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α-PSEUDOCOMPACTNESS IN CP -SPACES

Angel Tamariz-Mascarúa

Abstract

We prove that Cp(X) is σ-α-pseudocompact if and
only if X is pseudocompact and α-b-discrete, and
Cp(X, [0, 1]) is α-pseudocompact if and only if X
is α-b-discrete. We also give an example of an
infinite α-pseudocompact α-b-discrete space.

1. Introduction

For a Tychonoff space X the space Cp(X) of the real-valued
functions defined on X with the pointwise convergence topology
contains a copy of the real line as a closed subset. Thus Cp(X)
is not compact for any X. Hence, the following general question
arises for a compact-like property P: under which conditions
on X is Cp(X) the union of a countable collection of subspaces
satisfying P? With respect to this problem, for P = pseudo-
compactness, V.V. Tkachuk proved in [9] the following result.

Theorem 1.1. Cp(X) is σ-pseudocompact if and only if X is
pseudocompact and b-discrete

On the other hand, it was proved in [6] that if Cp(X) is σ-
countably compact, then X must be finite. This fact explains
why the construction of infinite pseudocompact b-discrete spaces
is not trivial (see [5], [2, Example 6.1], [1, I.2.5]).

In Section 2 of this article we generalize Theorem 1.1 by prov-
ing that Cp(X) is σ-α-pseudocompact if and only if X is pseu-
docompact and α-b-discrete. (This result was mentioned in [7]
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without any proof.) In Section 3 we give an example of an infi-
nite pseudocompact α-b-discrete space.

In order to prove Theorems 2.7 and 2.8, we follow a similar
strategy to that given to prove Propositions 3.5 and 3.9 in [9].
The example in Section 3 is obtained by modifying Example
I.2.5 in [1]. Proofs hold by applying some results obtained in
[3].

We assume that all spaces are Tychonoff spaces. If X is
a space and A ⊂ X, then clX(A) (or simply cl(A)) denotes
the closure of A in X. The Greek letters ξ, λ, γ stand for
infinite ordinal numbers, and the Greek letters α, κ stand for
infinite cardinals. For a set X, |X| denotes the cardinality of
X. Besides, [X]<α stands for the family of subsets of X of
cardinality < α. For ordinal numbers ξ and γ with ξ < γ, (ξ, γ)
and [0, γ) are the sets {λ : ξ < λ < γ} and {λ : λ < γ},
respectively. If α is a cardinal number, then α also stands for
the discrete space of cardinality α. As usual, R denotes the set
of real numbers with its Euclidean topology. For a space X,
β(X) is its Stone-C̆ech compactification.

The following concepts and some of its properties were ana-
lyzed in [3].

Definition 1.2. 1. A subset B of X is said to be Cα-compact
in X if f [B] is a compact subset of Rα for every continuous
function f : X → Rα.

2. If X is Cα-compact in itself, then we say that X is α-
pseudocompact.

3. A space X ⊂ Y is σ-Cα-compact in Y if there is a cover
{Xn : n < ω} of X where Xn is Cα-compact in Y . The
expression X is σ-Cα-compact will mean that X is σ-Cα-
compact in X.

If α < γ, then every Cγ-compact subset of X is Cα-compact.
A set Y ⊂ X is a Gδ-set in X if there is a sequence (Un)n<ω
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of nonempty open sets in X such that Y =
⋂

n<ω Un. A subset
Y of X is Gδ-dense in X if each nonempty Gδ-set in X has
a nonempty intersection with Y . Observe that a space X is
pseudocompact iff X is ℵ0-pseudocompact. For each α < γ,
there exists a space X which is α-pseudocompact and is not γ-
pseudocompact. In fact, the space of ordinal numbers [0, α+)
endowed with the order topology is α-pseudocompact but is not
γ-pseudocompact (see [3]).

