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Abstract

Let F (X) and A(X) be respectively the free topo-
logical group and the free abelian topological group
on a Tychonoff space X. For all natural number n
we denote by Fn(X) (An(X)) the subset of F (X)
(A(X)) consisting of all words of reduced length
≤ n. For every natural number n, we construct
a neighborhood base at the identity in F2n(X) for
a pseudocompact space X. In the abelian case,
it was already obtained for a Tychonoff space in
[22], [23]. Using the neighborhood bases we prove
that for each natural number n ≥ 2, uu(X) is
equal to the character of An(X) for a Tychonoff
space X and to the character of Fn(X) for a pseu-
docompact space X, where uu(X) is a cardinal
function on X called the universal uniform weight,
which is defined in this paper. As applications of
these facts, we characterize the spaces X such that
Fn(X) and An(X) are first countable or metriz-
able for each n ∈ N, respectively. In addition, we
also prove that if Fn(X) (An(X)) is first count-
able, then it is metrizable for each n ≥ 2. We also

∗ This paper was written while the author was visiting Auburn
University.
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consider when the natural mappings from (X ⊕
X−1 ⊕{e})n to Fn(X) and from (X ⊕−X ⊕{0})n

to An(X) are closed.

1. Introduction

Let F (X) and A(X) be respectively the free topological group
and the free abelian topological group on a Tychonoff space X
in the sense of Markov [12]. As an abstract group, F (X) is
free on X and it carries the finest group topology that induces
the original topology of X; every continuous map from X to an
arbitrary topological group lifts in a unique fashion to a con-
tinuous homomorphism from F (X). Similarly, as an abstract
group, A(X) is the free abelian group on X, having the finest
group topology that induces the original topology of X, so that
every continuous map from X to an arbitrary abelian topologi-
cal group extends to a unique continuous homomorphism from
A(X).

For each n ∈ N, Fn(X) stands for a subset of F (X) formed
by all words whose length is less than or equal to n. It is known
that X itself and each Fn(X) are closed in F (X). The subspace
An(X) is defined similarly and each An(X) is closed in A(X).
Let e be the identity of F (X) and 0 be that of A(X). For each
n ∈ N and an element (x1, x2, . . . , xn) of (X ⊕ X−1 ⊕ {e})n we
call x1x2 · · ·xn a form. In the abelian case, x1 + x2 + · · · + xn

is also called a form for (x1, x2, . . . , xn) ∈ (X ⊕ −X ⊕ {0})n.
We remark that a form may contain some reduced letter. Then
the reduced form of x1x2 · · ·xn is a word of F (X) and that of
x1 + x2 + · · ·+ xn is a word of A(X). For each n ∈ N we denote
the natural mapping from (X ⊕ X−1 ⊕ {e})n onto Fn(X) by in

Key words: Free topological group, free abelian topological group,
character, universal uniformity, universal uniform weight, first countable
space, metrizable space, closed mapping
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and we also use the same symbol in in the abelian case, that
is, in means the natural mapping from (X ⊕ −X ⊕ {0})n onto
An(X). Clearly the mapping in is continuous for each n ∈ N.

Graev [7] proved that if a space X is non-discrete, then nei-
ther F (X) nor A(X) is first countable. On the other hand, since
the mappings in are continuous, if a space X is compact metriz-
able, then both Fn(X) and An(X) are compact metrizable and
hence first countable for each n ∈ N. Then the following natural
question can be considered:

Is each Fn(X) (An(X)) metrizable or first count-
able for such spaces X as the real line R, the space
Q of rational numbers, R\Q or the hedgehog J(κ)
of spininess κ ?

Some answers to the above question were obtained earlier. For
example, Fay, Ordman and Thomas [6] showed that F8(Q) is
not a k-space and hence it is not first countable. The author
[22] obtained that neither A3(Q) nor A3(R \Q) is a k-space and
hence they are not first countable.

In the next section, we first give neighborhoods of the iden-
tity in F2n(X) and A2n(X) for each n ∈ N, respectively. In the
abelian case, we introduce the neighborhood base at 0 in A2n(X)
for a Tychonoff space X, which was obtained by the author in
[22], [23]. In the non-abelian case, applying the Graev’s con-
tinuous pseudometric on F (X) defined in [7] and the neighbor-
hood base at e in F (X) for a Tychonoff space X constructed by
Tkačenko [16] we construct a neighborhood base at e in F2n(X)
for a pseudocompact space X. When n = 1, our neighborhood
base is of the same form as Pestov’s one constructed in [14] and
it is easy to see that pseudocompactness of a space X is not
necessary.

In §3, we define the cardinal function uu(X) on a Tychonoff
space X called the universal uniform weight . Then, using the
above neighborhood bases at the identity, we prove that
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χ(An(X)) = χ(A2(X)) = uu(X) for a Tychonoff space X and
each natural number n ≥ 2, and χ(Fn(X)) = χ(F2(X)) =
uu(X) for a pseudocompact space X and each natural num-
ber n ≥ 2. As applications of these facts, in §4 we characterize
metrizable spaces X such that Fn(X) and An(X) are metrizable
for each n ∈ N, respectively. We prove that for a metrizable
space X, the following are equivalent:

(i) An(X) is metrizable for each n ∈ N;

(ii) An(X) is first countable for each n ∈ N;

(iii) A2(X) is metrizable;

(iv) A2(X) is first countable;

(v) the set of all non-isolated points of X is compact.

In the non-abelian case the following are equivalent:

(i) Fn(X) is metrizable for each n ∈ N;

(ii) Fn(X) is first countable for each n ∈ N;

(iii) F4(X) is metrizable;

(iv) F4(X) is first countable;

(v) X is compact or discrete.

