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Research Announcement 

GENERIC HOMEOMORPHISMS OF COMPACT 
MANIFOLDS 

ETHAN AKIN, MIKE HURLEY, AND JUDY KENNEDY 

ABSTRACT. We summarize results in our longer paper 
concerning the properties of a residual set of self homeo­
morphisms admitted by a compact manifold. 

1. INTRODUCTION 

This announcement outlines some of the main results from 
our longer paper [3] about homeomorphisms of compact metric 
spaces. Most of these results require some mild homogeneity of 
the space, so that certain local perturbations can be made. For 
simplicity we consider here only the case of a compact manifold 
M. This provides the needed homogeneity and also puts the 
discussion in a familiar setting. For a description of the general 
homogeneity conditions, see [12] or [3]. 

We use the term basic set to refer to a chain transitive com­
ponent of f (i.e., a subset of the chain recurrent set which is 
chain transitive and is not a subset of any other chain transitive 
set). Other definitions are given below. 
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Theorem 1. (Main Theorem) For a generic homeomor­
phism f of a compact manifold M: 

1.	 The chain recurrent set of f is a Cantor set) and the 
periodic points ~f f are dense in its chain recurrent set. 

2.	 Every basic set that is either initial or terminal is a min­
imal set) and is either a periodic orbit or a generalized 
adding machine. 

3.	 There is a collection M 1 of basic sets which are both ini­
tial and terminal. Furthermore) the collection M 1 is a 
residual subset of the space of all closed transitive sets 
endowed with the Hausdorff metric. The union of the el­
ements of M 1 is a residual subset of the chain recurrent 
set. Unless M is the circle) each element of M 1 is a 
generalized adding machine. 

4.	 Let T denote the set of all basic sets that are terminal 
but not initial) so T is disjoint from the residual set M 1 

described in (3). If we define 

P == U {x EM: d(fn(x), fn(y)) -+ 0 as 
TETn -+ 00 for some YET}, 

then P is a residual subset of M if we consider only. the 
elements T E T that are generalized adding machines. 
Similarly the set of points that are backward asymptotic to 
a point of some initial-but-not terminal basic set is resid­
ual. 

5.	 For P as in (4)) any x E P is a chain continuity point 
of f (i. e.) for each t > 0 there is a 8 > 0 such that the 
forward orbit of x t-shadows any 8-chain beginning within 
8 of x). 

6.	 Unless M is the circle) f has basic sets that are not min­
imal sets. In fact the set of non-minimal basic sets is 
dense in the set of all closed chain transitive invariant 
sets in the Hausdorff topology. On the circle) each basic 
set is a single periodic orbit. 

Many of our techniques grew out of results in [12,10,11,1] to 
which the reader is referred for more background. Our more 
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general results and the full proofs can be found in [3]. Most of 
our genericity results extend to the case of continuous maps in 
place of homeomorphisms. 

In the case of manif0lds, some of· the generic properties we 
describe were known previously to be properties of generic 
homeomorphisms in the Co closure of the set of diffeomor­
phisms on M. Generally the reason for this restriction in the 
earlier results is that the proofs relied on Shub's theorem that 
the set of Smale diffeomorphisms is Co dense in the set of all 
diffeomorphisms [16]. 

1.1. Notation and background. 

• In	 this paper, M denotes a compact manifold without 
boundary, d denotes a metric on M, and H(M) denotes 
the set of homeomorphisms on M with the uniform topol­
ogy. A subset of H(M) is residual if it contains a count­
able intersection of open, dense subsets of H(M). A prop­
erty of homeomorphisms is called generic if the set of 
homeomorphisms possessing the property is residual. 

• For f E H(M), x E M, the orbit of x under f is the set 
O(x; f) == {fn(x) : n is an integer}, the forward orbit of 
x under f is the set O+(x; f) == {fn(x) : n 2 O}, and the 
backward orbit of x under f is the set 0"" (x; f) == {fn( x) : 
n ~ O}. The w-limit set or forward limit set of x under f 
is the set w( x) == {z EM: there is an increasing sequence 
of integers nl, n2, . .. such that limj~oo fn j (x) == z}, and 
the a-limit set or backward limit set of x under f is the 
set a(x) == {z EM: there is a decreasing sequence of 
integers nl, n2, . .. such that limj~oo fn j (x) == z}. 