If X and Y are two spaces, we denote by C(X,Y ) the set
of continuous functions defined on X and with values in Y . If
Y = R , then we write C(X) instead of C(X,R ). The set of
real bounded continuous functions defined on X is denoted by
C∗(X). A subspace Y of a space X is C∗-embedded in X if for
every f ∈ C∗(Y ) there is g ∈ C∗(X) such that g|Y = f ; and it
is a zero-set (resp., cozero-set) if there is f ∈ C(X) such that
Y = f−1{0} (resp., Y = f−1(R\{0})). Z(X) is the collection of
zero-sets of X. We write Cp(X,Y ), Cp(X) and C∗

p (X) in order to
symbolize the sets C(X,Y ), C(X) and C∗(X) considered with
the pointwise convergence topology. Recall that two disjoint
subsets A and B of a space X are completely separated if there
exists f ∈ C(X, [0, 1]) such that f [A] = {0} and f [B] = {1}.
For a product

∏
j∈J Xj and for K ⊂ J , πK denotes the projection

from
∏

j∈J Xj to
∏

j∈K Xj .
As usual, if P is a topological property, then a space X is

σ-P if X is the countable union of subspaces having P.

Definition 1.3. Let α be a cardinal number,

1. a space X is α-discrete if every subset of X of cardinality
≤ α is discrete, or equivalently is closed in X,

2. X is α-b-discrete if every subset Y of X of cardinality ≤ α
is discrete and C∗-embedded in X,

3. a space X is b-discrete if X is ω-b-discrete,
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4. a subset Y of a product X =
∏

j∈J Xj is said to be α-dense in
X if for every K ⊂ J of cardinality ≤ α we have πK(Y ) =∏

k∈K Xk.

Observe that if γ < α and Y is α-dense in X, then Y is
γ-dense and dense in X.

The following two results proved in [3] will play an important
role for our purposes.

Proposition 1.4. For a subset B of X, the following are equiv-
alent:

1. B is Cα-compact in X;

2. if {Zξ : ξ < α} ⊂ Z(X) and B ∩ ⋂
ξ∈I Zξ 6= ∅ for every

finite subset I of α, then B ∩ ⋂
ξ<α Zξ 6= ∅.

It is worth mentioning that conditions (1) and (2) in the
proposition just formulated are equivalent to B being Gα-dense
in β(X).

Proposition 1.5. Let α be a cardinal number and let X =∏
i∈I Xi be a product of compact spaces of weight not greater

than α, with α ≤ |I|. Then, for a dense subset Y of X the
following are equivalent.

1. Y is α-pseudocompact.

2. Y is Cα-compact in X.

3. Y is α-dense in X.

The following basic results about σ-Cα-compact sets can be
easily proven and will be useful.

Proposition 1.6. Let X =
⋃

n<ω Xn be a space.

1. If f : X → Y is a continuous and onto function and Xn is
Cα-compact (resp., α-pseudocompact) in X for every n <
ω, then Y is σ-Cα-compact (resp., σ-α-pseudocompact).
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2. If Xn is σ-Cα-compact (resp., σ-α-pseudocompact) in Yn ⊂
Y for each n < ω, then X is σ-Cα-compact (resp., σ-α-
pseudocompact) in

⋃
n<ω Yn.

2. α-Pseudocompactness in Cp(X)

To be able to prove the main theorems of this section, we need
to establish some previous results.

Proposition 2.1. A space X is α-b-discrete if and only if
Cp(X, [0, 1]) is α-dense in [0, 1]X.

Proof. Assume that X is α-b-discrete and let K be a subset of
X of cardinality ≤ α. Let h be an element in [0, 1]K. Since
K is discrete, h is continuous; so there exists h̃ ∈ Cp(X, [0, 1])
which extends h because K is C∗-embedded in X. Therefore,
Cp(X, [0, 1]) is α-dense in [0, 1]X.

Now, suppose that Cp(X, [0, 1]) is α-dense in [0, 1]X and let
K be a subset of X of cardinality ≤ α. By hypothesis, every
h ∈ [0, 1]K can be continuously extended to X, so K is discrete
and C∗-embedded in X. 2

We will use the following α-version of Proposition 3.8 in [9].
Its proof is similar to that given when α = ω.

Lemma 2.2. For any space X the following conditions are equiv-
alent.

1. The space X is α-b-discrete.

2. X is α-discrete and clβ(X)A ∼= β(A) for each A ⊂ X of
cardinality ≤ α.

3. X is α-discrete and clβ(X)A∩clβ(X)B = ∅ for every disjoint
A,B ⊂ X of cardinality ≤ α.

In order to prove the following two results, we will use Propo-
sition 1.4
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Lemma 2.3. Let A = {xλ : λ < α} be a subset of X and let
z0 be an element in clXA. For each Cα-compact subset Y of
Z = {f ∈ Cp(X, [0, 1]) : f(z0) = 0}, and each ε ∈ (0, 1), there
exists G = {ξ1, ..., ξk} ∈ [α]<ω such that, if f ∈ Cp(X, [0, 1]) and
f(xξi) ≥ ε ∀ 1 ≤ i ≤ k, then f 6∈ Y .

