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EXTENSIONS OF PARTITIONS OF UNITY 

KAORI YAMAZAKI 

ABSTRACT. In [5], Dydak proved some theorems con
cerning extensions of partitions of unity and extensions 
of continuous maps with metric simplicial complex val
ues. In his paper, a subspace A of a space X is said to 
be P(locally-finite)-embedded in X if every locally finite 
partition of unity on A can be extended to a locally fi
nite partition of unity on X. And a problem was posed 
there whether A x [0, 1] is P (locally-finite)-embedded in 
X x [0, 1] if A is P(locally-finite)-embedded in X. In this 
paper, under a set-theoretic viewpoint, we prove that A 
is P(locally-finite)-embedded in X if and only if every 
locally finite cover of cozero-sets of A can be extended 
to a locally finite cover of cozero-sets of X. This extends 
Przymusinski and Wage's theorem [13] in the case that X 
is normal and A is its closed subspace. As an application, 
we also give an affirmative answer to the problem above. 
Moreover by using continuous maps with metric simpli
cial complex values or partitions of unity we characterize 
well-known z-y- or z-embedding. 

1. INTRODUCTION 

Throughout this paper, a space means a topological space. 
And I denotes an infinite cardinal number. Let X be a space 
and A its subspace. For a collection V = {Va: Q E n} of sub
sets of X and a collection U = {Va: Q E n} of subsets of A, 
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V is said to be an extension of (or to extend) U if Va n A == Ua 

for every Q' E O. A is said to be P'Y-embedded in X if for every 
normal open cover U of A with Card:::; " there exists a normal 
open cover V of X such that V I\A < U ( == {VnA : V E V} re
fines U). A is said to be P- embedded in X if A is p'Y-embedded 
in X for every,. A is said to be Z'Y- embedded in X if for ev
ery normal open cover U of A with Card :::; " there exist a 
cozero-set G of X containing A and a normal open cover V 
of G such that V 1\ A < U [3]. If A is z'Y-embedded in X 
for every" A is said to be Zoo- embedded in X. Clearly, p'Y_ 
(resp. P- )embedding implies Z'Y- (resp. Zoo- )embedding, and it 
is known that zw-embedding or PW-embedding coincides with 
z-embedding or C-embedding, respectively; where A is said to 
be z- embedded in X if every zero-set in A is the intersection of 
A with some zero-set in X and A is said to be C-embedded in X 
if every real-valued continuous function on A can be extended 
over X (See [1], [3]). 

In [5], Dydak investigated an extension theory by contin
uous functions with values in metric simplicial complexes or 
CW-complexes. He proved some interesting theorems char
acterizing several notions of embeddings defined in terms of 
extensions of partitions of unity, and showed that these results 
are closely related to p'Y-embedding. As one of such notions, it 
is defined in [5] that A is p'Y (locally-finite)- embedded in X if ev
ery locally finite partition {JOt: Q' EO} of unity on A with Card 
:::; , can be extended to a locally finite partition {gOt : Q' En} 
of unity on X, where "extended" means gOt IA == JOt for every 
Q' E O. If A is p'Y (locally-finite)-embedded in X for every" A 
is said to be P(locally-finite)-embedded in X. It is also shown 
in [5] that every closed subspace of a paracompact T2 space X 
is P(locally-finite)~embedded in X. 

From a set-theoretic viewpoint, we remind that the notion of 
P(locally-finite)-embedding originally relates to Katetov [10] 
and Przymusinski and Wage [13]. Katetov [10] proved that 
every collectionwise normal and countably paracompact space 
X satisfies the property that X is normal and this property was 



291 EXTENSIONS OF PARTITIONS OF UNITY 

named functionally [(atltov later by Przymusinski and Wage 
[13]. It was also shown in [13] that a T1-space X is functionally 
Katetov if and only if every locally finite partition of unity 
Ofl any closed subspace A of X can be extended to a locally 
finite partition of unity on X, that is A is P(locally-finite)
embedded in X for every cosed subspace A of X. In their 
proof of the "only if" part of this result, the normality of X 
and the closedness of A are essential. Also they proved that A 
is P-embedded in X if and only if every locally finite partition 
of unity on A can be extended to a (not necessarily locally 
finite) partition of unity on X [13, Theorem 1*]. Thus, it is 
natural to ask whether a subspace A of a space X is P(locally
finite )-errlbedded in X if and only if every locally finite cover 
of cozero-sets of A can be extended to a locally finite cover 
of cozero-sets of X. In Section 3 of our paper, we prove this 
equivalence, and apply it to answer affirmatively to a problem 
posed by Dydak [5] concerning product spaces. 

In Section 4, we are c.oncerned to describe p--y -, Z--y-, C - or z
embedding, in terms of maps with metric simplicial complexes 
values. Since any continuous map on X with metric simpli
cial complex values corresponds to a point finite partition of 
unity on X( cf. [5]), extensions of maps with metric simpli
cial complex values can be regarded as extensions of point fi
nite partitions of unity. In [5], Dydak characterized p--y (point
finite )-embedding (see Section 2 for the definition) by using 
maps with values in contractible metric simplicial c~mplexes 
(see Proposition 2.4). In [3], [4], [14] or [15], characterizations 
of z--y-embedding in terms of continuous functions with values 
into the hedgehog with, spines were given. Relating to these 
results, in Section 4 we first prove a key result including that 
A is z,),-embedded in X if and only if for every continuous map 
f : A ----t Y into any finite dimensional metric simplicial com
plex with weight ~ , there exist a cozero-set G of X containing 
A and a continuous map 9 : X ----t Y such that carr (I (a)) = 

carr(g(a)) for each a E A. Using this result, we give corre
sponding results for p--y- or C-embedding. Moreover, we give 
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another type of characterizations of z- or z,,-embedding by ap
proximations of these continuous maps f : A ----+ Y above; 
they include the real-valued case (Blair and Hager [4]) or the· 
hedgehog-valued case ([14], [15]). 