Furthermore, the following are also equivalent:

(i) F3(X) is metrizable;

(ii) F3(X) is first countable;

(iii) F2(X) is metrizable;

(vi) F2(X) is first countable;

(v) the set of all non-isolated point of X is compact.
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It is well known that every first countable topological group is
metrizable. Though each Fn(X) (An(X)) is not a topological
group, it follows from the above results that if Fn(X) (An(X))
is first countable, then it is metrizable for each n ≥ 2.

In the same section, we also consider the closedness of the
natural mappings in. Tkačenko [18] raised the following prob-
lem:

Characterize spaces X for which the natural map-
ping in is quotient (closed, z-closed, R-quotient,
etc.), n ∈ N.

He showed in [17] that if X2n is normal and countably com-
pact, then the mapping in is closed. Pestov [14] proved that the
mapping i2 is quotient if and only if every neighborhood of the
diagonal in X2 is an element of the universal uniformity on X.
We prove for a metrizable space X that if i3 is closed, then X
is compact or discrete. For n = 2, we improve Pestov’s result
by showing that i2 is closed under the same condition as in the
above result.

All topological spaces are assumed to be Tychonoff. By N we
denote the set of all positive natural numbers. Our terminology
and notations follow [5]. We refer to [9] for elementary properties
of topological groups and to [3] and [7] for the main properties
of free topological groups.

2. Neighborhood Base at the Identity in Fn(X) and
An(X)

In this section, we consider a neighborhood base at the identity.
We first introduce the neighborhood base at 0 in A(X) con-
structed by Tkačenko [15], Pestov [14] and the neighborhood
base at 0 in A2n(X) constructed by the author [22], [23].

Let UX be the universal uniformity on a space X. For each
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P = {U1, U2, . . . } ∈ (UX)ω, let

V (P ) = {x1 − y1 + x2 − y2 + · · · + xk − yk : (xi, yi) ∈ Ui

for i = 1, . . . , k, k ∈ N},

and V = {V (P ) : P ∈ (UX)ω}. Furthermore, fix any n ∈ N. For
each U ∈ UX let

Vn(U) = {x1 − y1 + x2 − y2 + · · · + xk − yk : (xi, yi) ∈ U

for i = 1, . . . , k, k ≤ n},

and Vn = {Vn(U) : U ∈ UX}. Then the following are known.

Theorem 2.1. Let X be a space. Then:

(1) ([14]) V is a neighborhood base at 0 in A(X), and

(2) ([22], [23]) Vn is a neighborhood base at 0 in A2n(X) for
each n ∈ N.

In the non-abelian case, some neighborhood bases at e in F (X)
were constructed by Tkačenko [16], Pestov [14] and Uspenskĭı
[21], and every element of their neighborhood bases has a com-
plicated form while V (P ) and Vn(U) are simpler. Here we intro-
duce Tkačenko’s neighborhood base, which is used for proving
Theorem 2.6 below.

Let X be a space and X = X ⊕X−1 ⊕ {e}. For each n ∈ N,
we define a mapping jn from X

n×X
n

to F2n(X) by jn((x,y)) =
in(x)in(y)−1 for every (x,y) ∈ X

n×X
n
. Let Un be the universal

uniformity on X
n

for each n ∈ N. For each R = {Un : n ∈ N} ∈∏∞
i=1 Un, we put

W ′
n(R) =

⋃
{jπ(1)(Uπ(1)) · · · jπ(n)(Uπ(n)) : π ∈ Sn}

and

W (R) =

∞⋃

n=1

W ′
n(R),

where Sn is the permutation group on {1, 2, . . . , n}. Then
Tkačenko proved the following.
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Theorem 2.2 ([16]). W = {W (R) : R ∈
∏∞

i=1 Un} is a neigh-
borhood base at e in F (X).

From the definition, we have that |Vn| = |UX | ≤ |UX |ℵ0 = |V|
for each n ∈ N. In particular, if UX is countably infinite, so
is Vn for each n ∈ N, even though the cardinality of V is c.
We shall construct a family Wn consisting of neighborhoods of
e in F2n(X) and satisfying the same property. First, we prove
that it is a neighborhood base at e in F2n(X) assuming that
Un = (UX)n for each n ∈ N, where (UX)n is the uniformity on
X

n
generated by the sets Un = {((x1, . . . , xn), (y1, . . . , yn)) ∈

X
n ×X

n
: (xi, yi) ∈ U for i = 1, 2, . . . , n} with U ∈ UX (we use

the uniformity in the proof of Lemma 2.4). Then we show that
it is a neighborhood base at e in F2n(X) for a pseudocompact
space X.

In general, the universal uniformity Un on X
n

is finer than
(UX)n. It was proved in [10] and [8] that for a space X, U2 =
(UX)2 if and only if either there is a cardinal m for which X2

is pseudo-m-compact and P (m), or X is discrete (a space X is
P (m) if each family of fewer than m open sets has open inter-
section).

Definition. Fix an arbitrary n ∈ N. For a subset U of X
2
which

includes the diagonal of X
2
, let Wn(U) be a subset of F2n(X)

which consists of the identity e and all words g satisfying the
following conditions;

(1) g can be represented as the reduced form g = x1x2 · · ·x2k,
where xi ∈ X for i = 1, 2, . . . , k and 1 ≤ k ≤ n,

(2) there is a partition
{1, 2, . . . , 2k} = {i1, i2, . . . , ik} ∪ {j1, j2, . . . , jk},

(3) i1 < i2 < · · · < ik and is < js for s = 1, 2, . . . , k,

(4) (xis, x
−1
js

) ∈ U for s = 1, 2, . . . , k and

(5) is < it < js ⇐⇒ is < jt < js for s, t = 1, 2, . . . , k.
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We shall show that Wn = {Wn(U) : U ∈ UX} is the required
family.

Theorem 2.3. Let X be a space. Then for every U ∈ UX and
every n ∈ N, Wn(U) is a neighborhood of e in F2n(X).

Proof. Given U ∈ UX , one can find a continuous pseudometric
d on X such that

{(x, y) ∈ X × X : d(x, y) < 1} ⊆ U

and

{(x−1, y−1) ∈ X−1 ×X−1 : d(x, y) < 1} ⊆ U.