Proof. For each n > ε−1 and each F = {λ1, ..., λn} ∈ [α]<ω, let
MF = {f ∈ Z : f(xλi) ∈ [ε− 1

n
, 1] ∀ 1 ≤ i ≤ n}. It happens that

each MF is a nonempty zero-set in Z, and if F1, ..., Fs ∈ [α]<ω

with |Fi| > ε−1 ∀ 1 ≤ i ≤ s, then MF1∩. . .∩MFs = M∪{Fi:1≤i≤s}.
Let M = {MF : F ∈ [α]<ω and |F | > ε−1}. Observe that
|M| ≤ α. Now, it is easy to see that if f ∈ ⋂M, then f(xλ) ≥ ε
for all λ < α. But, f(z0) = 0. This means that f is not a
continuous function, but this is a contradiction. So

⋂M = ∅.
Because of Proposition 1.4, we can find F1, ..., Fs ∈ [α]<ω such
that Y ∩MF1 ∩. . .∩MFs = ∅. Let G = F1∪. . .∪Fs = {ξ1, ..., ξk}.
Thus Y ∩ MG = ∅. So, if f(xξi) ≥ ε for all 1 ≤ i ≤ k and
f ∈ Cp(X, [0, 1]), then f 6∈ Y . 2

Lemma 2.4. Let A = {aλ : λ < α} and B = {bλ : λ < α}
be two disjoint subsets of X such that clβ(X)A ∩ clβ(X)B 6= ∅.
Let Y be a Cα-compact subspace of Cp(X, [−1, 1]) and let ε ∈
(0, 1). Then there exist K = {λ1, ..., λn} ∈ [α]<ω and H =
{ξ1, ..., ξm} ∈ [α]<ω such that, for any f ∈ Cp(X, [−1, 1]) with
f(aλi) ≥ ε and f(bξj) ≤ −ε for every i ∈ {1, ..., n} and j ∈
{1, ...,m} we have f 6∈ Y .

Proof. For each n > ε−1 and for each F = {λ1, ..., λn}, G =
{ξ1, ..., ξn} ∈ [α]<ω we take M(F,G) = {f ∈ Cp(X, [−1, 1]) :
f(aλi) ≥ ε − 1

n
and f(bξj) ≤ −ε + 1

n
∀ 1 ≤ i ≤ n, 1 ≤ j ≤ n}.

Let M = {M(F,G) : F,G ∈ [α]<ω and |F |, |G| > ε−1}. The col-
lection M is closed under finite intersections because M(F1 ,G1) ∩
. . . ∩ M(Fn,Gn) = M(∪1≤i≤nFi,∪1≤i≤nGi). Moreover

⋂M = ∅. In
fact, assume that f ∈ ⋂M and let aλ, bξ be arbitrary elements
in A and B, respectively. Let n < ω be such that n > ε−1.
We can take different elements λ1, ..., λn ∈ α \ {λ} and different
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elements ξ1, ..., ξn ∈ α \ {ξ}. We have that f ∈ M(F,G) where
F = {λ, λ1, ..., λn} and G = {ξ, ξ1, ..., ξn}. Thus, f(aλ) ≥ ε − 1

n

and f(bξ) ≤ −ε + 1
n
. Since this can be done for every n > ε−1,

then f(aλ) ≥ ε and f(bξ) ≤ −ε. Let f̂ : β(X) → [−1, 1] be

the continuous extension of f . So f̂(aλ) ≥ ε for all λ < α and
f̂(bξ) ≤ −ε for all ξ < α. But this is not possible because there
is r ∈ clβ(X)A ∩ clβ(X)B. Therefore,

⋂M = ∅.
Each of the elements in M is a nonempty zero-set in

Cp(X, [−1, 1]) and the cardinality of M is ≤ α, so, by Proposi-
tion 1.4 we conclude that there exist n > ε−1, K = {λ1, ..., λn}
and H = {ξ1, ..., ξn} such that Y ∩M(K,H) = ∅. The sets K and
H are as promised. 2

Proposition 2.5. If Cp(X, [0, 1]) is σ-Cα-compact, then X is
α-discrete.