2. PRELIMINARIES 

A collection {fot : a E f!} of continuous functions from a 
space X into [0, 1] is said to be a partition of unity on X if 
2:otEO fot(x) = 1 for every x E X, where 2:otEO fot(x) means 
the least upper bOllnd of all sums of finitely many fot(x)' s. A 
partition {fot : a E f!} of unity on X is said to be locally finite, 
(resp. point finite) if {f~l ((0,1]) : a E O} is locally finite 
(resp. point finite) in X. 

A subspace A of a space X is said to be P"(point-jinite)
embedded inX if every point finite partition of unuty on A 
with Card :::; 1 can be extended to a point finite partition 
of unity on X [5]. If A is P"(point-finite)-embedded in X 
for every " A is said to be P(point-jinite)- embedded inX. 
We note that P" (locally-finite )-embedding or P" (point-finite)
embedding implies P" -embedding. 

Let us recall the hedgehog with I spines. Let Ie = [0,1] x {~} 

for every ~ E I. We define the equivalence relation E on 
UeE" Ie such as (x, ~l)E(y, ~2) whenever x = y = °or (x = y 
and el = e2). We denote J(1) the set of all equivalence classes 
of E and define a metric on J(1) as follows: 

for every (x, ~l)' (y, ~2) E J (I). f) denotes the class of J (,) 
consisting of (0, ~), eE 1. We call this space with t11e metric 
topology associated by p the hedgehog with, spines, and also 
denote it by J(1). 

The set of all vertices of a simplex often means itself a sim
plex. Let Y be a simplicial complex. Then we denote by IYI 



EXTENSIONS OF PARTITIONS OF UNITY 293 

the polyhedron of Y and by As (y) the barycentric s'th coordi
nate of a point y of IY I. The metric simplicial cornplex (Y, d) 
is a pair of the simplicial complex Y and a metric defined by 
d, where d(y, z) == L:sEA IAs(y) - As(z)1 for each y, z E IYI and 
A denotes the set of all vertices of Y. For a simplicial complex 
Y and y E IYI, the carrier of y is the smallest simplex of Y 
containing y, and is denoted by carr(y). 

For a set S, let ~s is a set of all nonnegative functions v : 
S ---+ [0,1] such that L:sEsv(s) == 1 equipped with the norm. 
Then ~s is naturally a Banach space (see [5, Definition 5.1]). 
For a simplicial complex Y, ~s is denoted by ~y, where S is 
the set of all vertices of Y. 

Especially, if we regard J(,) as a simplicial complex, we 
denote J (,) with the simplicial complex metric d defined above 
by (J(,),d). Note that (J(,),p) and (J(,),d) have the same 
topology, in fact, p :::; d :::; 2p. 

N denotes the set of all natural numbers. Other terminology 
are refered to [1], [6], [7] or [8]. 

Let us recall two examples. 

Example 2.1. (1) ([13, Example 3]) There exists a space 
containing a P-embedded but not pW(locally-finite)-embedded 
closed subspace. 

(2) ([5, Theorem 12.13 and Remark 12.14]) There exists a 
space containing a P(locally-finite)-embedded but not PW(point
finite )-embedded closed subspace. 0 

The following propositions will be used in Section 3 or 4. 
(1) {:} (2) is in [3, Theorem 3.8], (1) {:} (3) is in [15, Lemma 
2.2] and (1) {:} (4) is in [14] or [15, Theorem 4.9]. 

Proposition 2.2. Let X be a space and A its subspace. Then 
the following statements are equivalent: 

(1)	 A is z'"Y-embedded in X; 
(2)	 for every continuous map / : A ---+ J(,)) there exists 

a contiTl:uous map g: X ---+ J(,) such that g-l((O,l] x 
{~}) n A == /-1((0,1] x {~}) for every ~ E,; 
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(3)	 for every disjoint collection {Gala E O} of cozero-sets of 
A with Card 0 ~ , satisfying U{Gal a EO} is a cozero
set of A) there exists a disjoint collection {Hala E O} of 
cozero-sets of X such that U{Hala E O} is a cozero-set 
of X and Ha n A == Ga for each a E 0; 

(4)	 for every continuous map f : A -t J(,) and any c > 0) 
there exist a cozero-set G of X containing A and a contin
uous function 9 : G -t J(,) such that p(g(a), f(a)) < c 
for every a E A. 

A subspace A of a space X is said to be well-embedded in X if 
A is completely separated from any zero-set of X disjoint from 
A. It is known that A is Pr-embedded in X if and only if A is 
Zr- and well-embedded in X [3]. The following also describes 
pr-embedding; (1) {:} (2) is in [11, Corollary 10], (1) {:} (3) is 
in [12, Theorem 2], (1) {:} (4) is in [15, Theorem 4.7], (1) {::} (5) 
is in [13, Theorem 1*] and [5, Proposition 12.8], (1) {:} .(6) easily 
follows from the definition of pr-embedding using [7, Theorems 
1.2]. Concerning (2) or (3), similar characterizations are seen 
in [1], [6] or [12]. 

