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COMPACT SEMIRINGS WHICH ARE
MULTIPLICATIVELY SIMPLE
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Abstract

Following the basic ideas of J. Selden, Jr., and
building on work of the author, and some results
of N. Kimura, K. R. Pearson, and fundamental
work of A. D. Wallace, it is shown that a com-
pact semiring which is multiplicatively simple is
a disjoint union of compact semirings which are
multiplicatively simple and additively the maxi-
mal rectangular subbands of Kimura. Two sepa-
rate decompositions of these basic building blocks
are given. Also, a method is given for construct-
ing compact semirings which are multiplicatively
simple.

The study of topological semirings (see Definition 1 below)
initiated by Selden ([9], [10]) in the ’60’s, was continued in var-
ious directions by Pearson ([4], [5]), Wallace [13], Robbie ([6],
[7], [8]) and others. Inevitably due to the focus of the Wallace
school on compact semigroups the emphasis was on compact
semirings, as many existing tools could be brought to bear. At
the same time many mathematicians worked on the algebraic
theory of semirings (sometimes with a more restrictive defini-
tion). Amongst those were M. Grillet [d.] and H. Weinert.
Somewhat earlier, N. Kimura [3] set down the basic facts about
rectangular band semigroups which we use again and again in
this paper.

Key words: Compact simple semigroup, compact semiring, rectangular
band, Swelling Lemma, closed semiring congruence
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The main motivation for this work was to find an analogue
for compact semirings to the Wallace-Rees-Suschkewitsch The-
orem for compact simple semigroups. That Theorem of course
completely characterises the structure of compact simple semi-
groups by showing that the internal structure is iseomorphic (ie
homeomorphic and homomorphic with the same map) to a cer-
tain triple product space with a special operation. After perusal
of Selden’s, Pearson’s and Wallace’s papers we decided to inves-
tigate those compact semirings in which the multiplication was
simple. This built in the previous semigroup result as a foun-
dation. We have managed to get the internal structure result of
Theorem 9 where such semirings are shown to be decomposable
into blocks of semirings each one of which is additively simple
as well, in fact they are each subbands maximal with respect
to being rectangular. As well, these blocks form the congruence
classes for a closed semiring congruence on the parent semiring
and the factor semiring has the structure of a product of a pair
of additive bands with left (right) trivial multiplication in each.
From the proof of the Theorem it is clear that each block re-
ferred to above is a union of (-)— groups which are also (4)—
rectangular bands. This is about as close as one might wish for
an analogue, but for one thing - getting such internal structure
completely characterised externally as in W-R-S. Our results in
that direction are Theorems 15 and 16 where we construct com-
pact simple semirings making use of the W-R-S Theorem on the
way. Although considerable progress has been made in “closing
the circle” we have not quite made it yet!

Note: We wish to thank the referee for the several suggestions
made for improvement of the paper. These included suggesting
that the above sections of an introductory and motivational na-
ture be included along with some indication of the significance
of the main results; and also the suggestion that an outline of
the proof of Theorem 3 below be included.
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Definition 1.(R, +,-) is a compact semiring if,
(a) R is a compact Hausdorff space,
(b) + and - are two associative binary operations on R,

(c) the two maps + and - from Rx R — R are each continuous
(where R X R has the usual product space topology), and

(d) the two identities
a-(b+c)=(a-b)+(a-c)
(b+c)-d=(b-d)+ (c-d) hold on R.

We denote the various parts of the additive and multiplicative
semigroups by their usual symbols followed by a + or - in
square brackets. For example, E[ + | is the set of additive
idempotents and K| - | is the multiplicative minimal ideal. Of
course E[ + | is a multiplicative ideal, due to the two distributive
laws, and so K[ -] € E[ + ] . In all work that follows +
does not denote an abelian operation unless that is specifically
stated. Also, the - will usually be omitted. For easy reference
to the necessary material on topological semigroups the reader
is referred to Carruth, Hildebrant and Koch, [1].

We now confine our attention to those compact semirings
(R,+,-) which have K[ - | = R. That is to say, compact semirings
which are multiplicatively simple.