Proof. Let Cp(X, [0, 1]) =
⋃{Pn : n < ω} where, for each n < ω,

Pn is Cα-compact in Cp(X, [0, 1]). Assume that X is not α-
discrete and let A be a non-closed subset of X of cardinality
≤ α; say A = {xλ : λ < α}. Then, there exists z0 ∈ (clXA) \ A.
Besides, there exists a retraction R from Cp(X, [0, 1]) onto Z =
{f ∈ Cp(X, [0, 1]) : f(z0) = 0} (R(f) = f−f(z0)). So Z is equal
to

⋃
0<n<ω Zn where each Zn is Cα-compact in Z (Proposition

1.6). We are going to obtain a contradiction after assuming
that z0 ∈ (clXA) \ A. By Lemma 2.3, for each 0 < n < ω
there is Gn = {λn

1 , ..., λ
n
k(n)} ∈ [α]<ω such that if f ∈ Z and

f(xλi) ≥ 2−n for all 1 ≤ i ≤ k(n), then f 6∈ Zn. Consider the
sets Ĝn = G1 ∪ . . . ∪ Gn (0 < n < ω). Then Ĝn ⊂ Ĝn+1 for all
0 < n < ω, and if f ∈ Z and f(xλ) ≥ 2−n for all λ ∈ Ĝn, then
f 6∈ Zn.

Since X is a Tychonoff space, we can take, for each 0 < n < ω,
a function fn ∈ Z such that fn(xλ) = 1 for all λ ∈ Ĝn. Let
f = Σ∞

n=12
−nfn. We have that f ∈ Z and if n > 0 and λ ∈ Ĝn,

then f(xλ) ≥ 2−nfn(xλ) = 2−n. Thus, f 6∈ Zn for all 0 < n < ω.
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But this is a contradiction because Z =
⋃

0<n<ω Zn. Therefore,
A must be closed in X. 2

The function r : Cp(X) → Cp(X, [0, 1]) defined as r(f) = ξ◦f
is a retraction of Cp(X) onto Cp(X, [0, 1]), where ξ : R → R is
defined as follows: ξ(x) = x for x ∈ [0, 1], ξ(x) = 1 for x > 1,
and ξ(x) = 0 if x < 0. So, r|C∗

p (X) is a retraction of C∗
p(X) onto

Cp(X, [0, 1]). Besides, C∗
p(X) =

⋃
n<ω Cp(X, [−n, n]). Thus, by

using Proposition 1.6 we obtain:

Proposition 2.6. Cp(X, [0, 1]) is σ-Cα-compact (resp., σ-α-
pseudocompact) if and only if C∗

p(X) is σ-Cα-compact (resp.,
σ-α-pseudocompact).

Now, we are able to prove the main results of this article.

Theorem 2.7. Let X be a space and α a cardinal number. Then
the following are equivalent:

1. X is α-b-discrete.

2. Cp(X, [0, 1]) is α-pseudocompact.

3. Cp(X, [0, 1]) is Cα-compact in [0, 1]X .

4. Cp(X, [0, 1]) is σ-α-pseudocompact.

5. Cp(X, [0, 1]) is σ-Cα-compact.

6. C∗
p(X) is σ-Cα-compact.

7. C∗
p(X) is σ-α-pseudocompact.

Proof. The equivalencies (1) ⇔ (2) ⇔ (3) are a consequence of
Propositions 1.5 and 2.1, the implications (2) ⇒ (4) ⇒ (5) are
evident, and Proposition 2.6 gives us (4) ⇔ (7) and (5) ⇔ (6).
So, we have only to prove (5) ⇒ (1).

For convenience, we are going to consider the space
Cp(X, [−1, 1]) instead of Cp(X, [0, 1]). Because of Proposition
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2.5 and Lemma 2.2, it is enough to prove that if A and B are two
disjoint subsets of X of cardinality ≤ α, then clβ(X)A∩clβ(X)B =
∅. Assume the contrary. Let A and B be disjoint subsets of
X of cardinality ≤ α, and let r be an element belonging to
clβ(X)A ∩ clβ(X)B. Enumerate A and B as {aλ : λ < α} and
{bλ : λ < α}, respectively.