Proposition 2.3. Let X be a space and A its subspace. Then 
the following statements are equivalent: 

(1)	 A is Pr-embedded in X; 
(2)	 every continuous map f : A -t Y into any Cech complete 

AR (~AR for metrizable spaces) with weight ~ , can be 
extended over X; 

(3)	 every continuous map f : A -t J (,) can be extended over 
X; 

(4)	 for every continuous map f : A -t J(,) and any c > 0) 
there exists a continuous map 9 : X -t J (,) such that 
p(g(a), f(a)) < c for every a E A; 

(5)	 every partition (or locally finite partition) point finite par
tition) of unity on A with Card :s; , can be extended to a 
partition of unity on X; 

(6)	 for every partition (or locally finite partition) point finite 
partition) {fa: a E O} of unity on A with Card :S;,) 
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there exists a partition {ga : a En} of unity on X such 
that ga -1 ((0,1]) n A c /~1 ((0,1]) for every a E n. 

The following due to Dydak [5] characterizes p'Y(point-finite)
embedding. 

Theorem 2.4. [5, Theorem 9.1] A subspace A of a space X is 
p'Y(point-finite)-embedded in X if and only if every continuous 
map from A into any contractible metric simplicial complex Y 
with weight :::; , can be extended over X. 

3. EXTENSIONS OF LOCALLY FINITE PARTITIONS OF UNITY 

As is stated in the introduction, we now prove the following 
theorem: 

Theorem 3.1. Let X be a space and A its subspace. Then A 
is p'Y (locally-finite) -embedded in X if and only if every locally 
finite cover of cozero-sets of A with Card:::; , can be extended 
to a locally finite cover of cozero-sets of X. 

For the proof of Theorem 3.1, we need a lemma. By Ishii 
and Ohta [9], a subspace A of a space X is said to be C1

embedded in X if any zero-set ZI of X and any zero-set Z2 of 
A disjoint from ZI are completely separated in X. Note that A 
is C-embedded in X if and only if A is C*- and C1-embedded 
in X [~]. 

Lemma 3.2. Let X be a space and A its subspace. Then, A is 
C -embedded in X if and only if for every continuous function 
f : A ~ [0,1] and any cozero-set U of X satisfying UnA == 
/-1((0,1]), there exists a continuous function g: X ~ [0,1] 
such that glA == / and g-1 ((0,1]) C U. 

Proof: It is not hard to see that the assumption of the if part 
implies C*- and C1-embedding of A over X. To see the only 
if part, assume A is C-embedded in X. Let f : A ~ [0,1] be 
a COIltinuous function and U be a cozero-set of X satisfying 
UnA == /-1 ((0,1]). By induction, we construct a continuous 
real-valued function hn on X for each n E N which satisfies the 
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following three conditions: 

Ihnl :::; 2n

1
 1 ; 

h;;l ([ - 2n1_1 ,0) U (0, 2n1_1 ]) C Vi 

(3)n If - Ln 

(hilA) I < 2
1 

n' 
i=l 

Since f- 1 ([1/2, 1]) is a zero-set of A contained U and A is 
C1-embedded in X, f- 1 ([1/2,1]) and X - U are completely 
separated in X. Take a zero-set Zl of X such that 

There exists a continuous function gl : X ----t [0,1] such that 

Since A is C*-embedded in X, there exists a continuous func
tion f1 : X ----t [0,1] such that fIlA == f. Define a continuous 
function hI : X ----t [0, 1] by hI == f1 . gl. Then, the conditions 
(1)1, (2)1 and (3)1 follow immediately. 

Next assume continuous functions hI, , hn satisfying (l)i' 
(2)i and (3)i are defined for each i == 1, , n. We put cp == 
f - 2:7=1 (hilA). Then, by (3)n' 'P : A ----t [-1/2n 

, 1/2n 
] IS 

continuous. Put 

-1 ( 1 1 1 1)
Z = 'P [ - 2n' - 2n+1] U [2n+1'2J · 

Then, we have that Z C U. Thus, Z c U. Since A is C1 

embedded in X, there exists a zero-set Z* of X such that 
Z C Z* and Z* cU. Hence there exists a continuous function 
g' : X ----t [0,1] such that g,-l({l}) == Z* and g,-l({O}) == 
X - U. Since A is C*-embedded in X, there exists a continuous 
function f' :X ----t [-1/2n, 1/2n] such that f'IA == cp. Define a 
continuous function hn+1 by hn+1 == f'·g'. Then (1)n+1' (2)n+1 
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and (3)n+1 follow immediately, it completes the proof of the 
induction. 

Put 

9 = (( L hi) Id) V O. 
iEN 

Then 9 is continuous and glA == f. By the way, for x ~ V, it 
follows from (2)n that hn(x) == °for every n E N, which imply 
g(x) == 0. This proves g-l((O, 1]) C V. It completes the proof. 
D 

Proof of Theorem 3.1: Since the "o11ly if" part is easy to 
show, we only prove the "if" part. Let the assumption of the if 
part be satisfied. Let {fa: a E n} be a locally finite partition 
of unity on A with Card n ~ I' Since {f~l ((0, 1]) : a E n} is 
a locally finite cover of cozero-sets of A, by the assumption of 
the theorem, there exists a locally finite cover {Va: a En} of 
cozero-sets of X such that 

for each a E n. Since A is C-embedded in X, from Lemma 
3.2, for every a E n there exists a continuous function hex : 
X ~ [0,1] such that 

Then {h a -1((0,1]) : a E n} is a locally finite collection of 
cozero-sets of X and covers A. Since A is well-embedded in X 
and U{h a -1 ((0,1]) : a E n} is a cozero-set of X, there exists 
a continuous function ho : X ~ [0, 1] such that 

Since {hex -1 ((0,1]) : a E nU {O}} is a locally finite cover of X, 
2:,sEOU{O} h,s is continuous. Fix an a* E n arbitrarily. Define a 
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continuous function ga : X ---t [0, 1] for each a E n as follows:
 

(ha • +ho) / L:iJEflU{O} hiJ if a = a* 

9a == 

ha / L:iJEflU{O} hiJ otherwise. 