• A nonempty subset U of M is called a trapping region for 
f if f(U) is contained in the interior of U. When U is a 
trapping region, the set A defined by A == nn~ofn (U) is 
nonempty, compact, f-invariant, and is called an attractor 
for f. The bas~n of attraction of A is the set of all points 
whose w-limit sets are contained in A; this is the same as 
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the union of the set of all inverse images of the trapping 
region U, and is open. 

• A nonempty compact set Q is a quasi-attractor if it is the 
intersection of some family of attractors; its basin is the 
intersection of the basins of the attractors. 

• A repeller for I is an attractor for f-l; quasi-repellers are 
defined similarly. 

• A	 compact, nonempty, I-invariant set X is stable" if for 
each neighborhood V of X there is another neighborhood 
W of X such that fn(w) C V for each n ~ O. The stable 
set is indecomposable if it is not the disjoint union of two 
smaller stable sets. Attractors and quasi-attractors are 
always stable. 

•	 The set D c M is a k-absorbing disk for f E H(M) if (i) 
D is homeomorphic to the .closed unit disk of the same 
dimension as M, (ii) fk(D) is contained in the interior 
of D, and (iii) D n fi(D) == 0 for 0 < i < k. We say 
that D is an absorbing disk if it is k-absorbing disk for 
some k ~ 1. If D is a k-absorbing disk, then so is fi(D) 
for every i. Additionally, U7==-~ fi(D) is a trapping region 
with an indecomposable associated attractor. 

• For E> 0, an E-chain for f is a sequence Xi of points of M 
with the property that d(f(Xi)' Xi+l) < E for all i. If an 
E-chain is a finite sequence Xo, Xl, ... ,Xn then we say that 
it has length n; the trivial E-chains are those of length O. 
A point X is chain recurrent for f if for each E> 0 there 
is a nontrivial finite E-chain that both begins and ends at 
x. We use CR(f) to denote the chain recurrent set of f. 

• A subset	 X of CR(f) is E-chain transitive if for any two 
points of X there is an" infinite, periodic E-chain that is 
contained in X and contains both of the points; X is 
chain transitive if it is E-chain transitive for each E > O. 
The collection of closed, nonempty, chain transitive sets 
in M under f is denoted CT(f). We say that the subset 
X is a bas£c set of f if it is a.maximal (by inclusion) chain 
recurrent set. Each basic set is closed and invariant, and 
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the basic sets form a partition of CR(f). There is a partial 
order on the collection of basic sets defined as follows: we 
say the basic set Xl precedes the basic set X 2 if for each 
E. > 0 there is an E.-cnain that begins in Xl and ends in X 2 • 

We call a basic set initial if it has no predecessors other 
than itself, and we call it terminal if it has no successors 
other than itself. A basic set is terminal if and only if it 
is a quasi-attractor; it is initial if and only if it is a quasi­
repeller. In the literature, basic sets have often also been 
called chain transitive components or a chain components. 

•	 The Hausdorff metric 'dH makes the set 2M of all closed, 
nonempty subsets of M into a compact metric space. The 
metric is defined by dH(X, Y) < E. if and only if each of 
the two sets X, Y is contained in the E.-neighborhood 
of the other. The set CT(f) of nonempty, closed, chain 
transitive invariant subsets of M is a closed subset of 2M 

and so is a compact metric space. 
•	 The chain limit set of x is denoted by CL( X; f) and is 

the set of points y with the property that there is an E.­
chain from x to y for each E. > o. Here we allow the trivial 
E.-chain {x}, so x E CL(x; f). 

•	 The prolongation of the orbit of x with respect to initial 
conditions is denoted P I (x; f) and is defined to be 

P I(x; f) == lim sup O+(y; f). 
y~x 

•	 Conley's Theorem describes the connection between the 
set of attractors of f and its chain recurrent set, namely 
that a point x E M is not chain recurrent if and only if 
there is an attractor A such that x is in the basin of A 
but is not in A. See 6.2.A on page 37 of [5], section 1 of 
[9], or 3.11 of [2]. 

• A generalized adding machine is a homeomorphism of a 
Cantor set that is defined as follows. For each i 2:: 1, let ki 

be a positive integer, let N i == {O, 1, ... ,ki }, and endow 
Ni with the discrete topology. Then let !{ denote the 
infinite product of the Ni's, and endow this set with the 
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product topology. A homeomorphism 9 on !{ is defined 
by the rule' add 1 to the first coordinate, carrying to the 
right as necessary.' The dynamical system (!{, g) is an 
abstract adding machine and is minimal in the sense that 
every g-orbit is dense in !{. A generalized adding machine 
for a homeomorphism f on M is a compact f-invariant 
set on which the action of f is conjugate to some abstract 
adding machine g. 