Remark 2. [t is clear that, by using left trivial or right triv-
ial addition, any (compact) topological semigroup may be taken
as the multiplication of a (compact) topological semiring. In
particular, the multiplication may be any compact simple semi-
group. Moreover, by taking the cartesian product of two com-
pact simple semigroups and giving one left trivial addition and
the other right trivial addition, the corresponding semiring is
a compact semiring which is both (-)— and (+)— simple. We
show in Corollary 5 below that every compact simple semiring
which is both (-)— and (+)— simple is obtainable in this way.
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We begin with a Theorem which we obtained by noting that
a result of A.D. Wallace [13] was true under much less stringent
hypotheses than he gave.

Theorem 3. Let (R,+,-) be a topological semiring with a mul-
tiplicative idempotent e, and such that (R,+) is a rectangular
band. Then (R,+,-) is iseomorphic (= there is a single map
which is a homeomorphism and also a (-)— and a (+)— ho-
momorphism) to the cartesian product of topological semirings
(Ry,+,-) and (Ra,+,-), where the addition in Ry is left trivial
and the addition in Rs is right trivial. Ry = R+e, Ry = e+ R,
and the map isr+— (r+e, e+r).

Proof. Given that (R,+) is a rectangular band then the iden-
tities x + y+ 2 = v+ 2z and « + y + * = x may (and will) be
freely used (Kimura [3]). It is then evident that (R, +,-) and
(Rg,+, ), where Ry = R+eand Ry = e+ R, are topological sub-
semirings of (R, +,-) in which the first has left trivial addition
and the second has right trivial addition. Taking the cartesian
product of these two semirings with the usual product topol-
ogy and coordinate-wise operations then gives us a topological
semiring.

We must now show that our map r — (r+e, e+7r) is a
homeomorphism f from R onto R; x Ry which is also a (+)—
and (+)— homomorphism. Firstly, as each one of r — 7 + €
and 7 — e + r is continuous then by a standard result r ——
(r +e, e+ r) is also continuous. Next we show that f is one-
to-one. Let (r+e,e+71) = (s+e,e+ s). Then we must have
that r+e =s+eand e+1r = e+s. Adding r to the right-hand
end of each side of the first of these givesr+e+r=s+e+r,
which in turn gives r = s + r. Adding s to the left-hand end
of each side of the second equation gives s+e+1r=s+e¢e+ s,
which in turn gives s +r = s. Thus r = s. Now we show that
f is onto. Let (r + e, e+ s) be an arbitrary element of Ry x Rj.
Then f(r+s)=(r+s+ee+r+s)=(r+ee+s).

We so far have a one-to-one, onto, continuous function f from
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R to Ry X Ry . Thus we have an inverse function by (r + e, e +
r) — r which may be realised by

R1XR2—>RXR—>R

where (r+e,e+r) — (r+e,e+r) followed by (r+e,e+r) —
(r+e)+(e+r)=r+(e+e)+r =r. As each of these maps is
continuous the composition map, which is the inverse of our f,
is continuous. So f is a homeomorphism of R onto Ry X Rs.

Now f(r)f(s) = (r+e,e+r)(s+ee+s) = ((r+e)(s+
e),(e+r)e+s) = (rs+re+es+eeee+es+re+rs) =
(rs+e,e+rs) = f(rs).

Also, f(r)+f(s) = (r+e,e+r)+(s+e,e+s) = (r+e,e+s) =
(r+s+ee+r+s)=f(r+s).

So we have established the required iseomorphism. O

The next theorem and its corollary can be obtained as corol-
laries to the main part of this last theorem since each com-
pact semigroup has at least one idempotent. Indeed Wallace
in (Wallace[13]) using the powerful machinery of the minimal
ideal structure of a compact semigroup (Wallace[12]) in the spe-
cial case of a rectangular band semigroup, was able to get the
iseomorphism above very quickly. Of course those methods do
not apply in case of the hypotheses above so a more plodding
approach is required. Anyway we prove the results below sep-
arately because that is easy to do, and because the map given,
hence the proof, is of a different character to that for the above
theorem.