Assume that Cp(X, [−1, 1]) =
⋃{Zn : 0 < n < ω} where

Zn is Cα-compact in Cp(X, [−1, 1]) for each 0 < n < ω. Due to
Lemma 2.4, we know that for each 0 < n < ω there exist Kn and
Hn in [α]<ω such that if f ∈ Cp(X, [−1, 1]) and f(aλ(i)) ≥ 2−n

for every λ(i) ∈ Kn, and f(bξ(j)) ≤ −2−n for every ξ(j) ∈ Hn,
then f 6∈ Zn. Without loss of generality we can assume that
K1 ⊂ K2 ⊂ . . . ⊂ Kn ⊂ . . ., H1 ⊂ H2 ⊂ . . . ⊂ Hn ⊂ . . .,
and there exists a sequence (kn)0<n<ω of natural numbers such
that Kn = {λ(0), ..., λ(kn)}, and Hn = {ξ(0), ..., ξ(kn)} for every
0 < n < ω, where λ(n) 6= λ(m) and ξ(n) 6= ξ(m) if n 6= m.

We know that X is α-discrete (Proposition 2.5). Thus, there
exist disjoint open families U = {Un : n < ω} and V = {Vn :
n < ω} such that

(a) (
⋃U) ∩ (

⋃V) = ∅; and

(b) aλ(n) ∈ Un and bξ(n) ∈ Vn for every n < ω.

Now, since X is a Tychonoff space, there exist two collec-
tions F = {fn ∈ Cp(X, [−1, 1]) : n < ω} and G = {gn ∈
Cp(X, [−1, 1]) : n < ω} such that, for every n < ω,

(i) fn ≥ 0 and gn ≤ 0;

(ii) f−1
n ([−1, 1] \ {0}) ⊂ Un and g−1

n ([−1, 1] \ {0}) ⊂ Vn; and

(iii) fn(aλ(n)) = 1 and gn(bξ(n)) = −1.

We define, for each 0 < n < ω, the function
dn = 2−n · (Σkn

t=0(ft + gt)). Take h = Σ∞
n=1dn. The function

h belongs to Cp(X, [−1, 1]), and h(aλ(i)) ≥ 2−n ∀ 1 ≤ i ≤ kn,



358 Angel Tamariz-Mascarúa

and h(bξ(i)) ≤ −2−n ∀ 1 ≤ i ≤ kn, for each 0 < n < ω. But this
means that h 6∈ Zn for all 0 < n < ω, which is not possible be-
cause Cp(X, [−1, 1]) =

⋃{Zn : 0 < n < ω}. This contradiction
leads us to conclude that clβ(X)A ∩ clβ(X)B = ∅. Therefore, X
is α-b-discrete. 2

Theorem 2.8. Let X be a space and α be a cardinal number.
Then, the following assertions are equivalent:

1. X is pseudocompact and α-b-discrete.

2. Cp(X) is σ-α-pseudocompact.

3. Cp(X) is σ-Cα-compact.

Proof. If Cp(X) is σ-Cα-compact, then Cp(X, [0, 1]) also has this
property because it is a retract of Cp(X). Then X is α-b-discrete
and Cp(X) is σ-pseudocompact (Theorem 2.7). Therefore, X is
also pseudocompact (Theorem 1.1).

If X is pseudocompact, then Cp(X) = C∗
p(X). Since X is α-b-

discrete, then C∗
p(X) = Cp(X) is σ-α-pseudocompact (Theorem

2.7). 2

3. An Infinite α-Pseudocompact α-b-Discrete Space

In [1, Example I.2.5] the efforts done in [5] are synthesized, and
an example is given of an infinite pseudocompact b-discrete space
Z. By reason of Proposition 1.5, a slight modification of Z
is enough to obtain an infinite α-pseudocompact α-b-discrete
space for each infinite cardinal α. For the sake of completeness
we present here the details of this construction. The interval
[0, 1] C | R will be denoted by I.

Let α be an uncountable cardinal number, and let M be the
set [0, 2α) of ordinals smaller that 2α. Let S = {x ∈ IM :
|{λ ∈ M : πλ(x) 6= 0}| ≤ α} ⊂ IM be the Σα-product based
at the point which has all its coordinates equal to zero. Then
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|S| = 2α = |M |. Let {sλ : λ ∈ M} be an enumeration of the
elements of S such that |{λ ∈ M : s = sλ}| = 2α for all s ∈ S.
Let E = {A ⊂ M : |A| ≤ α}. The cardinality of E is equal to 2α,
so we can choose an enumeration {Aλ : λ ∈ M} of the elements
of E such that |{λ : Aλ = A}| = 2α for each A ∈ E.