Theorem 2. For a generic homeomorphism f : 

1.	 No terminal basic set is an attractor, but each is a quasi­
attractor. 

2.	 Each attractor is the closure of its interior. 
3.	 For each attractor A either the boundary of A is empty 

or else 8A is a quasi-attractor. 
4.	 Any neighborhood of any periodic orbit contains an at­

tractor. 
5.	 Every attractor contains a repeller. 
6.	 The chain recurrent set CR(f) is a perfect set. 

Proof: These results are proven in [12,10,11].	 D 

Theorem 3. Let Q denote either 2M with the Hausdorff met­
ric or else the standard two-point compactification of the reals, 
and assume that Y is a complete metric space. If ~ : Y ~ Q 
is either upper semicontinuous or lower semicontinuous, then 
the set of continuity points of 'ljJ is a residual subset of Y. 

Proof: See [17] or 7.19 of [2].	 D 

2. BASIC RESULTS. 

Theorem 4. For a generic homeomorphism, the chain recur­
rent set is homeomorphic to the Cantor set and is the closure 
of the set of periodic points. 

Proof: In light of Theorem 2(6), in order to show that the 
chain recurrent set is a Cantor set it suffices to show that it 
is totally disconnected; this is done in [3]. The proof is based 



GENERIC HOMEOMORPHISMS OF COMPACT MANIFOLDS 323 

on some of the ideas used to prove Shub's Density Theorem. 
The fact that generically the periodic points are dense in the 
chain recurrent set is established in [11], based on earlier work 
in [14,6]. D 

Theorem 5. For a generic homeomorphism, each of its initial 
or terminal basic sets is' either a single periodic orbit or else is 
a generalized adding machine. In particular, each of these sets 
is a minimal set (every orbit is dense). 

Proof: It is shown in [4,7] (without genericity hypotheses) that 
any compact indecomposable stable set either has a finite num­
ber of connected components which are cyclically permuted 
by the map, or else there are infinitely many connected com­
ponents and the action of the map on them is a generalized 
adding machine. A terminal basic set T of a homeomorphism 
f is stable, and by Theorem 2, for generic f it will also be 
totally disconnected, so the results of [4,7] apply to the indi- . 
vidual points of T. One can draw the same conclusions about 
the initial basic sets by considering the set of homeomorphisms 
whose inverses are in the appropriate residual set. D 

3. HOMEOMORPHISMS OF THE CIRCLE 

For homeomorphisms of the circle, Theorems 2 and 4 provide 
a fairly complete picture of the dynamics of a generic homeo­
morphism f. For simplicity we discuss, only the case where f 
is orientation preserving. Since there are periodic points, the 
rotation number of f is rational and all of its periodic points 
have the same period m. Since the set of all period m points 
is closed, we see that it is the entire chain recurrent set of f, 
and so is a Cantor set. In order to simplify the discussion we 
assume that m == 1; the situation for higher values of m and 
.for orientation reversing homeomorphisms is only slightly more 
complicated. 

Fix an orientation on the circle; for two points a, b of the 
circle let Q == (a, b) denote the arc that extends counterclock­
wise from a to b. If Q is invariant under f, we say that f is 
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increasing along a if f(x) E (x,b) for all x E a, and we say f 
is decreasing along a if f( x) E (a, x) for all x E a. 

Given two fixed points a, b, either the arc a == (a, b) is dis­
joint from CR(f) or not. In the latter case there is a fixed 
point z E a, and so by parts (4) and (5) of Theorem 2, a 
contains both an attractor and a repeller. This implies that a 
contains a pair of arcs complementary to the Cantor set CR(f) 
with f increasing on one arc and decreasing on the other. It 
follows that for any two distinct components (3i == (pi, qi) of the 
complement of CR(f) there is a complementary arc in (Ql' P2) 
on which f is increasing ~nd another on w.hich f is decreasing. 

Since the chain recurrent set consists of fixed points and 
is totally disconnected, it is easy to see that each fixed point 
is an entire basic set. In fact, each fixed point is either an 
initial basic set or a terminal one, and all but countably many 
are both initial and terminal. To see this, suppose that z E 
CR(f) is not the endpoint of an arc complementary to CR(f), 
and that y is some other fixed point. Then each of the two 
connected components of Sl\{y,Z} meets CR(f), so by the 
above there is an invariant arc in (y, z) on which f is increasing 
and an invariant arc in (z, y) on which f is decreasing. It 
follows that for small f. there is no f.-chain from z to y. Since 
we can apply this argument with each fixed point y =I- z, we see 
that z is a terminal basic set. A similar argument shows that 
z is also an initial basic set. The same considerations show 
that if Q' is an endpoint of a complementary arc a, then either 
a is terminal (if f maps points 'of Q' toward a), or else a is 
initial (when f maps points of a away from a). Except for the 
countably many fixed points that are initial but not terminal, 
every point is in the basin of some terminal basic set. 