Theorem 4. Let (R, +, ) be a compact semiring in which (R, +)
is a rectangular band. Then (R, +,-) is iscomorphic to the carte-
sian product of compact semirings (Ry, 4+, ) and (R, +, -), where
the addition in Ry is left trivial and the addition in Ry is right
trivial.

Proof. Choose €? = e € R (possible since R is compact). Then
e+ e = e as well, because we have (R, +) a band. By the theory
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of A. D. Wallace [12] , for compact simple semigroups, R; =
R+ e and Ry = e+ R are respectively minimal left and minimal
right ideals of (R, +) with corresponding left trivial and right
trivial addition . Moreover, by the same theory, (R; X Ry, +)
with coordinatewise addition is iseomorphic to (R,+) via the
map (a,b) — 6((a,b)) = a + b. We define (a,b) * (¢,d) =
(ac, bd), coordinatewise multiplication, and claim that (a,b) —
0((a,b)) = a+ b is a multiplicative morphism as well.

0((a,b) x (¢,d)) = 6((ac,bd))
= ac+ bd
= ac+ (ad + bc) 4 bd

(by Kimura[3], since (R, +) is a rectangular band),

= (a+b)(c+d)
= 0((a,0))0((c,d)).

Thus we are done. |

Corollary 5. Let (R, +,) be a compact semiring which is both
(-)— and (+)— simple. Then it is isecomorphic to a semiring
obtained as explained in the Remark 2 above.

Proof. In this case the hypotheses of the last theorem are satis-
fied, because R = K[ - | C E[ 4+ | C R, which gives E| 4+ | = R,
so that (R, +) is a rectangular band. O

Theorem 6. Let (R,+,+) be a compact semiring in which (R, -)
is simple. Fize' € E[-]. Forz, y € R, represented uniquely

as
xr = ejaey and y = fibfs, where

er,fi € E[-]NRe  and es fo € €RNE[-] and,
a,b € G=¢€R¢€', then

dg€eFE[-]NR and g€ eRNE[-], such that
eraez + fibfa = gi(a +b)go.
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Proof. ey a ea+ f1 b fo = g1 d g2 for some g1 € E[ - | N Re,
g € ¢RNE[-]andd € G =€ Re’. Thus e (e; aext+fi1b fa) e =
e (g1dg)e.Soe e aee+e fibfoe =€ g dgye, by
the associative and both distributive laws. Now as ey, f1,91 €
Re', therefore Rgy = Rey = Rfi = Re’ > ¢ = €. Then
g = ¢eep =€ =€ f1. Also, as ey, fo, g2 € €' R, therefore
@R =eR= ftR =R > ¢ = ¢? and then, e =
el = ¢ = foe/. Thuse' ae + ¢ be =e€ de, therefore
a + b = d sincea, b, de ¢ R¢€. a

Theorem 7. Let (R,+,- ) be a compact semiring. Then if
E[-] n K[ -] is a subsemigroup of (R,-), it follows that

(B[-InK[-]) + (E[-]nK[-])) n K[-]< E[-]NK[-].

Proof. Lete, f € E[-]NK [-],such that e+ f € K[ - ].
Fix ¢’ € E[ - |N K[ - ] and let g be the idempotent of eR N Re'.
Then eR = gR and Rg = Re/, so eg = g, ge = ¢, g¢’ = ¢, and
e'g=¢'. So e = ge = gee, and similarly f = he = he’ f. Thus

e+ f =gce+hef
=g (e +€)fi

(for some g1 € E[-]NRe and some f1 € ¢ RNE| -], by Theorem
6 above.)

=gqie fi
=g h
=t € E[ -], by hypothesis. O

Theorem 8. Let (R, +,-) be a compact semiring in which (R, -)
is simple, and (R,+) is also simple. Choose e* = e € R. Then
denoting E[ - | N Re by Ri,eRN E| -] by R3, and eRe by Ry,
and considering the product space Ry X Ry X Rs with the usual
product topology, we define the following two operations on the
product.
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(1) (e1, 91, f1) o (€2, 92, f2) = (e1, g1 (f1€2) g2, f2)
(2) (e1, 91, f1) + (e2, 92, f2) = (€1 + ez, 91 + g2, f1 + f2).

