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INDECOMPOSABLE CONTINUA ARISING IN
INVERSE LIMITS ON [0, 1]

W. T. Ingram

Abstract

In this paper we survey theorems whose conclusion
is the existence of indecomposable subcontinua in
inverse limits on [0, 1]. Particular attention is paid
to inverse limits using a single unimodal bonding
map.

0. Introduction

In this paper we consider the existence of indecomposable sub-
continua which arise in inverse limits on [0, 1]. We pay particu-
lar attention to inverse limits using a single unimodal bonding
mapping. Numerous examples are provided to illustrate the the-
orems.

By a continuum we mean a compact, connected subset of a
metric space.By a mapping we mean a continuous function. A
continuum is said to be decomposable if it is the union of two of
its proper subcontinua and is called indecomposable if it is not
decomposable. If X1,X2,X3, · · · is a sequence of topological
spaces and f1, f2, f3, · · · is a sequence of mappings such that,
for each positive integer i, fi : Xi+1 → Xi, then by the inverse
limit of the inverse sequence {Xi, fi} we mean the subset of
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∏
i>0

Xi to which the point x belongs if and only if fi(xi+1) = xi

for i = 1, 2, 3, · · · . The inverse limit of the inverse limit sequence
{Xi, fi} is denoted lim←−−{Xi, fi}. It is sometimes convenient to

denote fi ◦ fi+2 ◦ · · · ◦ fj−1 by f j
i and the inverse system by

{Xi, f
j
i }.

It is well known that if each factor space, Xi is a continuum,
the inverse limit is a continuum. In case we have a single factor
space, M , and a single bonding map, f , we denote the inverse
limit by lim←−−{M,f}. We denote the projection of the inverse
limit into the nth factor space by πn. If K is a subcontinuum
of the inverse limit, we denote πn[K] by Kn. If f : M →M is a
mapping and f [M ] = M then we write f : M →→M .

1. Indecomposability

In this section we present some of the basic definitions and the-
orems. We begin with a definition and a fundamental theorem.

Definition. Suppose {Xi, fi} is an inverse sequence such that,
for each positive integer i, Xi is a continuum. The inverse se-
quence is called an indecomposable inverse sequence provided
that, for each positive integer i, whenever Ai+1 and Bi+1 are sub-
continua of Xi+1 such that Xi+1 = Ai+1 ∪Bi+1, then fi[Ai+1] =
Xi or fi[Bi+1] = Xi.

Theorem 1. [13, page 21], [14] If {Xi, fi} is an indecomposable
inverse limit sequence, then lim←−−{Xi, fi} is an indecomposable
continuum.

Proof Suppose {Xi, fi} is an indecomposable inverse limit se-
quence and M = lim←−−{Xi, fi}. If M = A ∪ B where A and B
are proper subcontinua then there is a positive integer N such
that, if n ≥ N , then An 6= Xn and Bn 6= Xn. Suppose j is
an integer not less than N . Note that Aj+1 ∪ Bj+1 = Xj+1 but
f [Aj+1] 6= Xj and f [Bj+1] 6= Xj contrary to the hypothesis that
{Xi, fi} is an indecomposable inverse limit sequence. 2
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Corollary. [3, page 38] Suppose [a, b] is an interval and f :
[a, b] →→ [a, b] is a mapping with the property that there ex-
ist two non-overlapping subintervals α and β of [a, b] such that
f [α] = f [β] = [a, b]. Then, lim←−−{[a, b], f} is an indecomposable
continuum.

We refer to the hypothesis of the corollary as the “two-pass”
condition. It is often the case that a mapping does not satisfy
the two-pass condition but some finite composition of the map
with itself does satisfy the condition. Since lim←−−{M,f} is home-
omorphic to lim←−−{M,fn} for any positive integer n, [13, Exercise
2.7, page 33], it is sufficient to look for the two-pass condition
in composites of a bonding map with itself. A simple example
suffices to illustrate this.

Example 1. Let g be defined by g(x) = x + 1
2

if 0 ≤ x ≤ 1
2

and
g(x) = 2(1 − x) if 1

2
≤ x ≤ 1.

The map g clearly does not satisfy the two-pass condition,
however, the map g2 does. Pictures of the maps g and g2 are
shown in Figure 1.