Thus for generic homeomorphisms of the circle, the chain 
recurrent set is a Cantor set of periodic points, the sets of 
periodic orbits coincides with the set of basic sets, each periodic 
orbit is either initial or terminal, and most periodic orbits are 
both initial and terminal. Some of these features carryover to 
the higher dimensional case (most basic sets are both initial 
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and terminal). However, we will see below that some of these 
results are special to the one-dimensional case. In particular, 
for dimension > 1, most basic sets are not periodic; instead 
they are minimal sets of generalized adding machine type and 
so do not even contain periodic points. Also, there are basic 
sets that are neither initial nor terminal, there are basic sets 
that are not minimal sets, and there are points of arbitrarily 
high period. 

4.	 DENSITY OF TERMINAL BASIC SETS IN THE CHAIN 

RECURRENT SET 

Lemma 6. Suppose that the dimension of M is at least 2. 
For a generic homeomorphism f, if x is periodic, then any 
neighborhood of x contains periodic points of f of arbitrarily 
large periods. In light of Theorem 4, it follows that if y is a 
chain recurrent point of a generic homeomorphism, then any 
neighborhood of y contains periodic points of arbitrarily large 
periods. 

Proof: The lemma follows from a proof combining the orbit­
doubling argument (Lemma 3.2 of [14]) with a Nitecki-Shub 
perturbation (Lemma 13 of [13]) and the stabilization argu,. 
ments of [11]. The basic idea is that given a period k orbit we 
can perturb the map to create a nearby period 2k orbit that is 
attracting. See Proposition 3 of [11] for the details of a similar 
argument. D 

Theorem 7. Assume that dim M ~ 2. For a generic homeo­
morphism on M, any neighborhood of any periodic orbit con­
tains a terminal basic set of adding machine type, so the union 
of all these adding machine terminal basic sets is dense in the 
chain recurrent set. Similarly, for a generic homeomorphism 
the union of the initial basic sets of adding machine type is also 
dense in the chain recurrent set. 

Proof: Let II be a periodic orbit, and let k1 denote its period. 
Given a periodic orbit In with period kn, cover it by disjoint 
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open balls of diameter less than lin centered at each point of 
In, and let Wn denote the union of these balls. By parts (4) 
and (5) of Theorem 2, Wn contains an attractor An that is not 
a periodic orbit, yet An contains periodic points since they are 
dense in the chain recurrent set. Theorem 2 (2) and Lemma 6 
show that An contains a periodic orbit In+l whose period kn+1 

is larger than kn . Proceeding inductively, we obtain a nested 
sequence of attractors A n+1 C An whose intersection Q is a 
terminal basic set (each An is covered by kn disjoint balls whose 
diameters are at most lin, so An is 8n -chain transitive where 
8n == sup{d(j(x),j(y)): d(x,y) ~ lin} goes to 0 as n ---+ (0). 
The same observations show that Q is' totally disconnected, 
since no connected component of An has diameter greater than 
2/n. Clearly Q is not periodic, so Theorem 5 shows that the 
restriction of j to Q is an adding machine (this is also clear 
from the construction). D 

With a little more work we can strengthen the las.t result by 
showing that the aperiodic basic sets that are both initial and 
terminal are residual not only in CR(f), but also in the space 
CT(j) of closed, nonempty, chain transitive invariant sets of 
j. 

Theorem 8. When the dimension of M is at least 2, for generic 
f E H( M) each of the following sets is dense in CR(f): 

1.	 the set of periodic orbits of f, 
2.	 the set ITAM(f) consisting of basic sets of f that are 

both initial and terminal, and that are generalized adding 
machines, and 

3.	 the collection of compact invariant sets that are chain 
transitive and shift extensions. 

Proof: For each n 2: 1 let Bn be a finite cover of M by open 
balls of radius lin and let B~ be the set of finite nonempty 
subsets of Bn. Given n and I E B~ define a map P1,n on H(M) 
by PI,n( h) == 1 if h has a closed, absorbing disk D satisfying 
both (i) each forward iterate of D is contained in one of the 
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balls in I, and (ii) each ball in I contains a forward iterate of 
D; define PI,n (h) == 0 otherwise. It is easy to see that if D is 
an absorbing disk for h then it is also an absorbing disk for 
any 9 that is sufficiently close to h in H( M); thus each map 
PI n , is lower semicontinuous. 