Without loss of generality we can assume that d ≤ 1. Extend
d to a continuous pseudometric d on X defining, d(x−1, y−1) =
d(x, y), d(e, x) = d(e, x−1) = 1 and d(x−1, y) = d(x, y−1) = 2
for all x, y ∈ X. Then there exists an invariant continuous
pseudometric d̂ on F (X) such that d̂(x, y) = d(x, y) for all x, y ∈
X (see Theorem 1 of [7]).

Now we put

Od = {g ∈ F (X) : d̂(g, e) < 1}

and
Ud = {(x, y) ∈ X

2
: d(x, y) < 1}.

From the continuity of d̂ it follows that Od is an open neighbor-
hood of e in F (X). To finish the proof it suffices to verify the
inclusion

Od ∩ F2n(X) ⊆ Wn(Ud).

Suppose that g ∈ Od∩F2n(X), g 6= e, and let g = x1x2 · · ·xm be
the reduced form of g (hence m ≤ 2n). Our definitions of d and
d̂ imply that every element of Od has even length, so m = 2k
for some k ≤ n and xi 6= e for each i ≤ 2k. From Graev’s
construction of d̂ (see the proof of Theorem 1 in [7]) it follows
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that there exists a partition {1, 2, . . . , 2n} = {i1, i2, . . . , ik} ∪
{j1, j2, . . . , jk} satisfying (3) and (5) of the definition of Wn(U)
and that d̂(g, e) =

∑k
p=1 d(xip, y

−1
jp

). Since d̂(g, e) < 1, we con-

clude that d(xip, y
−1
jp

) < 1 and hence (xip, yip) ∈ Ud ⊆ U for each
p ≤ k. This immediately implies that g ∈ Wn(U), thus finishing
the proof.

We introduce the notion of a thin set defined in [16]. A subset X
of a topological group G is thin in G if for every neighborhood
U of the identity e in G there is a neighborhood V of e such
that xV x−1 ⊆ U for each x ∈ X.

Let W be the family of neighborhoods of the identity e of
F (X) constructed with the use of the uniformities (UX)i for each
i ∈ N by Tkachenko’s method (see the construction described
before Theorem 2.2). In other words, a typical element V of W
has the form V = W (R), where R ∈

∏∞
i=1(UX)i. It is easy to

see that W is a neighborhood base at e for a Hausdorff group
topology τ on F (X) (see the argument in the proof of Theorem
1.1 of [16]). Denote by G(X) the group F (X) endowed with the
group topology τ .

Lemma 2.4. The set X is thin in G(X). Hence, for each n ∈ N
the set Gn(X) is thin in G(X).

Proof. Consider a basic neighborhood W (R) of the identity in
G(X), where R = (V1, V2, . . . ) ∈

∏∞
i=1(UX)i. For every i ∈ N,

there exists V ′
i ∈ (UX)i such that (z, x1, . . . , xi, z, y1, . . . , yi) ∈

Vi+1 whenever z ∈ X and (x1, . . . , xi, y1, . . . , yi) ∈ V ′
i . Put

R′ = (V ′
1 , V

′
2, . . . ). A straightforward verification shows that the

set O = W (R′) satisfies xOx−1 ⊆ W (R) for each x ∈ X . Thus,
X is thin in G(X). Applying the fact n times, we can prove
that Gn(X) is thin in G(X).

Now we need one more lemma. Suppose that U ∈ UX . Let
us call an element g ∈ F (X) U-canonical if it has the form
g = hxy−1h−1, where (x, y) ∈ U and h ∈ F (X).
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Lemma 2.5. Let U ∈ UX and n ∈ N. Then every element
h ∈ Wn(U) can be represented as a product h = g1g2 · · · gk of
U-canonical elements g1, g2, . . . , gk, where k ≤ n and the length
of gi is less or equal to 2n (we write this `(gi) ≤ 2n) for each
i ≤ k.

Proof. Let h = x1x2 · · ·x2k ∈ Wn(U), where k ≤ n. We prove
the lemma by induction on k. It is clear if k = 1, so let k ≥ 2 and
assume that the lemma holds for each i < k. By the properties
(4) and (5) of the definition of Wn(U), there is i ≤ k such that
(x1, x

−1
2i ) ∈ U . If i < k, then let h1 = x1 · · ·x2i and h2 =

x2i+1 · · ·x2k. Clearly, h1 ∈ Wi(U) and h2 ∈ Wk−i(U). Hence,
by the inductive assumption, there are U -canonical elements
u1, . . . , us and v1, . . . , vt such that

h1 = u1 · · · us, s ≤ i and `(uj) ≤ 2i for each j ≤ s

and

h2 = v1 · · · vt, t ≤ k − i and `(vj) ≤ 2(k − i) for each j ≤ t.

Since h = u1 · · ·usv1 · · · vt, s + t ≤ k, `(uj) ≤ 2n for each j ≤ s
and `(vj) ≤ 2n for each j ≤ t, h is represented as the required
product.

On the other hand, if i = k, then let h′ = x2 · · · x2k−1.
Since h′ ∈ Wk−1(U), by the inductive assumption, there are U -
canonical elements g′

1, . . . , g′
m such that h′ = g′

1 · · · g′
m, m ≤ k−1

and `(g′
i) ≤ 2(k − 1). Define gi (i = 1, . . . ,m,m + 1) by

gi = x1g
′
ix

−1
1 for i = 1, . . . ,m and gm+1 = x1x2k.

Then h can be represented as the product

h = x1h
′x2k

= x1g
′
1x

−1
1 x1g

′
2x

−1
1 x1 · · · x−1

1 x1g
′
mx−1

1 x1x2k

= g1g2 · · · gm+1.