Remark 3.1. Let A,B be subsets of M of cardinality κ ≤ α,
and let f ∈ S. Then, there exist ξ, γ ∈ M greater than supB
such that Aξ = A and sγ = f .

Proof. Indeed, since |B| = κ ≤ α and α < cof (2α), supB =
γ < 2α. Because of the way we enumerate S and E, there are
ξ, λ ∈ (γ, 2α) such that Aξ = A and sλ = f . 2

For each λ ∈ M we define a point xλ ∈ IM by:

πγ(xλ) =





πγ(sλ) if γ ≤ λ;
1 if γ > λ and λ ∈ Aγ;
0 if γ > λ and λ 6∈ Aγ.

We are going to prove that the subspace X = {xλ : λ ∈ M}
of IM is the one we looked for.

Claim 3.2. X is dense in IM .

Proof. Let {m1, ...,mk} be a finite subset of M and A1, ..., Ak

be open subsets of I. Consider the basic open subset U = {f ∈
IM : f(mi) ∈ Ai for i ∈ {1, ..., k}}. Take g ∈ IM such that

g(mi) =

{
ai ∈ Ai if i ∈ {1, ...k};
0 if i 6∈ {1, ...k}.

The function g is an element in S ∩ U . Because of Re-
mark 3.1, there is ξ ∈ M which is greater than mi for ev-
ery i, such that g = sξ. Now, it can be proved that xξ ∈ X
belongs to U . 2
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Claim 3.3. Let κ be a cardinal ≤ α. Then X is κ-pseudo-
compact.

Proof. By virtue of Proposition 1.5 and Claim 3.2, in order to
prove Claim 3.3, we need to show that for any B ⊂ M of cardi-
nality ≤ κ, πB(X) = IB holds.

Let g ∈ IB be arbitrary. Take f ∈ S defined by

f(λ) =

{
0 if λ 6∈ B;
g(λ) if λ ∈ B.

Let γ = supB. There is ξ ∈ (γ, 2α) such that f = sξ (Re-
mark 3.1). It is not difficult to see that πB(xξ) = g. Therefore,
πB(X) = IB. 2

Claim 3.4. Let B be a subset of M of cardinality κ ≤ α. Then
clIM ({xλ : λ ∈ B}) is homeomorphic to β(κ).

Proof. It suffices to prove that for all disjoint M1,M2 ⊂ M of
cardinality ≤ κ we have clIM ({xλ : λ ∈ M1}) ∩ clIM ({xλ : λ ∈
M2}) = ∅ (see [4, 6.5]).

Let ξ ∈ M be such that ξ > sup(M1 ∪ M2) and Aξ = M1

(Remark 3.1). Then πξ(xλ) = 1 if λ ∈ M1, and πξ(xλ) = 0 if
λ ∈ M2. Thus the sets {xλ : λ ∈ M1} and {xλ : λ ∈ M2} are
completely separated in IM . 2

As a consequence of this last claim we have the following
result.

Claim 3.5. Every subset of X of cardinality ≤ α is closed in
X.

Proof. Let B ⊂ M with |B| = κ ≤ α, and γ ∈ M \ B. Due to
Claim 3.4, clIM{xλ : λ ∈ B} ∩ {xγ} = ∅. Thus clX{xλ : λ ∈
B} ∩ {xγ} = ∅. Therefore, {xλ : λ ∈ B} is closed in X. 2

Claim 3.6. Every subset of X of cardinality ≤ α is C∗-embedded
in X.
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Proof. Let B ⊂ M with |B| = κ ≤ α. Let f ∈ Cp({xλ : λ ∈
B}, I) = IB. Since P = clIM ({xλ : λ ∈ B}) is homeomor-
phic to β(κ) (Claim 3.4), there is an h0 ∈ Cp(P, I) such that
h0|{xλ:λ∈B} = f . Clearly, there is an h1 ∈ Cp(I

M , I) such that
h1|P = h0. Then h = h1|X is the required function on X. 2

Recall that a space Y is left-separated if there is a well-ordered
≺ on Y such that the set {y ∈ Y : y ≺ x} is closed in Y for
every x ∈ Y .

Claims 3.3, 3.5 and 3.6 say that X is an infinite
α-pseudocompact α-b-discrete space. Moreover, X is left sep-
arated (Claim 3.5) and connected (Claim 3.3, Proposition 1.5
and Lemma in [8]).
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