Now assume that f is a continuity point of PI,n for all (I, n), 
and let X E CT(f) and n ~ 1 be given. Let I E B~ be a collec­
tion of l/n balls covering X chosen so that no subcollection of 
these balls also covers X. Since X is chain transitive, for each 
8 > 0 there is a periodic 8-chain {x n } in X that meets each 
of the balls in I and that contains no unnecessary repetitions 
(in the sense that if X n == X m then n - m is a multiple of the 
period). As in Proposition 3 of [11] there is a homeomorphism 
9 near f (how near depending upon 8) such that this periodic 
8-chain for f is an attracting periodic orbit for f. It follows 
that PI,n (g) == 1, so there is a sequence of homeomorphisms 
of H( M) converging to f, with PI,n identically 1 on the se­
quence. Since j~ is a continuity point, we see that PI,n(f) == 1 
as well. Let D be a k-absorbing disk satisfying (i) and (ii) 
above, and let W be the trapping region U7~~ fi(D). By the 
Brouwer Fixed Point Theorem, W contains a periodic orbit 
" Ilecessarily in the interior of W. Applying Theorem 7, we 
see that W contains a terminal basic set Q of addiIlg machine 
type. Each of Q, , is invariant, so they each meet each fi(D), 
and we conclude that the Hausdorff distances dH ( Q, X) and 
dH (" X) are each no more than 2/n. This establishes both 
(1) and (2). 

As for (3), a compact invariant chain transitive set X is a 
shift extension if there is a positive integer k such that there 
is a decomposition of X into k pairwise disjoint compact sets 
that are cyclically permuted by f and such that the action of 
fk on any of these pieces is semiconjugate to the full 2-shift. 
The proof of the density of shift extensions in CT(f) can be 
found in [3]. D 

Corollary 9. For generic f, CT(f) is a Cantor set. 
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Proof: Since CT(f) is closed in the space of all nonempty 
compact subsets of M, CT(f) is a compact metric space. It 
has no isolated points because the previous lemma shows that 
there is a disjoint pair of dense subsets. To see that CT(f) 
is totally disconnected, take X =I Y in CT(f). Without loss 
of generality we can assume that there is a point x in X\Y. 
For generic f, CR(f) is a Cantor set, so there is an open and 
closed subset U of CR(f) that contains Y but not X. It is 
easy to check that the set of all elements of CT(f) that are 
contained in U is open and closed in CT(f), and contains Y 
while its complement contains X. D 

Corollary 10. If the dimension of M is at least 2, then the 
generic homeomorphism f on M has basic sets that are not 
minimal sets. It follows that the subspace of basic sets is not 
closed in the space 2M of closed subsets of M (unless M is the 
circle). 

Proof: A shift extension X is not minimal because the shift 
is not (a proper, closed, invariant subset of the shift pulls back 
to a proper, closed invariant subset of X). Since X is not 
minimal, it has a proper, compact, chain transitive invariant 
subset Y. By Theorem 8(2) there is a sequence of basic sets 
converging in CT(f) to Y, which shows that the set of basic 
sets is not closed. D 

Lemma 11. Suppose M is not the circle. For generic f E 
H( M) there is a residual subset M of CT(f) consisting of sets 
that have infinitely many connected components. 

Proof: For each k 2:: 1, let C~ denote the collection of nonempty 
closed subsets of M that have at least k components. Given 
X E C~, we can partition X into exactly k disjoint closed 
pieces, and there is an E > 0 such that the minimum distance 
between any two of these pieces is greater than 2E. If Y eM, 
is closed and dH(Y, X) < E, then Y is similarly partitioned, so 
that Y E C~ as well. Thus C~ is open in 2M . Clearly C~ contains 
the collection of adding machine basic sets, so Ck = C£ nCT(f) 
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is open and dense in CT(f) by Theorem 8(2), and so the in­
tersection Coo (f) = nkCk is residual in CT(f). 0 

For x E CR(f) define C(x) to be CL(x; f) n CR(f); note 
that x E C(x) for every x. Dt:fine R(x) ~ 0 by R(x) = inf{E > 
o: C (x) is E-chain transitive}. 