Then, {ga : a En} is the desired locally finite partition of 
unity on X that extends {fa : a EO}. The proof of the 
theorem is completed. 0 

Corollary 3.3. Let X be a space and A its subspace. Then 
A is P(locally-finite)-embedded in X if and only if every locally 
finite cover of cozero-sets of A can be extended to a locally finite 
cover of cozero-sets of X. 

Theorem 3.4. Let X be a space) A its subspace and C a 
non-empty compact T2-space with weight :S I. Then) A X C 
is P~(locally-finite)-embedded in X x C if and only if A is 
P~( locally-finite)-embedded in X. 

Proof: The "only if" part follows immediately. To prove the 
"if" part, we assume A is P~(locally-finite)-embedded in X. 
Then A x C is C-embedded in X x C (see [7]). Let U == {Ua : 
a E n} be a locally finite cover of cozero-sets of Ax C with 
Card n :S I. Since C is compact, {PA(Ua ) : a E O} is a locally 
finite cover of cozero-sets of A, where PA : A x C ---t A is 
the projection. From the assumption and Theorem 3.1, there 
exists a locally finite cover {Va : a EO} of cozero-sets of X 
such that Va n A == PA(Ua) for each a E n. Since A x C is 
z-embedded in X xC, there exists a cozero-set U~ of X x C 
such that U~ n (A x C) == Uex for each a E n. Since A x C 
is well-embedded in X xC, there exists a cozero-set W of X 
such that A n w == 0 and 

UHVa X C) n U: : a E !1} U W = X x C. 

If we fix an ao E 0 arbitrarily, 

{(Va X C) n U~ : a E n- {ao}} U {((Vexo x C) n U~o) u W} 
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is a locally finite cover of cozero-sets of X x C and extends 
U. Hence A x C is p'Y(locally-finite)-embedded in X X C by 
Theorem 3.1. It completes the proof. 0 

The following corollary contains an affirmative answer to [5, 
Problem 13.16] posed by Dydak when we put C == [0,1]. 

Corollary 3.5. Let X be a space) A its subspace and C a 
non-empty compact T2 -space. Then) A X C is P(locally-finite)
embedded in X X C if and only if A is P( locally-finite )-embedded 
in X. 

Remark 3.6. In view of (1) and (5) of Proposition 2.3 and 
Theorem 3.1, one can ask the following: Is it true that A is p'Y_ 
embedded in X (==every partition (or locally finite partition, 
point finite partition) of unity on A with Card ~ I can be 
extended to a partition of unity on X) if and only if every 
cover (or locally finite cover, point finite cover) of cozero-sets 
of A with Card ~ I can be extended to a cover of cozero-sets of 
X ? On the case I == w, this is affirm,atively answered easily. 
However on the case of I > w, this is negative. Indeed, in 
Bing's space H ([2, Example H]), there exists a closed subset 
A which is not P'Y-embedded in H. We have that UU(H -A) is 
a cozero-set of H for every cozero-set U of A. Therefore every 
cover (or locally finite cover, point finite cover) of cozero-sets 
can be extended to a cover of cozero-sets of H. 

Here, we call a subspace A of a space X L'Y-embedded in 
X if every locally fi11ite collection {Ua : a En} of cozero
sets of A with Card ~ I there exists a locally finite collection 
{Va : a En} of cozero-sets of X such that Ua C Va for each 
a E O. Then, it is easily shown that A is p'Y_ and L'Y-embedded 
(more generally, C- and L'Y-embedded) in X if and only if A 
is p'Y (locally-finite)-embedded in X. However the author does 
not know whether every p'Y_ and LW-embedded subspace A of 
X is p'Y(locally-finite)-embedded in X or not. 
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4.	 EXTENSIONS OF CONTINUOUS MAPS WITH METRIC 

SIMPLICIAL COMPLEX VALUES 

In this section, we study extensions of a continuous map with 
metric simplicial complex values. p'Y(point-finite)-embedding 
was characterized by using these functions with contractible 
metric simplicial complex values (see Theorem 2.4). And p'Y_ 
embedding was also characterized by extensions of point finite 
partitions of unity (see Proposition 2.3(5)). This is naturally 
regarded to the following: Any continuous map f : A ---+ Y 
into any metric simplicial complex with weight ~ , can be ex
tended to a continuous map 9 : X ---+ ~y. From these points 
of view, at first, in the following theorem we obtain several 
equivalent conditions to z'Y-embedding; (2) is by partitions of 
unity which seems intermediate between extensions of parti 
tions of unity and extensions of covers of cozero-sets, (3) or (4) 
is by maps with (finite dimensional) metric simplicial complex 
values which are based on approximations, and (5) or (6) is 
related to Blair [3] (see Proposition 2.2(2)) . 