Then these definitions make sense, obey the two distriburive
laws, and we may map our product onto R by the map
(e,q,f) — egf, which is an iseomorphism between the (-)—
operations and a homomorphism between the (+)— operations.
Hence our map is a semiring iseomorphism.

Proof. We get immediately from Wallace[12], that (1) is well
defined and is an iseomorphism between the (- )— operations.
We must show that e; +e is again in E| - |0 Re, and that fi+ fo
is again in eR N E[ - |.

Considering Re, this is a compact subsemiring of R, and sat-
isfies the hypotheses of the previous theorem, so e; + e, is again
in E[ - | N Re, and similarly for the other by considering eR.
(We note that the ideas involved in the previous theorem and
just here are generalizations of work of Pearson[5].) We now
demonstrate the left distributive law.

(a,b,¢) o ((e1, g1, f1) + (e2, 92, f2))
= (a,b,c)o(e1 +e2,91 + g2, f1 + f2)
= (a,bc(ergr + -+ +eag2), f1 + fo)
= (a,bc(e1 g1 + €292), f1 + f2) (by Kimura [3])
= (a,bcergn +bces ga, f1 + f2)

(a,b,c) o (e1, 91, f1) + (a,b, ¢) o (€2, g2, f2)
= (a,bcer g1, f1) + (a,bces go, fo)
=(a+a,bcergi +bcesgo, f1 + fo)
= (a,bcer g1 +bces go, f1 + f2)

Similarly for the right distributive law.
It remains to show that our map is an additive homomorphism.

(ert+e)(gr+g)(fit+ f2) = eagr fi+ () +e2ga fo
=e1g1f1t+exg fo
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again by Kimura[3], since (R, +) is a rectangular band. a

Theorem 9. Let (R, +,+) be a compact semiring in which (R, -)
is simple. Then denoting the structure decomposition of (R, +)
into mazimal rectangular subbands by (R, € I') (Kimura [3]),:t
follows that this is a partition formed by a closed semiring con-
gruence on R. Moreover, each (Ry,+, ) is a compact subsemir-
ing of R, and is a union of maximal (-)— groups and is (-)—
and (+)— simple. (As special cases of an R, we get: (i) K[+]
the minimal additive ideal of R, and (ii) the complement of any
mazximal additive ideal.)

Proof. Following Kimura [3], define the relation 7 by x7y if,
and only if, r+y+2x =2 and y+2x+y =y . Kimura has
shown that this is an additive congruence and the congruence
classes form our partition (R,,7 € I'). We show that 7 is also
a (+)— congruence and that it is closed topologically as a subset
of R X R in the usual product topology. Let (z,y) € 7 and let
q € R. Then qx + qy+ qx = qx and qy+ qx + qy = qy, using the
left distributive law, so (qz,qy) € 7. Similarly using the right
distributive law, (xq,yq) € 7. So it is a semiring congruence.
To show that 7 is closed, let (s,t) € (R x R)\7. Then either
s+t+s#sort+s+t#t If the former then 3U(s),IU(t),
open sets about s and t respectively, such that

(U(s)+U(t)+U(s))NU(s) = 0.

Then Wi(s,t) = U(s) x U(t) € (R x R)\7, and so 7 is closed.
Otherwise similarly consider t 4+ s+t # t. Thus 7 is closed, so
each R, is closed, hence compact. To complete our proof we
need the following lemma:

Lemma 10. Each 7— class R, is a union of (pairwise disjoint)
mazimal ()— groups.

Proof. Certainly each R, is contained in a union of maximal (-)—
groups as (R, ) is simple by hypothesis. We show that if e is the
identity element of the maximal (-)— group H|[ - |(e) and e € R,
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then H[ - |(e) C R,. This will mean that if ¢’ € R,y # 7,
then it cannot be that any element of H| - |(¢’) is in R,.

