and B be two dense Go-subsets of Y. Then 
f-l.(A) and f-l(B) are Go-subsets of X. Furthermore, if U c 
X is non-empty and open then so is intf(U) C Y, so that 
intf(U) n A -:f 0, and hence Un f-l(A) -:f 0. Thus f-l(A) is 
dense. Similarly f-l(B) is dense. 

Let V C Y be a non-empty open set, with V == Y in the 
case where X is merely weakly Volterra: it remains to show 
that V nAn B f:. 0. Now f-1(V) C X is non-empty and 
open and is all of X when V == Y, so in either case f- 1 (V) n 
f-l(A) n f-l(B) f:. 0, say x E f-1(V) n f-l(A) n f-l(B). 
Then f(x) E V n A nB as required. 0 

Remark: Recall that" in case of Baire spaces, in order for f to 
preserve this property, f needs to be quasi-continuous (ie for 
each open V C Y we have f-1(V) C cl intf-1(V), [12]) and 
feebly open [5]. In our proof of the preservation of Volterra 
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(resp. weakly Volterra) spaces we need the full strength of 
continuity and feeble openness. There are two places where 
continuity of f is used in the proof above: in deducing that 
f-l(A) and f-l(B) are open, and f-1(V) is open. We require 
only that intf-l(V) i: 0 and this is guaranteed by quasi­
continuity. However quasi-continuity does not suffice in the 
other application as if A == nnEwAn, where An is open, then 
U n (nnEwf-1 (An)) i: 0 implies that for each n we have U n 
intf-l (An) i: 0, say X n E U n intf-l (An), but this is not 
enough to ensure that Unj-l (A) i: 0 as X n may vary too much 
with n. Indeed, let X, E and 0 be as in Example 3.3 and define 
j : E ---+ X by f (e) == ~. Then f is an open function because if 
Um,n n E is open in E then f(Um,n n E) == U~+l,~ if nEE and 
f(Umn n E) == U!!d:1.!ttl if n E O. Also, f is quasi-continuous 

, 2 ' 2 

because for any open Um,n C X, let k ==max{2n,2m - I}. 
Then U1,k nEe f-1(Um,n) and since U1,k n E is dense in E it 
follows that intf-l (Um,n) is dense in f- 1(Um,n)' 

Let Al and A2 be as in Example 3.9, and let 7r : Al x A2 ---+ Al 
be projection onto the first coordinate. Properties exhibited by 
Al x A2 , Al and 7r confirm that the pre-image of a Volterra 
space under an open, _continuous function need not even be 
weakly Volterra even if the spaces are metric and the function 
has Volterra fibres. 

Let X == [0,2] n Q and Y == {a, I} and define f : X ---+ Y 
by j(x) == °if x ~ Vi and j(x) == 1 if x ~ Vi, Then f is 
continuous, open and closed but Y is Volterra whereas X is 
not weakly Volterra; again both spaces are metric. 

Let X == ([-1,0]nQ)U(UnEN[2n-l,2n]), Y == N and define 
f : X ---+ Y as follows: write [-1, 0] n Q == {x n I n E N} 
and set f(x) == n if either x == X n or x E [2n - 1,2n]. X is 
second countable, Y is Volterra and f is open, closed and feebly 
continuous with compact fibres. However X is not Volterra 
(although it is weakly Volterra). 
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6. GENERALISATIONS 

In this section we look at the concept of the possibility or 
otherwise of expressing a space as a union of few subsets which 
in some sense are thin. Thus a non~empty open subset of 
a Baire space cannot be expressed as the countable Ullion of 
nowhere dense sets and Volterra spaces cannot be expressed as 
a finite union of boundary Fa sets; in one case it is the nowhere 
dense sets which are 'thin' and in the other it is the bOllndary 
F a sets. Recall that for a set X·, a family I of subsets is an 
ideal if for eac11 A E I and each B C A we have B E I and 
for each A, B E I we have A U B E I, and is a a-ideal if in 
addition it is closed under countable unions. 

As examples of (a )-ideals in a topological space we have the 
following: 

• I	 is the ideal generated by { SeX I S is a bOllndary 
Fa set}; 

• J	 is the a-ideal gerlerated by { SeX I S is a bOllndary 
Fa set}; 

• K	 is the a-ideal generated by { SeX I S is nowhere 
dense}; 

• C is the a-ideal { SeX I S is countable}. 

There are possibilities in other areas, such as the farnily of 
subsets of measure 0 of a measure space. Note that I C J C K 
and that if the space X is T 1 and has no isolated points then 
C eK. 

The proof of the Proposition 6.1 below is a straightforward 
application of Proposition 2.4(3). 

Proposition 6.1. Let I be the ideal above. Then X is llolterra 
if and only if no non-ern,pty open subset of X is in I. 

Proposition 6.2. Let:r and K be the ideals above. Then the 
following are equivalent: 

(a) X is Baire)' 
(b) K contains no non-empty open subset of X; 
(c) J contains no non-empty open subset of ..x . 
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Proof: (a)=>(b): This is a straightforward application of one 
of the characterisations of when a space is Baire. 

(b)=>(c): Trivial. 
(c)=>(a): If X is not Baire then there exist open dense sub­

sets Un of X and a non-empty open subset U of X such that 
U n (nnUn) == 0. For every n let Fn == X - Un' and let 
S == UnFn. Each Fn is a boundary Fa-set, so that S. E :T. 
However U C S, and hence U E :T. 0 

It is an immediate consequence of Propositions 6.1 and 6.2 
together with the inclusion I c K, that every Baire space is 
Volterra. Indeed this inclusion is the essence of the relationship 
between the two concepts. This raises a number of interesting 
questions. For example we may ask whether the class of spaces 
X which satisfy the condition that no non-empty open subset 
is in J is of independent interest. Note that the weakly Baire 
spaces of [2] are precisely those T 1 spaces having no isolated 
points for which no non-empty open subset is in C, and the in­
clusion C C K, captures the essence of the relationship between 
Baire and weakly Baire spaces. 

Acknowledgement. The authors thank the referee for 
valuable comments, especially pertaining to improved versions 
of Theorem 4.1 and Proposition 6.2. 
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Subspace Table 

~ open closed I regular closed I dense I dense G5 I 
Weakly 
Volterra 

No 
Ex 3.6 

No 
Ex 3.6 

No 
Ex 3.6 

No 
Ex 3.2 

Yes 
Thm 4.1 

Volterra Yes 
Thm 4.1 

No 
Ex 3.8 

Yes 
Thm 4.1 

No 
Ex 3.2 

Yes 
Thm-4.1 

Superspace Table 

dense I dense G5 I open cover I 
Weakly No No Yes 
Volterra Ex 3.3 Ex 3.3 Prop 4.3 
Volterra No No Yes 

Ex 3.3 Ex 3.3 Prop 4.3 

Function Image Table 
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continuous open continuous, 
open 

closed, 
perfect 

Weakly 
Volterra 

No 
Ex 3.1 

No 
Ex 3.1 

Yes 
Prop 5.1 

No 
Ex 3.9 

Volterra No 
Ex 3.1 

No 
Ex 3.1 

Yes 
Prop 5.1 

No 
Ex 3.9 
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