.Theorem 4.1. Let X be a space and A its subspace. Then 
the following statements are equivalent: 

(1)	 A is z'Y-embedded in X; 
(2)	 for every point finite partition {fa : a En} of unity 

on A with Card n :s " there exist a cozero-set G of X 
containing A and a partition {ga : a E f!} of unity on G 
such that g~l ((0,1]) n A == f~l ((0,1]) for each a E n; 

(3)	 for every continuous map f : A ---+ Y into any metric 
simplicial complex with weight :S ,) there exist a cozero
set G of X containing A and a continuous map 9 : G ---+ 

~y such that carr(f(a)) ==carr(g(a)) for each a E A; 
(4) for every	 continuous map f : A ---+ Y into any finite 

.dimensional metric simplicial complex with weight S; " 
there exist a cozero-set G of X containing A and a con
tinuous map 9 : G ---+ Y such that carr(f(a)) ==carr(g(a)) 
for each a E A; 



301 EXTENSIONS OF PARTITIONS OF UNITY 

(5)	 for every continuous map I : A ~ JC,), there exist a 
cozero-set G of X containing A and a continuous map 9 : 
G ~ 'J(,) such that g-1 ((0,1) x {e}) n A == 1-1 ((0, 1) x 
{e}) and g-1 ({I} x {e}) n A == 1-1 ({I} x- {e}) for every 

eE,; 
(6)	 for every continuous map f : A ~ J(')J there exist a 

cozero-set G of X containing A and a continuous map 
9 : G ~ J(,) such that g-1 ((0,1] x {e}) nA == f- 1((0,1] x 
{e}) for every eE ,. 

Proof: Note that (2) {:} (3) is obvious (see [5, Theorem 6.5]). 
To prove (1) =? (3), assume A is z,,-embedded in X. Let Y be 
a metric simplicial complex with weight :::; , and I : A ~ Y 
a continuous map. S denotes the set of all vertices of Y. For 
every k < w, we define 

~k == {8 E Y : Card 8 == k + 1} . 

Build a barycentric subdivision to Y and denote by A~ its 8'th 
barycentric coordinate for every simplex 8 E Y. Define, for 
every k < wand 8 E ~k, 

Us == {y E IYI : A~(Y) > O}. 
It is easy to show that Us is open in IYI, and we have 

U5 = {Y E IYI : As(Y) > 0 and As(Y) > At(Y) 

for	 every s E 0, t E S - 0} 

and	 int8 c Us for every 8 E Y. 
Since cardinality of each member of D.k is just k + 1, it is 

easy to show that {Us: 8 E ~k} is a disjoint for each k < w. 
Hence we have that {/- 1 (US) : 8 E ~k} is a disjoint collection 
of cozero-sets of A, U{/- 1 (US), : 8 E ~k} is a cozero-set of 
A and Card ~k :::; ,. From Proposition 2.2(3), there exists a 
disjoint collection {lIS : 8 E D.k} of cozero-sets of X such that 

V8 n A == 1-1 (Us) 

for	 each 8 E ~k and U{V8 : 8 E ~k} is a cozero-set of X. 
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For each k < w, there exists a continuous function 9k : X --+ 

[0, 1/2k+1 
] such that 

U V5 = 9;;1 ((0, 1/2k+1 
]). 

8EDt.k 

Put 

G= U UV5. 
k<w 8EDt.k 

Then G is a cozero-set of X and A c G. 
Next define a function 9% : G --+ [0, 1/2k+1

] by 

~klxi if xE U{V5 : sE 8,8 E ~d 

°
 otherwise
 

for every k < wand s E S. To show the continuity of 9%, 
let x E G and c > °arbitrarily. It suffices to show the case 
x ttU{V5 : s E 8,8 E ~k}. If x tt U8EDt.k V5, then x E 

9k1([0,C)) n G c 9%-1([0,c)). Hence assume x E U8EDt.k V5
U{V5 : s E 8,8 E ~k}. Then there exists 8' E ~k such that 
8 ~ 8' and x E V5,. Since {V5 : 8 E ~k} is a disjoint collection, 
we have 

VSI n (U{V5 : s E 8,8 E ~d) = 0. 
Hence it follows that 9%(V5,) == 0, it shows the continuity of 9%. 

For every s E S, put 

Then hs is a continuous function from G into [0, 1], because 
9% ~ 9k ~ 1/2k+1 is satisfied for every k < w. By the same way, 
2:i<w 9i is continuous and positive on G. Define a continuous 
function is : G --+ [0, 1] by 

Rs == hs 12:i<w 9i 

for every s E S. 
Here we shall show that {Rs : s E S} is a partition of unity 

on G. To see this, pick x E G arbitrarily. First let us show that 
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LSES9k(X) = 9k(X) for every k < w. Fix k < w arbitrarily. At 
first, assume that there exists 8 E ~k such that x E V8. Then 
we have 9k(x) = 9k(X)/(k + 1) for each s E 8. Note that 

x ¢:. U{V8' : t E 8', 8' E ~d 

for every t ~ 8. Indeed, for 8, 8' E ~k satisfying t ~ 8 and 
t E 8', we have 8 i- 8'; it shows that V8, n V8 = 0. It follows 
that 9k (x) = 0 for every t E S - 8. Hence it follows that 

Lgk(x) = L ~klxi = (k +1) · ~klxi = gk(X). 
sES sE8' 

On the other hand, assume x ~ U8E~k V8. Since 9k (x) = 0 for 
every s E S, we have 

Lgk(x) = 0 = gk(X), 
sES 

it completes the proof of LsES 9k (x) = 9k (x). Since Lk<w 9k (x) = 
hs(x), the set LsES Lk<w9k(X) can be defined and is equal to 
Lk<w LSES9k(X). Hence we have 

Lgk(X) 

1 k<w 

Lgi(X) 
i<w 

L hs(x) 

sESL gi(X) 
= L >(x) x 

sES L.<w g.() 
= LRs(x). 

sES 

i<w 
It completes the proof that {is: s E S} is a partition of unity 
on G. 

Define a function 9: G ~ ~y by As 0 9 = is for every s E S, 
where As 0 v = v(s) for every v E ~y. By [5, Proposition 5.4], 
9 is continuous. 