Now H|[ - ](e) = eRe as (R, -) is simple. Also eRe+eRe C eRe
by the two distributive laws, so (H[ - ](e),+,") is a compact
subsemiring in which the multiplicative structure is a group.
Next we note that Pearson [4] has shown that any such semiring
(R',+,-) must have additive structure which is a rectangular
band (i.e. be additively simple and consist of additive idem-
potents). For convenience we also give a proof of that here.
We already know that all the elements are additive idempotents
since the multiplication is simple, being a single group. To show
that (R, +,-) is additively simple we note first that multiplica-
tion by any fixed element o’ € R’ gives that o’ K’[ + | is again
an ideal of (R', +) due to the distributive laws and the fact that
adR=R.

Viz. If ¢ €  K'[ + | and 7" € R, ¢ + 1" = a/2’ + a't' (where
e K'[+]and t' =a ).

Soq +r' =d(2' +t)=d2" where 2" =2’ +t € K'[ +].

So ¢+ 1" € dK'| +]. Similarly, r' + ¢ € ¢’ K'[ + |.

Thus as a’K'[ + | is an additive ideal of (R, +, ) we must have
K'|+] CdK'[ + ], since K'[ + | is the minimal (=minimum)
ideal of (R, +,").

Then by the (Non) Swelling Lemma of A. D. Wallace, K'[ + | =
dK'[+].

Now for any element y ' € R’ and any element 2’ € K'[ + | (# (),
y I (y /l’/_l)l’/ e (y /l’/_l)K/[ + ] _ K/[ + ] So R = K/[ ‘|‘]
as stated above.

Since (H - |(e), +) is a rectangular band, and e € R,, and R,
is a maximal rectangular subband, therefore

H[ - ](e) € R,.

So R, is the precise union of maximal (-)— groups of (R, -). This
ends the proof of the lemma. O

Now the product of a pair of maximal (-)— groups is contained
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in another, so we need only show that (E[- |NR,)-(E[-|]NR,) C
R, , and it then follows that R, - R, C R, .
Lete,f € E[-|NR, . Then

eftf+ef=ef+ff+ef=(etfre)f=ef,

and

fref+f=ff+ef+ff=(+etNf=Ff=F

Thus ef 7 f and so ef € R, . Finally, as (R,-) is simple and
(R, ") is a closed subsemigroup of it then (R,,-) must be com-
pact and simple. So indeed (R, +, ) is a disjoint union of com-
pact semirings each one of which is a Kimura congruence class,
and each one has simple multiplication and additive structure a
rectangular band.

To prove the special cases mentioned we note the following:

Lemma 11. If (R, +) is a semigroup, and [ is any ideal of R,
then for any rectangular band B, a subsemigroup of R, either
B C I, or B does not meet I.

Proof. If x € INB and y is any element of B, then y+z+y =y,
which is in I, since [ is an ideal. O

Theorem 12. (Fawcett-Koch-Numakura [2]) If (S, +) is
a compact mob (=topological semigroup) in which J is a maxi-
mal ideal, and if S\J is a union of (additive) groups, then S\J
1s a subsemigroup of S which is compact and simple.

Corollary 13. If (R, +,-) is a compact semiring in which ((R,-)
1s simple, then the complement of any maximal additive ideal
J[ + ], is a subsemigroup of (R,+) and is compact and simple.
Proof. E[ + ] = R, because (R, -) is simple, and then by Theo-
rem 12 we are done. O

This means that since K| + ] and the complement of any
maximal (4)— ideal are rectangular bands of (R, +) when (R, -)
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is simple, thus they must be maximal rectangular subbands of
(R,+). So they are each some R,
This finally concludes the proof of Theorem 9.

A corollary to a result of Pearson [5], gives us the following
product theorem for R/7.

Theorem 14. Choose any element € € R/T . Then R/T is
iseomorphic to the cartesian product of the semirings

Ry =(R/t)e, Ry=¢ (R/T)

via the map (a,b) — ab . Thus R/T comes only as the product
of a pair of additive bands, with left trivial multiplication in one,
and right trivial multiplication in the other.

Proof. Omitted.

We now investigate the construction of compact semirings
which are multiplicatively simple.