It is possible to get an indecomposable inverse limit without
any composite of the map satisfying the hypothesis of Theorem
1 as can be seen by the following example first shown to the
author by D. P. Kuykendall [11, pp. 16–17].

Example 2. Suppose a1, a2, a3, · · · is an increasing sequence of
numbers in the open interval (0, 1) with limit 1 and let b1, b2, b3, · · ·
be a sequence such that, for each positive integer n, an < bn <
an+1. Let a0 = 0 and define f : [0, 1] →→ [0, 1] by f(x) = 0
for each x in [0, a1], f(1) = 1, for each positive integer n,
f(an) = an−1 and f(bn) = bn, and f is linear on [an, bn] as well as
on [bn, an+1] for each n. Then, lim←−−{[0, 1], f} is indecomposable.

A picture of such a mapping, f , where an = 1−2−n and bn =
an+an+1

2
is shown in Figure 2. To see that M = lim←−−{[0, 1], f} is

indecomposable, suppose A and B are proper subcontinua of M
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(0,1/2)

(1/2,1)

(1,0)

(0,1)

(1/2,0)

(1,1/2)

(3/4,1)

Fig. 1.

such that M = A∪B, (0, 0, 0, · · · ) is a point of A and (1, 1, 1, · · · )
is a point of B. Since A and B are proper subcontinua of M ,
there is a positive integer N such that if n ≥ N then An 6= [0, 1]
and Bn 6= [0, 1]. There exist a positive integers k and m such
that if j ≥ m then Aj does not contain bk for if not, then AN

contains bk for each k and thus AN = [0, 1]. It follows that, for
each n, Bn contains bi for all i ≥ m. Thus, bm is in BN+m+1,
so am+1 is a point of BN+m+1. Since fm+1(am+1) = 0, it follows
that BN = [0, 1].

In his doctoral dissertation at the University of Houston, Dan
Kuykendall gave a characterizing condition for an inverse limit
to be indecomposable in terms of the factor spaces and the bond-
ing maps.

Theorem 2. [12, Theorem 2] Suppose {Xi, f
j
i } is an inverse

system and M is its inverse limit. The continuum M is inde-
composable if and only if it is true that if n is a positive integer
and ε is a positive number, there are a positive integer m, m > n,
and three points of Xm such that if K is a subcontinuum of Xm

containing two of them then dn(x, fm
n [K]) < ε for each x in Xn.
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Fig. 2.

It is also possible to use Theorem 2 to argue that the inverse
limit in Example 2 is indecomposable.

2. Periodicity

We employ Theorem 2 to argue that periodicity influences the
existence of indecomposable subcontinua in inverse limits of in-
tervals. A rotation on the simple triod shows that Theorem 3 is
dependent on the nature of the factor spaces. If f : X → X is a
mapping of a space X into itself, a point x of X is called a peri-
odic point of period n if fn(x) = x and f j(x) 6= x if 0 < j < n.

Theorem 3. Suppose f is a mapping of [0, 1] into itself and f
has a periodic point of period 3. Then, lim←−−{[0, 1], f} contains
an indecomposable continuum.

Proof. Suppose x is a periodic point of period 3 for f . Let I1
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denote the interval with end points x and f(x) and, inductively,

let Ij = f [Ij−1] for j > 1. Consider H = cl
⋃

j≥1
Ij (cl denotes the

closure). Then, H is a continuum such that f : H →→ H. It
is easy to see that if L is a subcontinuum of H containing two

of the three points x, f(x) and f2(x), H = cl
⋃

j≥0
f j[L]. From

Kuykendall’s Theorem it follows that lim←−−{H, f |H} is indecom-
posable. 2

From the proof of Theorem 3 we obtain another argument
that lim←−−{[0, 1], g} where g is the mapping from Example 1 is
indecomposable. The point 0 is periodic of period 3 and the
continuum H = [0, 1]. Theorem 3 has a very nice corollary.

Corollary. [1], [6] If f is a mapping of an interval I into itself
and f has a periodic point whose period is not a power of 2, then
lim←−−{I, f} contains an indecomposable continuum.