Finally it suffices to show that carr(f(a)) =carr(9(a)) for 
each a E A. Pick a E A arbitrarily. Let 8 E Y satisfying that 

i<wi<w 
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carr (f (a)) == 8. It suffices to show that At 0 9 (a) == 0 for every 
t E S - 8 and As 0 g( a) > 0 for every s E 8. First assume 
t E S - 8 arbitrarily. Since t ~ 8, it follows that At 0 f(a) == O. 
For every 8' E Y satisfying t E 8', it follows from the definition 
of USI that f(a) ~ US'. Hence it is true that f(a) ~ UtESI US'. 
Thus 

a fI. UrVs1 : t E i)',i)' E ~d 

for every k < w. So we have gl(a) == 0 for every k < w, it 
follows that 

ht(a) ~k<wgk(a) 
At 0 9()a = it ()a = ~ .() = ~ .() = O.i<w g", a i<w g", a 

Next, let s E 8 arbitrarily. Since f(a) E Us, we have a E \18. 
Put k == Card8 - 1. Then we have 8 E ~k. The fact 

h (a) > gS(a) = gk(a) > 0 
S - k k+l 

implies that 

hs ( a)
As 0 g(a) = is(a) = ~ .() > O.

i<w gt a 

It completes the proof that carr(f(a)) ==carr(g(a)) for each 
a E A. The proof of (1) => (3) is completed. 

To prove (3) => (4), we assume (3) to be satisfied. Let Y be 
a finite dimensional metr~c simplicial complex with weight:::; , 
and f : A ---+ Y be a continuous map. From the assumption, 
there exists a cozero-set G of X containing A and a continuous 
map 9 : G ---+ ~y such that carr(f(a)) ==carr(g(a)) for each 
a E A. Since Y is ANR and is closed in ~y, there exist an open 
subset W of ~y containing Y and a retraction r : W ---+ Y. 
Since g-1 (W) is a cozero-set of G and G is a cozero-set of X, 
g-1(W) is a cozero-setof X. Hence r 0 9 : g-1(W) ---+ Y is 
the required continuous map such that carr(f(a)) == carr((r 0 

g)(a)) for every a E A. 
The proofs of (4) => (5) and (5) :::} (6) follow immediately. 
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To prove (6) =} (1), assume (6) to be satisfied. Let f : 
A ~ J (,) be a continuous map. Let us show Proposition 
2.2'(2). Since (6) is assumed, there exist a cozero-set G of 
X containing A and a' continuous map g' : G ~ J (,) such 
that g,-l((O,l] x {e}) n A == /-1((0,1] x {e}) for every eE 
,. Then, as was essentially proved by Blair [3, Theorem 3.8], 
we can get a continuous map 9 : X ~ J (,) satisfying that 
g-l ((0,1] x {~}) n A == /-1 ((0,1] x {~}) for every ~ E ,. 
Let us give its proof for the completeness. Take a continuous 
function h: X ~ [0,1] satisfying G == h-1 ((0, 1]) and define a 
continuous map 9 : X ~ J (,) by 

(h (x ), (j 0 g') (x )) if x E G 
g(x) == { o otherwise 

for every x E X, where j : (J(,) - {O}) ~ , is the natural 
projection. It is the required map. Hence, it follows from 
Proposition 2.2(2) that A is z-y-embedded in X. The proof of 
the theorem is completed. 0 

Corollary 4.2. Let X be a space and A its subspace. Then 
the following statements are equivalent: 

(1)	 A is z-embedded in X; 
(2)	 for every countable point finite partition {Ii : i < w} of 

unity on A, there exist a cozero-set G of X containing 
A and a partition {gi : ·i < w} of unity on G such that 
g;l ((0,1]) n A == fi- 1 ((0,1]) for each i < W; 

(3)	 for every continuous map f : A ~ Y into any separable 
metric simplicial complex, there exist a cozero-set G of X 
containing A and a continuous map 9 : G ~ ~y such 
that carr(f(a)) == carr(g(a)) for each a E A; 

(4)	 for every continuous map / : A ~ Y into any finite di
mensional separable metric simplicial complex with weight 
:::; " there exist a cozero-set G of X containing A and 
a continuous map 9 : G ~ Y such that carr(f(a)) == 
carr(g(a)) for each a E A; 
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(5)	 for every continuous map f : A ~ J(w), there exist a 
cozero-set G of X containing A and a continuous map 9 : 
G ~ J(w) such that g-I((O, 1) x {~}) n A = f- 1((0, 1) x 
{~}) and g-I({l} X {~}) n A = f-l({l} x {~}) for every 

~ E w; 
(6)	 for every continuous map f : A ~ J(w), there exist a 

cozero-set G of X containing A and a continuous map 
9 : G ~ J(w) such that g-1 ((0,1] x {~} )nA = f- 1((0,1] x 
{~}) for every ~E w. 

Corollary 4.3. Let X be a space and A its subspace. Then 
the following statements are equivalent: 

(1)	 A is zoo-embedded in X; 
(2)	 for every point finite partition {fa: a E !1} of unity on A, 

there exist a cozero-set G of X containing A and a parti
tion {ga : a E !1} of unity on G such that g~1 ((0,1]) nA = 
f;1 ((0,1]) for each a E !1; 

(3)	 for every continuous map f : A ~ Y into any metric 
simplicial complex, there exist a cozero-set G of X con
taining A and a continuous map 9 : G ~ ~y such that 
carr(f(a)) = carr(g(a)) for each a E A; 

(4)	 for every continuous map f : A ~ Y into any finite di
mensional metric simplicial cornplex, there exist a cozero
set G of X containing A and a continuous map 9 : G ~ y 
such that carr(f(a)) = carr(g(a)) for each a E A; 

(5)	 for every, and any continuous map f : A ~ J(,), there 
exist a cozero-set G of X containing A and a continuous 
map 9 : G ~ J(,) such that g-1 ((0,1) x {~}) n A = 

f- 1((0, 1) x {~}) andg-1({1} X {~})nA = f-l({l} X {~}) 
for every ~ E',; 

(6)	 for every, and any continuous map f : A ~ J (,), there 
exist a cozero-set G of X containing A and a continuous 
map g:'G ~ J(,) such that g-I((O,l] X {~}) n A 

f- 1((0,1] X {~}) for every~ E,. 
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Remark 4.4. In Theorem 4.1(5), "G" can not be strengthen 
to "X". In other words, 9 in Proposition 2.2(2) can not be re
quired to have further property g-1 ({I} x {~} )nA == f- I 

( {I} x 
{~}) for every eE,. (See the next theorem.) 