Since every gi is U -canonical, m + 1 ≤ k and `(gi) ≤ 2k ≤ 2n
for each i ≤ m + 1, h is represented as the required product.
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Applying the above lemmas, we shall show that if a space X
is pseudocompact, then for every n ∈ N the family Wn is a
neighborhood base at the identity in F2n(X).

Theorem 2.6. If Ui = (UX)i for each i ∈ N, then for each
n ∈ N and R ∈

∏∞
i=1 Ui there is U ∈ UX such that Wn(U) ⊆

W (R) ∩ F2n(X).

Proof. Fix n ∈ N and let R ∈
∏∞

i=1 Ui. Since Ui = (UX)i for
each i ∈ N, W (R) is a neighborhood of e in G(X). Let W be
a neighborhood of e in G(X) such that W n ⊆ W (R). Then we
apply Lemma 2.4 to choose a neighborhood O of e in G(X) such
that gOg−1 ⊆ W for each g ∈ Gn(X).

Let U ∈ UX such that U ⊆ {(x, y) ∈ X
2

: xy−1 ∈ O}. We
claim that Wn(U) ⊆ W (R) ∩ F2n(X). Indeed, by Lemma 2.5,
every element h ∈ Wn(U) can be written as a product h =
g1 · · · gk of U -canonical elements g1, . . . , gk, where k ≤ n and
`(gi) ≤ 2n for each i ≤ k. Let gi = hixiy

−1
i h−1

i , where hi ∈ G(X)
and xi, yi ∈ X , i = 1, . . . , k. Clearly, `(hi) ≤ n − 1 < n and
(xi, yi) ∈ U , whence xiy

−1
i ∈ O. Therefore, the choice of O

implies that gi = hixiy
−1
i h−1

i ∈ hiOh−1
i ⊆ W for each i ≤ k. In

its turn, this implies that h = g1 · · · gk ∈ W k ⊆ W n ⊆ W (R),
and the proof is completed.

We should mention here that the referee of this paper informed
that Theorem 2.6 also follows from Theorem 1.8 of [20] and that
the next corollary also follows from Pestov’s Lemma in [13].

Corollary 2.7. In Theorem 2.5, the hypothesis Un = (UX)i for
each i ∈ N can be dropped when n = 1. In other words, for each
R ∈ R there is U ∈ UX such that W1(U) ⊆ W (R) ∩ F2(X).

Proof. Let R = (V1, V2, . . . ) ∈
∏∞

i=1 Ui and U ∈ UX be such
that U ⊆ V1 ∩ (X2 ∪ (X−1)2 ∪ {(e, e)}). Then, by (1) – (5)
of the definition of W1(U), each g ∈ W1(U) has the reduced
form g = x1x

−1
2 , where (x1, x2) ∈ U or g = e. It follows that

g ∈ W (R), and hence W1(U) ⊆ W (R) ∩ F2(X).
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If X is a subspace of a space Y , then the natural monomor-
phism i : F (X) → F (Y ) is continuous. The following result is
due to Pestov.

Theorem 2.8 ([13]). For a space X the natural monomorphism
i : F (X) → F (βX) is an embedding if and only if X is pseudo-
compact.

From the above results we have the following.

Theorem 2.9. Let X be a pseudocompact space. Then Wn is a
neighborhood base at e in F2n(X).

Proof. Let X be a pseudocompact space and fix n ∈ N. Then
F2n(X) can be considered as a subspace of F2n(βX) by Theorem
2.8. By Theorem 2.3 and Theorem 2.6, W ′

n = {Wn(U) : U ∈
UβX} is a neighborhood base at e in F2n(βX), and hence so is
W ′

n|F2n(X) in F2n(X). To prove that Wn is a neighborhood base

at e in F2n(X) let U ′ ∈ UβX . Then U ′ ∩X
2 ∈ UβX|X and UβX|X

is a uniformity on X which induces the original topology for X.
Since UX is the universal uniformity on X there is U ∈ UX such

that U ⊆ U ′∩X
2
. It is easy to see that Wn(U) ⊆ Wn(U ′∩X

2
) ⊆

Wn(U ′) ∩ F2n(X) ∈ W ′
n|F2n(X). Since, by Theorem 2.3, Wn is a

family consisting of neighborhoods of e in F2n(X), this implies
that it is a neighborhood base at e in F2n(X).

As a corollary to Theorem 2.3 and Corollary 2.7, the follow-
ing result is obtained, which was proved by Pestov [13] with a
different proof.

Corollary 2.10 ([13]). Let X be a space. Then W1 is a neigh-
borhood base at e in F2(X).

3. The Character of Fn(X) and An(X)

In this section, using the neighborhood bases at the identity
in Fn(X) and in An(X) constructed in the previous section we



METRIZABLE SUBSPACES OF FREE TOPOLOGICAL... 391

calculate the character of Fn(X) and An(X). Since both F (X)
and A(X) are topological groups and hence homogeneous, the
character of F (X) and A(X) depends on the character at the
identities, respectively. On the other hand, neither Fn(X) nor
An(X) is a topological group, in fact they are not homogeneous.
This means that it is not sufficient to calculate the character at
the identities in order to investigate the character of Fn(X) and
An(X). However, we have the following useful fact.

Lemma 3.1. Let X be a space and m,n ∈ N with n ≤ m. If
B is a neighborhood of e in Fm+n(X) and g ∈ Fn(X), then
gB ∩Fm(X) is a neighborhood of g in Fm(X). The same is true
in the abelian case.

Proof. Let U be a neighborhood of e in F (X) such that U ∩
Fm+n(X) ⊆ B. Since gU ∩ Fm(X) is a neighborhood of g in
Fm(X) it suffices to prove that gU ∩ Fm(X) ⊆ gB ∩ Fm(X).
Let h ∈ gU ∩ Fm(X). Then there is u ∈ U such that h =
gu. Since the length of h ≤ m (we write it `(h) ≤ m.) and
`(g) ≤ n, `(u) ≤ m + n, that is u ∈ Fm+n(X). It follows that
u ∈ U ∩ Fm+n(X) ⊆ B and h = gu ∈ gB ∩ Fm(X). Therefore,
we have gU ∩ Fm(X) ⊆ gB ∩ Fm(X).