Proof. If f has a periodic point of period 2j(2k + 1) where
j ≥ 0 and k > 0, then f2j

has a periodic point of odd period,
2k+1. By Sarkovskii’s Theorem [4, Theorem 10.2], f2j

has a pe-
riodic point of period 6. Therefore, (f2j

)2 has a periodic point
of period 3. By Theorem 3, lim←−−{I, f2j+1} contains an inde-

composable continuum. But, lim←−−{I, f2j+1} is homeomorphic to
lim←−−{I, f}. 2

In [7] the author generalized Theorem 3 replacing the interval
with an atriodic and hereditarily unicoherent continuum and pe-
riod 3 by odd period greater than one. The proof of this theorem
makes extensive use of Kuykendall’s Theorem. A continuum is a
triod if it contains a subcontinuum whose complement has three
components. A continuum is atriodic if it contains no triod.
The statement that a continuum M is hereditarily unicoherent
means if H and K are subcontinua of M with a common point
then H ∩K is connected. It is well known that inverse limits on
intervals are atriodic and hereditarily unicoherent. A continuum
which is homeomorphic to an inverse limit on intervals is called
chainable.
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Theorem 4. [7] If M is an atriodic and hereditarily unicoher-
ent continuum and f is a mapping of M into M which has a
periodic point of period n where n = 2k +1 for some k > 0 then
lim←−−{M,f} contains an indecomposable continuum.

Corollary. If h is a homeomorphism of an hereditarily decom-
posable chainable continuum and h has a periodic point of period
n then there is a non-negative integer j such that n = 2j .

One can see from Example 2 that odd periodicity is not nec-
essary for indecomposability since if f is a map as in Example 2,
f(x) ≤ x for each x in [0, 1] so f has no periodic points except
fixed points. In fact, George Henderson [5] gives a map of the
interval so that the inverse limit is the pseudo-arc and the map
has no periodic points except for two fixed points. However,
for unimodal maps, the story is different. A mapping is called
monotone provided all point-inverses are connected. A mapping
f : [a, b]→→ [a, b] is called unimodal provided it is not monotone
and there is a point c, a < c < b, such that f(c) belongs to {a, b}
and f is monotone on [a, c] and on [c, b].

Theorem 5. [8] Suppose f : [a, b]→→ [a, b] is a unimodal map-
ping such that f(b) = a and q is the first fixed point for f2 in
[c, b]. Then, the following are equivalent:

(1) lim←−−{[a, b], f} is indecomposable.

(2) f has a periodic point of odd period greater than 1.

(3) f(a) < q.

For unimodal mappings for which f(a) = a some anolomies
occur when f has fixed points in [a, c] other than a. In Figure 3
we see a unimodal mapping with an extra fixed point in [0, 1

2
]. By

choosing the three points to be 0, 1
2

and 1 and using Kuykendall’s
Theorem, one can see that the inverse limit on [0, 1] using this
bonding map produces an indecomposable continuum.

On the other hand, in Figure 4 we see a unimodal mapping
with an extra fixed point in [0, 1

2
] but for which the inverse limit
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is decomposable. In this case, the inverse limit is the union
of an arc and an indecomposable continuum. The indecompos-
able continuum is lim←−−{[

1
8
, 1], g|[1

8
, 1]} and it can be seen to be

indecomposable by observing that (g|[1
8
, 1])2 satisfies the Corol-

lary to Theorem 1. If f is a unimodal mapping of [a, b] into
itself and f(b) is not less than the last fixed point for f be-
tween a and c, then the interval [f(b), b] is mapped into it-
self by f . In case [f(b), b] is mapped into itself by f , we call
lim←−−{[f(b), b], f |[f(b), b[} the core of the inverse limit. The ana-
log of Theorem 5 for unimodal maps which fix a is the following.

Theorem 6. [8] Suppose f : [a, b]→→ [a, b] is a unimodal map-
ping such that f(a) = a, f has no fixed point between a and c
and q is the first fixed point for f2 in [c, b]. The following are
equivalent:

(1) the core of lim←−−{[a, b], f} is indecomposable

(2) f has a periodic point of odd period greater than 1

(3) f2(b) < q.
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Theorems 5 and 6 give the full story for unimodal maps of an
interval since each unimodal map for which f(a) = b is topolog-
ically conjugate to one for which f(b) = a while each unimodal
map for which f(b) = b is conjugate to one for which f(a) = a.
Topologically conjugate maps yield homeomorphic inverse lim-
its.