From Theorem 4.1, we have the following characteriza
tions of p~ -embedding; (1) {:} (2) is contained in Proposition 
2.3. 

Theorem 4.5. Let X be a space and A its subspace. Then 
the following statements are equivalent: 

(1)	 A is P~-embedded in X; 
(2)	 for every point finite partition {fa: CY E n} of unity on 

A with Card n ~ ,) there exists a partition {ga : CY En} 
of unity on X such that g~1 ((0,1]) n A == f~1 ((0,1]) for 
each CY E n; 

(3)	 for every continuous map f : A -+ Y into any finite 
dimensional contractible metric simplicial co'mplex with 
weight ~ ,) there exists a continuous map 9 : ~Y' -+ Y 
such that carr(f(a)) == carr(g(a)) for each a E A; 

(4)	 for every continuous map f : A -+ J (,)) there exists a 
continuous map g: X -+ J(,) such that g-I((O,I) x 
{~}) n A == f- 1((0,1) X {e}) and g-l({I} x {~}) n A == 
f-l( {I} x {e}) for every eE ,. 

Proof of the following lemma is essentially in [15, Lemma 
4.3] and omitted. 

Lemma 4.6. Let X be a space and A its subspace. Assume
 
that for every continuous map f : A -+ J(w)) there exists a
 
continuous mapg: X -+ J(w) such thatg-l((O,l)x{~})nA==
 

f- 1 ((0,1) X {
 

xi}) and g-1 ({I} x {e} )n A == j-l ({I} x {e} ) for every eE w.
 
Then) A is well-embedded in X.
 

Proof of Theorem 4.5: To prove (1) =* (3), we assume 
(1) to be satisfied. Let Y be a finite dimensional contractible 
metric simplicial complex with weight ~ , and f : A -+ Y be 
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a continuous map. By Theorem 4.1(4) and well-embeddedness 
of A, there exist a cozero-set G of X, a zero-set Z of X and 
a continuous map h : G --t Y such that A c Z c G and 
carr (f( a)) == carr(h(a)) for each a E A. As was proved by 
Dydak [5, Section 8], there exists a continuous map 9 : X --t Y 
such that carr(f(a)) == carr(g(a)) for each a E A. 

(3) =* (4) is obvious. (4) =* (1) follows from Theorem 4.1(5) 
and Lemma 4.6. It completes the proof. 0 

Corollary 4.7. Let X be a space and A its subspace. Then 
the following statements are equivalent: 

(1)	 A is C-embedded in X; 
(2)	 for every continuous map f : A --t Y into any finite 

dimensional separable contractible metric simplicial com
plex, there exists a continuous map 9 : X --t Y such that 
carr(f(a)) ==carr(g(a)) for each a E A; 

(3)	 for every continuous map f : A --t J (w ), ther:e exists a 
continuous map 9 : X --t J(w) such that g-l ((0,1) X 

{e}) nA == f- 1((0,1) X {e}) andg-1({1} X {e}) nA == 
f-1({1} X {e}) for everYe E w. 

Corollary 4.8. Let X be a space and A its subspace. Then 
the following statements are equivalent: 

(1)	 A is P-embedded in X; 
(2)	 for every continuous map f : A --t Y into any finite 

dimensional contractible metric simplicial complex, there 
exists a continuous map 9 :·X --t Y such that carr(f(a)) 
== carr(g(a)) for each a E A; 

(3)	 for every f and every continuous map f : A --t J C,), 
there exists a continuous map 9 : X --t J( f) such that 
g-l((O,l) X {e}) nA==f-1((0,1) X {e}) andg-1({1} X 

{e})n A == f-1({1} x {e}) for every e E f. 

Remark 4.9. (i) In Theorem 4.5(2), a partition {ga : a E n} 
of unity can not be replaced by a cover of cozero-sets (see Re
mark 3.6). (ii) In [15], (P*)"-embedding was introduced so as 
to be coincide with z,,- plus C*-embedding and characterized by 
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using hedgehog-valued functions. Related to (P*)'Y-embedding, 
we can show the following: If A is a (P*)'Y-embedded subspace 
of a space X, then for every continuous map f : A ---4 Y into 
any finite dimensional metric simplicial complex with weight 
:S , and every finite number simplices O"I, ... , O"n of IYI, there 
exist a cozero-set G of X containing A and a continuous map 
9 : G ---4 Y such that carr(f(a)) ==carr(g(a)) for each a E A 
and f(a) == g(a) for every a E f-I(U:I O"i). Its proof is com
plicated and but uses a similar technique to that of the proof 
of "(1) =} (3)" of Theorem 4.1 that we omit it. 