Proposition 3.2. Let m,n ∈ N, n ≤ m, and κ be a cardinal.

(1) If χ(e, Fm+n(X)) ≤ κ, then χ(g, Fm(X)) ≤ κ for each g ∈
Fn(X), and

(2) If χ(0, Am+n(X)) ≤ κ, then χ(g,Am(X)) ≤ κ for each g ∈
An(X).

Proof. Since the proofs of (1) and (2) are similar, we only show
(1). Let U be a neighborhood base at e in F (X) and Bm+n be a
neighborhood base at e in Fm+n(X) such that |Bm+n| ≤ κ. Take
an arbitrary g ∈ Fn(X) and put Bm(g) = {gB ∩ Fm(X) : B ∈
Bm+n}. Then every element of Bm(g) contains g and |Bm(g)| ≤
κ. It is clear that for each U ∈ U there is B ∈ Bm+n such
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that gB ∩ Fm(X) ⊆ gU ∩ Fm(X). On the other hand, Lemma
3.1 shows that every element of Bm(g) is a neighborhood of g
in Fm(X). Hence Bm(g) is a neighborhood base of g in Fm(X)
whose cardinality ≤ κ. This implies that χ(g, Fm(X)) ≤ κ for
each g ∈ Fn(X).

Now we introduce a cardinal function on a space X. Let UX

the universal uniformity of a space X. We define the cardinal
function uu(X) called the universal uniform weight of X by

uu(X) = min{|B| : B is a base for UX}.

From the above results we deduce the following equalities.

Theorem 3.3. For a space X and a cardinal κ the following
are equivalent:

(1) χ(An(X)) ≤ κ for each n ∈ N,

(2) χ(A2(X)) ≤ κ,

(3) uu(X) ≤ κ.

Proof. By (2) of Theorem 2.1 and (2) of Proposition 3.2, we
have (3) ⇒ (1) and (1) ⇒ (2) is clear. So we shall show that
(2) ⇒ (3). By (2) of Theorem 2.1, V1 = {V1(U) : U ∈ UX} is
a neighborhood base at 0 in A2(X). Since χ(A2(X)) ≤ κ there
is B ⊆ UX with |B| ≤ κ such that {V1(B) : B ∈ B} is also a
neighborhood base at 0 in A2(X). From the definition of V1(U)
it is easy to see that V1(U1) ⊆ V1(U2) if and only if U1 ⊆ U2. It
follows that B is a base for UX , and hence uu(X) ≤ κ.

Theorem 3.4. For a pseudocompact space X and a cardinal κ
the following are equivalent:

(1) χ(Fn(X)) ≤ κ for each n ∈ N,

(2) χ(F2(X)) ≤ κ,
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(3) uu(X) ≤ κ.

Proof. Since uu(X) = uu(X) the argument in the proof of The-
orem 3.3 applies here.

Remark 3.5. Pseudocompactness of a space X is not necessary
to prove the equivalence of (2) and (3) of Theorem 3.4, that is,
χ(F2(X)) = uu(X). Indeed, by Corollary 2.10, χ(e, F2(X)) ≤
uu(X). Furthermore, since the open subset F2(X) \ F1(X)

of F2(X) is homeomorphic to a subspace of X
2

and the open
subset F1(X) \ {e} of F2(X) is homeomorphic to X ∪ X−1,

χ(g, F2(X)) ≤ χ(X
2
) = χ(X) ≤ uu(X) for each g ∈ F2(X)\{e}.

Hence χ(F2(X)) ≤ uu(X). The converse inequality can be
proved similarly to (2) ⇒ (3) in Theorem 3.3.

In other words, Theorems 3.3 and 3.4 imply the following:
Let X be a space and n ∈ N with n ≥ 2. Then

(1) χ(An(X)) = χ(A2(X)) = uu(X), and

(2) χ(Fn(X)) = χ(F2(X)) = uu(X) if X is pseudocompact.

Clearly χ(X) ≤ uu(X) for every space X. On the other
hand, the converse inequality is not always true (take X to be
the real line R). This implies that neither χ(F1(X)) = uu(X)
nor χ(A1(X)) = uu(X) holds since F1(X) = X⊕X−1⊕{e} and
A1(X) = X ⊕−X ⊕ {0}.

4. First Countability and Metrizability of An(X) and
Fn(X)

In this section we study metrizable spaces X for which Fn(X)
and An(X) are first countable or metrizable. We begin with
definitions and well-known results.

Let X be a space. For a subset E of F (X), the set of all
elements of X taking part in the reduced form of words in E is
called carrier of E and denoted by carE (see [4]). Recall that a
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subset Y of a space X is called bounded if every real-valued con-
tinuous function on X is bounded on Y . Arhangel’skĭı, Pestov
and Okunev (Theorem 1.5 of [4]) proved that if E is a bounded
set in F (X), in particular if E is compact, then carE is bounded
in X. The same is true for A(X). In the same paper they proved
the following important results, which are used below.

Theorem 4.1 ([4]). For a metrizable space X the following are
equivalent:

(1) A(X) is a k-space;

(2) A(X) is homeomorphic to a product of a kω-space with a
discrete space;

(3) X is locally compact and the set of all non-isolated points
in X is separable.

Theorem 4.2 ([4]). For a metrizable space X, the following are
equivalent:

(1) F (X) is a k-space;

(2) F (X) is kω-space or discrete;

(3) X is locally compact separable or discrete.

Let Y be a closed subset of a metrizable space X. Then it is
well known that F (Y ) (A(Y )) is a closed subgroup of F (Y ) (of
A(X)) (see [21]) and in addition for each n ∈ N, Fn(Y ) (An(Y ))
is also a closed subset of Fn(X) (An(X)), respectively (see [7]).
We first discuss the abelian case.