Theorem 15. If (X,+) and (Y,+) are compact bands, and
if (G,+,-) is a compact semiring with (G,-) a group, then any
continuous function o 1Y x X — G (denoted by juztaposition
where no confusion is likely) which has the properties:

(i) (i +w)r=y12+ 1y

(i1) y(x1+x2) =yx1 + Yy,

gives rise to a compact semiring which is (-)— simple. (We take
R=X xG xY with the usual topology, and define

($>g>y) : ($/>g/>y /) = ($>g U((ywxl)) g/>y /)
(z,9,9)+ @, dy) =@+ 9+9,y+v) .
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Proof. That (R,-) is a compact semigroup follows from Wal-
lace[12]. (R, +) is merely the product of three bands, and so is
a band semigroup. We need only check the distributive laws.

(z,9,y) - ((w1,91,11) + (T2, 92,92))

(7,9,y) - (1 + 22, g1 + g2, Y1+ Vo)

(z,90 ((y, 71+ 22)) (g1 +92), Y1+ Y2)

= (2,90 ((y,21)) + o((y,22))) (g1 + g2), 1 +v2) (by (1))
(
(

((y,21) g1 + o + g0 ((y, 22)) 92, Y1 + y2)
((y,21)) 91 + g0 ((y,72)) 92, y1 + y2)

r,g0
r,g0

(Kimura [15] since as shown above, (G, +) is a rectangular
band).

(z,9,y) - (@1,91,91) + (2,9,9) - (22,92, 92)

= ($7 g U((y> $1)) a1, yl) + ($7 g U((y> $2)) g2, y2)
=@+z, 90y, 1)) g + gy, v2)) g2, y1 +92)
=@, 90y, 1) g + go((y, ©2)) g2, Y1 + v2)
(because (X, +) is a band).

Thus we have left distribution. The right distribution follows
similarly from (ii) above and the fact that (Y, +) is a band. O

Theorem 16. For any compact semiring (R, +,-) we may de-
fine, on the minimal multiplicative ideal K[ - |, an addition & ,
and multiplications o, for each g in a fivred H| - |(e) C E[ + |,
such that (K[ - ],®,04) is a compact semiring with simple mul-
tiplication. When g = e, we obtain the original multiplication,
and if K[ - | C E[ -], and (K[ - |,+,-) is a subsemiring of R,
then & is the same as +.

Proof. For any fixed e? = e € K[ -], H[ - ](e) = eK][ - Je is
a compact semiring under + and - , and is a (-)— group. Also,
E[-]NK][-]eand eK[-]NE] -] are compact semirings under +
and - (see Theorem 7 above). More importantly, these last two
sets are (+)— bands, since they are included in K[ -] C E[ + |.
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Since we are in a semiring, if we select g € K| - Je, then the map
(y,2) — 04((y,2)) = ygz from (eK[- [N E[-]) x (E[-]N
K[ -]e) — eK] - ]e is continuous, and has the properties needed
to apply Theorem 15 above.

We know from Wallace [12], that the space

(E[-1NK[-]e) x eK[-]ex (eK[-]NE[-])

with multiplication (a,b,c) - (a/,V', ') = (a,b o4((c,a’)) V', (),
is a compact simple semigroup. Moreover, when g = e, it is
iseomorphic to (K| - |, -) by the map (a, b, ¢) — abc . Thus this
map is always a homeomorphism of our product to K[ -] . Now
by applying Theorem 15 above, we may take componentwise
addition for &, and then, via the homeomorphism, (K| - |, ®, o)
is a compact semiring with simple multiplication. When g =
e, o4 corresponds to (-) . If K[ -] C E[ -], and K[ - | is a
subsemiring of R, then Pearson [5], has shown that our addition
corresponds to (+) . So the theorem is proved. O

We do not know whether compact semirings with simple mul-
tiplication are more complicated than this, but, due to our in-
ability to produce a semifactorization theorem corresponding to
our construction, it is suspected that they are more complicated.
It is not known to the author, for compact connected semirings
in the plane, whether or not K| - | has to be a subsemiring, but
once again it is conjectured that it need not be.
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