Lemma 12. The map R defined above is upper semicontinu­
ous) and R(x) = 0 for all x in a residual subset of C R(f). Any 
point x such that R(x) = 0 is contained in a terminal basic set 

of f· 
Proof: It is easy to verify that the map x ---t C (x) is upper 
semicontinuous, from which it follows that the map R is up­
per semicontinuous. (Give.n x E CR(f) and E > R(x), CL(x) 
is E-chain transitive, so a small neighborhood U of CL(x) is 
also E-chain transitive, and for y E CR(f) sufficiently close to 
x, CL(y) c U, so that R(y)::; E. Since R is upper semicon­
tinuous, the set of its continuity points is residual in CR(f). 
Note that R(x) = 0 if and only if x lies in a terminal basic set 
and the set of such points is dense, so R must be equal to 0 
at any of its continuity points. These continuity points form 
a residual subset of CR(f) consisting of points lying on some 
terminal basic set. D 

Lemma 13. When the dimension of M is at least 2) for generic 
f there are residual subsets T) I such that each element of T 
is a terminal basic set) and each element of I is an initial basic 
set. 

Proof: Let R be the map from the last lemma. For X E 
CT(f), the set C(x) is independent of the choice of x EX, 
and so R is constant on X. Hence R extends to a map R' 
defined oil CT(f) by R'(x) = R(x) for any x E X. The map 
R' inherits the property of being upper semicontinuous from R, 
so its continuity points form a residual subset of T C CT(f). 
Theorem 8(2) and Corollary 10 show that R' is 0 on a dense 
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subset of CT(f), so R' is 0 at any element of T, and any X E T 
is a subset of some terminal basic set C(X). By Theorem 
5, C(X) is a minimal set, so the fact that X is a nonempty 
invariant closed subset of C(X) implies that X = C(X) is in 
fact a basic set. The construction of I is analogous. D 

Theorem 14. For generic f there is a residual subset M 1 of 
CT(f) consisting of basic sets that are both initial and termi­
nal. If the dimension of M is at least 2, then M 1 can be chosen 
so that each basic set in M 1 is a generalized adding machine. 

Proof: For the circle this was established in Section 3. In 
the higher dimensional case, let M 1 be the intersection of the 
residual sets M 1 , T, and I given by Lemmas 9 and 11. This set 
consists of terminal basic sets of adding machine type. Being 
elements of I they are also initial. D 

Corollary 15. There is a residual subset of CR(f) consisting 
of the points that are contained in basic sets that are both initial 
and terminal. 

Proof: It is easy to see that the union of a collection of ba­
sic sets is dense in CR(f) whenever the collection is dense in 
CT(f). If X is a closed subset of CT(f) then the set VX that 
is the union in M of the elements in X is a closed subset of 
C R(f). The complement of M} is the union of a sequence 
X n of closed, nowhere dense subsets of CT(f). Each V X n is 
closed in CR(f), and because the basic sets making up M 1 are 
minimal,each VXn is disjoint from the dense set VM 1 . TOhus 
each set VX n is closed and nowhere dense in M, and the union 
of these sets in the complement of VM 1 is CR(f). D 

5. DENSITY OF BASINS OF TERMINAL BASIC SETS 

We have already noted that the following theorem holds 
when M = 8 1 . 
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Theorem 16. For a generic homeomorphism, the union of the 
basins of its terminal basic sets forms a residual subset of M. 
Similarly, the Uttion of the basins of its initial basic sets is a 
residual subset of M. 

Proof: In the Co closure of the set of diffeomorphisms on 
M this result follows fairly easily from Shub's Theorem, as is 
shown in Section 6 of [8]. Following the outline of the argument 
from [8], it is enough to show that if !< c M is compact, 
GeM is open and nonempty, and if the forward limit set 
w(x) is a subset of !< for every x E G, then!< contains a 
quasi-attractor. To avoid using Shub's Theorem, we rely on the 
following result from [15], where on pages 35-58 it is shown that 
a generic homeomorphism f has the following two properties: 
(i) PI(x;f) = CL(x; f) for all x, and (ii) PI(x; f) = O+(x;'f) 
for residual x E M (see also [2], Exercise 7.40 and Proposition 
7.22). We assume these properties for f. 

Suppose that !< and G are as above; there is no loss of gen­
erality in assuming that !< = UXEGw(x), so that K C CR(f). 
Since it is generically true that C R(f) has empty interior, by 
replacing G with G\K if necessary we can assume that -G and 
!< are disjoint; by further shrinking G we can in fact assume 
that G and !< are disjoint. 