Proposition 4.3. Let X be a metrizable space. If A2(X) is first
countable, then the set of all non-isolated points of X is compact.
The same is true for F2(X).

Proof. Suppose that the set of all non-isolated points of X is
not compact. Then there are sequences {xn : n ∈ N} and
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{xm,n : m ∈ N}, n ∈ N such that {xm,n : m ∈ N} converges
to xn for each n ∈ N. For each n ∈ N, let Yn = {xm,n :
m ∈ N} ∪ {xn}. We can take the above sequences such that
the family {Yn : n ∈ N} will be closed and discrete in X. Let
Cn = {xm,n−xn : m ∈ N}∪{0} for each n ∈ N and C =

⋃∞
n=1 Cn.

Then C is a closed subset of A2(Y ) such that each sequence
{xm,n − xn : m ∈ N} converges to 0 and Ci ∩ Cj = {0} if
i 6= j, where Y =

⋃∞
n=1 Yn. Since A2(Y ) is a (closed) sub-

space of A2(X), to show that A2(X) is not first countable, it
suffices to prove that A2(Y ) is not first countable. Indeed we
shall prove that the subspace C of A2(Y ) is homeomorphic to
the sequential fan Sω. Let E be a subset of C such that E ∩Cn

is closed in Cn for each n ∈ N and K be a compact set in
A2(Y ). Since car K is bounded in Y there is m ∈ N such that
carK ⊆

⋃m
i=1 Ym. Hence K ⊆ 〈

⋃m
i=1 Ym〉, where 〈

⋃m
i=1 Ym〉 is

the subgroup of A(Y ) generated by
⋃m

i=1 Ym. It follows that
E ∩ K = (E ∩ C) ∩ (K ∩ 〈

⋃m
i=1 Ym〉) = E ∩ (

⋃m
i=1 Ci) ∩ K =

(
⋃m

i=1(E ∩ Ci)) ∩ K. Since each Ci is compact, this means that
E ∩ K is closed in K. Now, Y is locally compact separable.
Hence, by Theorem 4.1, A(Y ) is a k-space and so is the closed
subset A2(Y ) of A(Y ). Since E ∩ K is closed for each compact
set K in A2(Y ), E is closed in A2(Y ) and hence in C. This
implies that C is homeomorphic to Sω. Consequently, A2(X) is
not first countable.

In the non-abelian case, put Cn = {xm,nx−1
n : n ∈ N} ∪ {e}.

Then, applying Theorem 4.2, the above argument also implies
that F2(X) is not first countable.

Let X be a metrizable space such that the set C of all non-
isolated points of X is compact. For each k ∈ N, let Gk be the
family of all open balls of radius 1/k (with respect to certain
metric on X) centered in points of C and put Uk =

⋃
{G × G :

G ∈ Gk} ∪ ∆X, where ∆X is the diagonal of X × X. Then
{Uk : k ∈ N} is a countable base for the universal uniformity
UX of X. Hence, by Theorem 3.3, An(X) is first countable for
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each n ∈ N. As is shown below (see Proposition 4.8) the natural
mapping i2 is closed if every neighborhood of ∆X is a member
of UX , in particular if X is paracompact. Hence the Hanai-
Morita-Stone theorem implies that A2(X) is metrizable because

the natural mapping i2 from the metrizable space X
2

onto the
first countable space A2(X) is closed.

On the other hand, the mappings in, (n ≥ 3) are not closed
unless a metrizable space X is compact or discrete (see Theo-
rem 4.9). This means that we need another method to know
whether the first countable spaces An(X), n ≥ 3 are metriz-
able or not. Fortunately, Gruenhage proved the following result
which is presented here with his kind permission.

Theorem 4.4. Let X be a metrizable space such that the set C
of all non-isolated points in X is compact. Then An(X) has a
σ-disjoint base for each n ∈ N.

Proof. For each k ∈ N, let Gk be the family of all open balls
of radius 1/k (with respect to a certain metric on X) centered
in points of C and put Uk =

⋃
{G × G : G ∈ Gk} ∪ ∆X, where

∆X is the diagonal of X × X. Then, by Theorem 2.1, Vm =
{Vm(Uk) : k ∈ N} is a neighborhood base at 0 in A2m(X) for
each m ∈ N.

Fix n ∈ N. For each g ∈ An(X), put g = g
X\C

+ g
C
, where

g
X\C

∈ An(X \C) and g
C
∈ An(C). We first prove the following

claim.

Claim. Let g = g
X\C

+ g
C

∈ An(X) and xi, x
′
i ∈ C, i =

1, 2, . . . , l (l ≤ n), where g
C

=
∑l

i=1 εixi and xi, x
′
i ∈ Gi for

some Gi ∈ Gk for i = 1, 2, . . . , l. Put g′
C

=
∑l

i=1 εix
′
i and

g′ = g
X\C

+ g′
C
. Then g + Vm(Uk) ⊆ g′ + Vm+n(Uk) for each

m ∈ N.

Let v ∈ Vm(Uk). Then g + v = g
X\C

+ g
C

+ v = g
X\C

+ g′
C

+

g
C
−g′

C
+v = g′+

∑l
i=1 εi(xi−x′

i)+v. Since xi, x
′
i ∈ Gi, we have
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(xi, x
′
i) ∈ Uk and (x′

i, xi) ∈ Uk. Hence
∑l

i=1 εi(xi − x′
i) + v ∈

Vm+n(Uk). This implies that g + v ∈ g′ + Vm+n(Uk).

For every g ∈ An(X) let k(g) = min{m ∈ N : x 6∈
⋃

Gm for
each x ∈ car g

X\C
}. Let D be a countable dense subset of C.

For k,m ∈ N with k ≥ m and h ∈ An(D), let

Bk,m,h = {(g + V2n(Uk)) ∩ An(X) : g ∈ An(X),

g
C

= h and k(g) = m}.