Next, we study another type of characterization of Z'Y
embedding by approximations. In [4, Theorem 2.2], Blair and 
Hager proved the following: A subspace A of a space X is z

embedded in X if and only if for every continuous real-valued 
(or bounded real-valued) function f on A and any c > 0, there 
exist a cozero-set G of X containing A and a continuous func
tion 9 on G such that Ig(a) - f( a) I< c for each a E A. Propo
sition 2.2(4) extends this result to the case of z'Y-embedding. 
Theorem 4.10 or Corollary 4.11 below extends these results 
to the case of maps with values into finite dimensional metric 
simplicial complexes. 

Theorem 4.10. Let X be a space and A its subspace. Then 
the following statements are equivalent: 

(1)	 A is z'Y-embedded in X; 
(2)	 for every continuous map f : A ---4 (Y, d) into 'any finite 

dimensional metric simplicial complex with weight ~ , 
and any c > 0, there exist a cozero-set G of X con
taining A and a continuous map 9 : G ---4 Y such that 
d(g(a), f(a)) < c for each a E A. 

Proof: To prove (1) =} (2), we assume A is z'Y-embedded in 
X. Let (Y, d) be a finite dimensional metric simplicial complex 
with weight :S " f : A ---4 Y be a continuous map and c > O. 
Let Y' be a finitely many fold iterated barycentric subdivision 
of Y such that mesh Y' < c with respect to d. We denote by d' 
the metric of simplicial complex Y'. We note that (Y, d) and 
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(y l 
, d' ) are homeomorphic under the usual identity continuous 

map. From Theorem 4.1(2), there exist a cozero-set G of X 
containing A and a continuous map 9 : G --t (y', d' ) such that 
carr(f(a)) ==carr(g(a)) (in V') for each a E A. Since every 
diameter of simplex of y' is less than c with respect to d, we 
have d(g(a), f(a)) < c for every a E A. 

To prove (2) =} (1), we assume (2) to be satisfied. Let 
f: A --t (J(,),p) be a continuous map and c > o. It suffices 
to show that there exist a cozero-set G of X contailling A and 
a continuous map 9 : G --t J(,) such that p(g(a), f(a)) < 
c for every a E A because of Proposition 2.2(4). From the 
assumption, there exist a cozero-set G of X containing A and a 
continuous map g: G --t (J(,),d) such trlat d(g(a),f(a)) < c. 
Since p :::; d, we have that p(g(a), f( a)) < c for each a E A; the 
proof is completed. 0 

Corollary 4.11. A subspace A of a space X is z-e'mbedded in 
X if and only if for every continuous map f : A --t {V, d) into 
any finite dimensional separable metric simplicial complex and 
any c > 0) there exist a cozero-set G of X containing A and 
a continuous map 9 : G --t Y such that d(g(a),f(a)) < c for 
each a E A. 

Corollary 4.12. A subspace A of a space X is zoo-embedded 
in X if and only if for every continuous map f : A --t (Y, d) 
into any finite dimensional metric simplicial complex and any 
c > 0, there exist a cozero-set G of X containing A and a 
continuous map 9 : G --t Y such that d(g(a),J(a)) < c for 
each a E A. 

Here is a problem whether J(,) in Proposition 2.2(4) can be 
changed into any tech-complete AR or not; this ·was asked in 
[14] or [15, Problem 4.10]. Theorem 4.10 is a partial answer to 
this problem; more generally we pose the following: 

Problem 4.13. Let A be a z'Y-embedded subspace of a space X. 
Is it true that for every continuous map from A into any Cech
complete ANR Y with weight:::; " any (or some) metric p' on 
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Y and any c > 0, there exist a cozero-set G of X containing A 
and a continuous map 9 : G ~ Y such that p'(g(a), J(a)) < c 
for every a E A ? 

Related to Theorem 4.10, we also have the folowing result: 
A subspace A of a space X is P')'-embedded in X if and only 
if for every continuous map J : A ~ (Y, d) into any finite 
dimensional contractible metric simplicial complex and any 
c > 0, there exists a continuous map 9 : X ~ Y such that 
d(g(a),J(a)) < c for every a E A. However, if we consider (2) 
with (4) in Proposition 2.3, then we can conclude more general 
results as follows: 

Proposition 4.14. Let C and C' be subclasses of the class of 
all finite dimensional metric simplicial complexes 1vith lveight 
:s 1 satisfying J (1) E C, C'. Let X be a space and A its sub
space. Then the following statements are equivalent: 

(1)	 A is z,),-embedded in X; 
(2)	 for any Y E C and any continuous map f : A ~ Y, there 

exist a cozero-set G of X containing A and a continuous 
map 9 : G ~ Y such that carr (J(a)) ==carr (g( a )) for 
each a E A; 

(3)	 for any (Y, d) E C', any continuous map J : A ~ Y 
and any c > 0, there exist a cozero-set G of X con
taining A and a continuous map 9 : G ~ Y such that 
d(g(a), J(a)) < c for each a E A. 

Proposition 4.15. Let C be a subclass of the class of all com
plete AR metric simplicial complexes with weight :s 1 satis
fying J (1) E C and C' be a subclass of the class of all Cech
cornplete AR spaces with weight :s 1 satisfying J (1) E C'. Then 
the following statements are equivalent: 

(1)	 A is .P')' -embedded in X; 
(2)	 for any Y E C and any continuous map f : A ---+ Y, there 

exists a continuous map 9 : X ---+ Y such that carr(f(a)) 
== carr(g(a)) for each a E A; 
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(3)	 for any (Y, d) E C', any continuous map f : A --+ Y and 
any c > 0, there exists a continuous map 9 : X --+ Y such 
that d(g(a), f(a)) < c for each a E A. 

Added in proof. Recently, Professor V. Gutev kindly sent 
the author an e-mail showing that Problem 4.13 is affirmative. 
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