By (ii) above we can choosesome x E G such that P I(x; f) = 
O+(x; f) and so PI(x; f) c K U O+(x; f). For € > 0, let Uf. 
be the set of all points that can be reached via an €-chain that 
begins in w( x). It is well known, and easy to check, that the set 
Ufo is a trapping region for f; let Af. denote the corresponding 
attractor. Clearly A6 C Af. whenever 8 < f. so that Q = nf.>oAf. 
is a quasi-attractor. Further, Q is contained in CL(x; f), and 
by (i) we have PI(x;f) = CL(x;f). Thus, 

Q c CL(x;f) == PI(x;f) C !{UO+(x;f), 

so it suffices to show that no point on the forward orbit of x 
lies in Q. Since x is not chain recurrent, it is not contained in 
Uf. for sufficiently small f, so x ff. Q. Since f is invertible, no 
,point on the forward orbit of x is chain recurrent, so the same 
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argument shows that O+(x; I)nQ == 0, which finishes the proof 
of the first assertion of the hypothesis. The same arguments 
with I-I in place of I establish the second assertion. D 

Theorem 17. Suppose the dime-nsion of M is at least 2. For 
a generic homeomorphism I, the set of points contained in 
the basin of attraction of some terminal basic set of adding 
machine type is residual_in M. Similarly, the set of points in 
the basin of some initial basic set of adding machine type is 
residual, and so the set of points in the interse'ction ,of these 
two residual sets is also residual. 

Proof: The last two assertions follow easily from the first. To 
establish the first assertion it is enough (by Theorems 5 and 
16) to show that almost any point of M is contained in the 
basin of an indecomposable attractor with an arbitrarily large 
number of connected components. 

Given m > 1 and an open subset U of M, define a map 
rm,U on 1t(M) by rm,u(h) == 1 if there is a k ~ m and a 
k-absorbing disk D that meets the forward h-orbit of U; oth­
~rwise let rm,U( h) == o. It is easy to verify that each map rm,U 
is .lower semicontinuous. 

We claim that if I is a continuity point of rm,U, then rm,u(I) == 
1. From this it will follow that if we fix some countable basis 
for the topology of M, and define N'm to be the intersection of 
the sets of continuity points of rm,U for all U in this basis, then 
N'm is residual. If ! E N'm, then the union of all inverse images 
of the k-absorbing disks of I with k ~ m is open and dense 
in M. The intersection N' == nmN'm is also residual in 1t(M), 
and if I E N'm, then there is a residual subset of M consisting 
of points that are in the basins of k-absorbing subsets for! for 
arbitrarily large values of k. 

Our proof of the claim is a version of one of the 'crushing 
arguments' from [12] and elaborated in [3]. For U and m as 
above and f. > 0, it suffices to show that there is a homeomor­
phism 9 that is within f. of!, and with rm,U(g) == 1. Fix x E U. 
Since w(x) E CT(I), it follows from Theorem 10(2) that we 
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can choose a point z from some terminal adding machine ba­
sic set and a nonnegative integer n such that fn (x) and z can 
be connected by a smooth arc J whose diameter is less than 
E. We can assume that J is disjoint from the 'early points' 
{fi (x) : 0 ~ i < n} . Because z lies in a terminal adding 
machine basic set we can choose a k-absorbing disk D with 
zED, k 2:: m, and D disjoint from the early points (we can 
find D inside any pre-determined neighborhood of z). Moving 
along the arc J from fn( x) toward z, let z' be the first point 
encountered that lies on the forward orbit of D, and let J' be 
the subarc of J connecting fn (x) to z' . Note that z' is on the 
boundary of some iterate D' of D. Clearly J' is disjoint from 
fi(D) for all i > 0, and since D' is also k-absorbing, we can 
thicken J' to a small open set G that is disjoint from the early 
points and from fi(D') for all i > o. Fix such a (J such that 
h(fn (x)) == z'. Setting 9 == h 0 f, we have that 9 is E-close to 
f, D' is a k-absorbing disk for g, gi(x) == fi(x) for 0 ~ i < n, 
and gn(x) == h 0 fn(x) == z' ED', so that rm,u(g)-== 1. D 

Remark. It is useful to note that there is a large difference 
in the conclusions of Theorems 14 and 17. Theorem 14 states 
that almost every basic set is both initial and terminal; such 
a basic set does not contain the w-limit set or the a-limit set 
for any point not in the basic set. In other words, the union of 
the basins of these basic sets under both of f, f- 1 is a subset of 
the closed, nowhere dense chain recurrent set. Thus there is a 
residual subset of M with the properties described in Theorem 
17 that is contained in the union of the basic sets that are in the 
complement of the residual subset of CT(f) that was described 
in Theorem 14. The next results serve to characterize which 
terminal basic sets correspond to each of these residual subsets. 