Let g, g′ be distinct words in An(X) with g
C

= g′
C

= h and
k(g) = k(g′) = m ≤ k. Suppose that (g + V2n(Uk)) ∩ (g′ +
V2n(Uk)) 6= ∅. Then there are v, v′ ∈ V2n(Uk) such that g + v =
g′ + v′. Since g 6= g′, we have v − v′ 6= 0, that is v − v′ has
the reduced form v − v′ =

∑s
i=1(ai − bi), where ai, bi ∈

⋃
Gk.

Then g = g′ + v′ − v = g′
C

+ g′
X\C

+
∑s

i=1(ai − bi) = h + g′
X\C

+∑s
i=1(ai − bi). Since g

C
= h and

∑s
i=1(ai − bi) is the reduced

form of v−v′, the elements ai, bi belong to X \C. Furthermore,
since k(g′) = m ≤ k, that is x 6∈

⋃
Gk for each x ∈ car g

X\C
,

it is clear that g′
X\C

+
∑s

i=1(ai − bi) is the reduced form. This

contradicts the fact that k(g) = m ≤ k. Hence we conclude that
Bk,m,h is a pairwise disjoint family of subsets of An(X).

To prove that B =
⋃
{Bk,m,h : m ≤ k, h ∈ An(D)} is a base for

An(X), consider an element g ∈ An(X) and a neighborhood W
of 0 in A(X). Choose k ∈ N such that k ≥ k(g) and V3n(Uk) ⊆
W . Let g

C
=

∑l
i=1 εixi. Since D is dense in C there are di ∈

D, i = 1, 2, . . . , l such that xi, di ∈ Gi for some Gi ∈ Gk for
i = 1, 2, . . . , l. Put h =

∑l
i=1 εidi and g′ = g

X\C
+ h. Then

(g′ + V2n(Uk)) ∩ An(X) ∈ Bk,k(g),h. From the above claim and
the choice of Uk it follows that

g + Vn(Uk) ⊆ g′ + V2n(Uk) ⊆ g + V3n(Uk) ⊆ g + W.

Hence

g ∈ (g + Vn(Uk)) ∩ An(X) ⊆ (g′ + V2n(Uk)) ∩ An(X)

⊆ (g + V3n(Uk)) ∩ An(X) ⊆ (g + W ) ∩ An(X).
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Since Vn(Uk) is a neighborhood of 0 in A2n(X) and g ∈ An(X)
we have, by Lemma 3.1, that (g + Vn(Uk)) ∩ An(X) is a neigh-
borhood of g in An(X) and hence so is (g′ + V2n(Uk)) ∩ An(X).
Consequently, B is a σ-disjoint base for An(X).

It was proved by Arhangel’skĭı [2] that if a space X is a para-
compact σ-space, then so are F (X) and A(X), and hence they
are perfectly normal. In addition, it is known that every per-
fectly normal space with a σ-disjoint base is metrizable. These
facts and Theorem 4.4 imply that each An(X) is metrizable if
X is metrizable and the set of all non-isolated points of X is
compact.

Consequently, applying Proposition 4.3 and Theorem 4.4,
we obtain the following criterion of metrizability of the spaces
An(X).

Theorem 4.5. For a metrizable space X, the following are equiv-
alent:

(1) An(X) is metrizable for each n ∈ N;

(2) An(X) is first countable for each n ∈ N;

(3) A2(X) is metrizable;

(4) A2(X) is first countable;

(5) the set of all non-isolated points of X is compact.

The situation in the non-abelian case is rather different. We
first present the following fact, the proof of which is similar to
that of Proposition 4.3.

Proposition 4.6. Let X be a metrizable space. If F4(X) is first
countable, then X is compact or discrete.

Proof. Suppose that X is neither compact nor discrete. Then
X contains a closed subset T = S ⊕D, where S is a non-trivial
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convergent sequence {xn : n ∈ N} with its limit x and D = {dn :
n ∈ N} is an infinite closed discrete subset of X. Since F4(T ) is
a subspace of F4(X), it suffices to show that F4(T ) is not first
countable.

Let Ck = {dkxnx
−1d−1

k : n ∈ N} ∪ {e} for each k ∈ N.
Then each sequence {dkxnx

−1d−1
k : n ∈ N} converses to the

unit element e and Ck ∩ Ck′ = {e} if k 6= k′. Let C =
⋃∞

k=1 Ck.
Since F4(T ) is a k-space by Theorem 4.2, we can prove that C
is homeomorphic to the sequential fan Sω in a fashion similar
to that in the proof of Proposition 4.3. Therefore, F4(T ) is not
first countable.

To deduce criteria for metrizability of spaces Fn(X), we consider
first the closedness of natural mappings in raised by Tkačenko
[18]. He proved in [17] that in is closed if X2n is normal and
countably compact. The following fact gives a condition on a
space X when in (n ≥ 3) are closed.

Lemma 4.7. Let X be a space. If there are an element x ∈ X,
a subset Y = {xα : α ∈ A} of X such that x ∈ Y \Y and a closed
discrete subset {dα : α ∈ A} in X with dα 6= dα′, if α 6= α′, then
in is not closed for each n ≥ 3. In particular, if X is metrizable
and in is closed for some n ≥ 3, then X is compact or discrete.
This is true for both F (X) and A(X).

Proof. Since the proof for F (X) and for A(X) are similar, we
consider only F (X). For each α ∈ A, let xα = (xα, dα, d−1

α ).

Then E = {xα : α ∈ A} is a closed subset of X
3
. Since i3(xα) =

xα for each α ∈ A, i3(E) is not closed in F3(X). Hence i3 is not
closed. Since i3 can be regarded as a restriction of in to a closed
subset of X

n
for each n ≥ 3, we conclude that in is not closed

for each n ≥ 3.