3. Families of Unimodal Maps

The author has investigated inverse limits arising from inverse
limits on intervals using a single bonding mapping chosen from
a family of mappings. These include the tent family given by

fm(x) =





mx if 0 ≤ x ≤ 1
m

2−mx 1
m
≤ x ≤ 1

where 1 ≤ m ≤ 2

the family, F, given by

ft(x) =





2x 0 ≤ x ≤ 1
2

2(1 − t)(1− x) + t 1
2
≤ x ≤ 1

where 0 ≤ t ≤ 1,

the family, G = {gt | gt(x) = ft(1 − x) for x in [0, 1] and
0 ≤ t ≤ 1} and the logistic family given by fλ(x) = 4λx(1 − x)
where 0 ≤ x ≤ 1 and 0 ≤ λ ≤ 1. For the tent family, we find
that the inverse limit contains an indecomposable continuum for
m > 1, [9]. For the family F we find that the core of the core
of the inverse limit is an indecomposable continuum for t < 1

2
.

Specifically, f4
t satisfies the two-pass condition on [f2

t (1), 1], [9].
For the family G we find that the inverse limit is an indecompos-
able continuum if and only if t < 2

3
, [9]. The maps in the logistic

family produce an indecomposable subcontinuum if and only if
λ > λc where λc is the Feigenbaum limit (the limit of the first
period doubling sequence of parameter values, λc ≈ 0.89249, [1,
Section 4]).

Except for the results on the logistic family, all of the re-
sults mentioned above are subsumed by the following theorem.
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Choose numbers b and c with 0 ≤ b ≤ 1 and 0 < c < 1 and de-
note by gbc the mapping of [0, 1] onto itself which passes through
the points (0, b), (c, 1) and (1, 0) and is linear on the intervals
[0, c] and [c, 1]. The map gbc is given by

gbc(x) =





1−b
c

x + b if 0 ≤ x ≤ c
x−1
c−1

c ≤ x ≤ 1.

Theorem 7. [10] If b < c2− c + 1 then lim←−−{[0, 1], gbc} contains
an indecomposable continuum.

1
0

1

ARC

INDECOMPOSABLE

SUBCONTINUA

  INDECOMPOSABLE

    INVERSE  LIMIT

b

c 1
0

1

b

c

pair of sin 1/x
curves

pair of B-J-K
continua

cores of the tent family

three end-point
indecomposable continuum

family F
cores of

family G

B-J-K
continuum

Fig.5 Fig.6

In addition, we show in [10] that if b > c2−c+1, lim←−−{[0, 1], gbc}
is an arc while if b = c2−c+1 then the inverse limit is the union
of two sin 1

x
-curves intersecting at the end points of their rays.

These results are most clearly illustrated by the pictures in Fig-
ures 5 and 6. The curve separating the region of parameter
space where indecomposable subcontinua occur and the region
where the inverse limit is indecomposable is given by b = 1

2−c
.

Along this curve, the inverse limit is the union of two Brouwer-
Janiszewski-Knaster (B-J-K) continua intersecting at their end-
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points. (The B-J-K continuum is the result of the inverse limit
on [0, 1] using, for example, the tent map, fm, with m = 2.)

In Figure 6, the family G is represented by the curve c = 1
2

while the cores of the tent family are represented in the picture
by the family of maps of [0, 1] onto itself given by mx+(2−m)
on [0, 1

1−m
] and m(1 − x) on [ 1

1−m
, 1]. The members of this

family are conjugate to the cores of the tent maps and lie along
the curve b = 2c−1

c−1
where c = 1

1−m
. The cores of the family

F are represented in the picture by a family of maps of [0, 1]
onto itself topologically conjugate to the maps ft|[ft(1), 1]. The
curve is given by b = 1 − 2c where b = t

1−t
. Along the curve

b = c, the inverse limit is the three end-point indecomposable
chainable continuum constructed by choosing three points in the
plane and constructing the continuum as the common part of a
sequence of chains of open disks which in an alternating fashion
begin at one of the three points and end at another, [13, page
8].
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