Lemma 18. A generic homeomorphism f has the following 
properties: each of its attrac,tors is the closure of its interior. 
If A is an attractor that does not contain any connected com­
ponents of M J then for each neighborhood U of the boundary 
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of A there is an E > 0 such that if an E-chain starts in the 
complement of A and ends in A, then it ends in UnA. 

Proof: This follows from parts (2) and (3) of Theorem 2. D 

Theorem 19. Let A denote the set of terminal basic sets Q 
each of which is contained in the boundary of some attractor 
A Q, and let N A denote the set of terminal basic sets Q for 
which there is no such A Q . For generic f, N A is residual in 
CT(f), while the basins of the elements of A form a residual 
subset of M. 

Proof: By the previous remarks it is enough to show that N A 
is precisely the set of terminal basic sets that are also initial. It 
is easy to see that if Q lies on the boundary of some attractor 
A, then Q is not initial. On the other hand, if Q E N A, then 
because Q is a quasi-attractor there areattractors An with 
Q == nnAn and Q contained in the interior of An for each n; 
there is no loss of generality in assuming that An+1 is a proper 
subset of An for each n. Given any basic set X ¥- Q, XnAn =0 
for sufficiently large n. By the previous lemma, there is an E 
such that no E-chain can start in X and end in Q, so Q is an 
initial basic set of f. D 

Definition. The point x is called a chain continuity point of 
f if for each E> 0 there is a 8 > 0 with the property that the 
forward orbit of x E-shadows any 8-chain that begins at a point 
within 8 of x. (The forward orbit ofx E-shadows a 8-chain that 
begins at a point z within 8 of x if each point on the orbit of 
z is within Eof the corresponding point of the 8-chain.) Chain 
continuity was defined and characterized in [1]; it is a stronger 
property than the property CL(f; x) = O+(x; f) (This was 
shown for residual subsets of M for generic f by Dobrynsky 
and Sharkovsky. See [15].) 

Theorem 20. Suppose that Q is totally disconnected and is a 
terminal basic set of f. If Q contains the w-limit set of x, then 
x is a chain continuity point of f, and, in addition, there is a 



GENERIC HOMEOMORPHISMS OF COMPACT MANIFOLDS 335 

point Y in its w-limit set with d(fn (x), fn (y )) --+ O. It follows 
from this and Theorems 4, 5, and 16 that for generic f the set 
of chain continuity points is residual in M. 

Proof: To prove the first two assertions (which do not require 
the assumption of genericity), let Q and x be as in the state­
ment of the theorem. Since Q is a quasi-attractor, if E > 0 is 
given then there is a trapping region U containing Q that has 
a finite union of connected components, each of which has di­
ameter less than E. There is an integer n ~ 0 with the property 
that fi (x) E U for all j ~ n. By continuity there is a 8 > 0 
such that (i) any 8-chain of length n beginning within 8 of x 
will end in U; (ii) the points of such a length n 8-chain are 
within E of the corresponding points on the orbit of x; (iii) no 
8-chain beginning in U can ever leave U (since U is a trapping 
region); and (iv) 8 is smaller than the minimum distance be­
tween any two connected components of U. It follows that for 
j ~ n the jth point on one of these 8-chains lies in the same 
connected component of U as ji(x), and so will be within E of 
fi (x ). This establishes the first assertion. 

In particular, each point of Q is a chain continuity point. 
By the usual compactness argument, for each f > 0, we can 
choose 8 > 0 so that for any Z E Q the orbit of z shadows any 
8-chain that begins within 8 of z. 

Now we show that the orbit of x is asymptotic to the orbit of 
some point y E w(x). There is a monotonic sequence nk --+ 00 

of integers and a sequence of points Yk E Q with d(fnk(x), Yk) < 
11k for each k. Let Zk = j-nk(Yk) E Q; by compactness we may 
assume that Zk --+ Z E Q. Given E > 0, let 8 correspond to t 

and Q as in the last paragraph. Choose k large enough that Zk 
is within 8 of Z and 1/k < 8. The orbit of Zk t-shadows that of 
Z and the orbit of fn (x) t-shadows that of Yk = fnk (Zk)' By the 
triangle inequality, d(fn (x), fn (y)) < 2E whenever n ~ nk. D 

For more details and other results about chain continuity, 
see [1]. 
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