On the other hand, the situation for n = 2 is very different.
Pestov [14] proved that i2 is quotient if and only if every neigh-
borhood of the diagonal in X2 is an element of UX . Thus, if a
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space X is paracompact, then i2 is quotient. We improve this
result as follows.

Proposition 4.8. Let X be a space. The mapping i2 is closed
if and only if every neighborhood of the diagonal in X2 is an
element of UX . In particular, if X is paracompact, then i2 is a
closed mapping. This holds for both F2(X) and A2(X).

Proof. By Pestov’s result cited above it suffices to prove the
‘if’ part of the proposition. We shall consider the mapping i2 :

X
2 → F2(X). Clearly, both F2(X) \F1(X) and F1(X) \ {e} are

open in F2(X). In addition, the restrictions

i2|i−1
2 (F2(X)\F1(X)) : i−1

2 (F2(X) \ F1(X)) → F2(X) \ F1(X)

and

i2|i−1
2 (F1(X)\{e}) : i−1

2 (F1(X) \ {e}) → F1(X) \ {e}

are homeomorphisms. (We remark that in the abelian case the
restriction

i2|i−1
2 (A2(X)\A1(X)) : i−1

2 (A2(X) \ A1(X)) → A2(X) \ A1(X)

is a 2 to 1, open and closed mapping.) Let E be a closed set

in X
2
. To show that i2(E) is closed in F2(X) take g ∈ i2(E).

Assume that g ∈ F2(X) \ F1(X). Since F2(X) \ F1(X) is open
in F2(X) choose an open set V in F2(X) such that g ∈ V ⊆
V ⊆ F2(X) \ F1(X). Then g ∈ i2(E) ∩ V ⊆ F2(X) \ F1(X).
Since i2(E) ∩ V = i2|i−1

2 (F2(X)\F1(X))(E ∩ i2|i−1
2 (F2(X)\F1(X))

−1
(V ))

we can conclude that g ∈ i2(E). With the same argument, if
g ∈ F1(X) \ {e}, then we can show that g ∈ i2(E). So, we may
assume that g = e.

Suppose that E∩D = ∅, where D = {(x, x−1) : x ∈ X}. Since
X and X−1 are homeomorphic, there is a neighborhood U of the

diagonal in X
2

such that U ⊆ X2 ∪ (X−1)2 ∪ {(e, e)}, U = U−1
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and {(x, y−1) ∈ X
2

: (x, y) ∈ U} ∩ E = ∅. From our hypothesis
it follows that U ∈ UX , and hence W1(U) is a neighborhood of e
in F2(X) by Theorem 2.3. Let h ∈ W1(U), then by the definition
of W1(U) either h = e or h has the reduced form h = xy such
that x, y ∈ X and (x, y−1) ∈ U . Since E∩D = ∅, e 6∈ i2(E). On
the other hand, the definition of U implies that (x, y) 6∈ E, and
hence h = i2((x, y)) 6∈ i2(E) because h ∈ F2(X) \ F1(X) and
i2|i−1

2 (F2(X)\F1(X)) is 1 – 1. (In the abelian case, since U = U−1 it

can be also seen that h 6∈ i2(E).) It follows that W1(X)∩i2(E) =
∅, which contradicts our assumption g = e ∈ (i2(E)).

Hence we have E∩D 6= ∅. Let x ∈ X be such that (x, x−1) ∈
E. Then g = e = i2((x, x−1)) ∈ i2(E). That is, i2(E) is closed
in F2(X). Consequently i2 is a closed mapping.

From the above results we obtain the following characterization
of metrizable spaces X such that each Fn(X) is metrizable.

Theorem 4.9. Let X be a metrizable space. Then the following
are equivalent:

(1) Fn(X) is metrizable for each n ∈ N;

(2) Fn(X) is first countable for each n ∈ N;

(3) in is a closed mapping for each n ∈ N;

(4) F4(X) is metrizable;

(5) F4(X) is first countable;

(6) i4 is a closed mapping;

(7) X is compact or discrete.

Proof. Proposition 4.6 shows that (5) ⇒ (7) and Lemma 4.7
yields (6) ⇒ (7). Other implications are clear.
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Finally we discuss the metrizability of F3(X) and F2(X). Let
X be a metrizable space such that the set of all non-isolated
points of X is compact. Since there is a countable base for
the universal uniformity UX , Remark 3.5 yields that F2(X) is
first countable. Furthermore, since the mapping i2 is closed by
Proposition 4.8, F2(X) becomes to be metrizable. Note that
Proposition 4.3 holds for F2(X). Then, from these facts, we
obtain the following:

For a metrizable space X the following are equivalent:

(1) F2(X) is metrizable;

(2) F2(X) is first countable;

(3) the set of all non-isolated points of X is compact.

We shall show that metrizability and first countability of the
space F3(X) are equivalent to the above statements.

Let us recall some properties of the family Wn in §2. By
Theorem 2.3 and Corollary 2.10, we have:

W2 = {W2(U) : U ∈ UX} is a family of neighborhoods of e
in F4(X), and

W1 = {W1(U) : U ∈ UX} is a neighborhood base at e in
F2(X).

Applying these facts we obtain the following.

Proposition 4.10. Let X be a metrizable space such that the
set C of all non-isolated points of X is compact. Then every
point of X ∪ X−1 has a countable neighborhood base in F3(X).

Proof. Let {Gn : n ∈ N} be the same sequence in the proof of
Theorem 4.4. For every n ∈ N, let

Un = (
⋃

{G × G : G ∈ Gn} ∪ ∆X)

∪ (
⋃

{G−1 × G−1 : G ∈ Gn} ∪ ∆X−1) ∪ {(e, e)}.
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Then {Un : n ∈ N} is a base for the universal uniformity UX on
X. Fix a point x ∈ X ∪ X−1 and put

Bx = {xW2(Un) ∩ F3(X) : n ∈ N}.

Then Lemma 3.1 with n = 1 and m = 3 shows that Bx is a
countable family of neighborhoods of x in F3(X). To prove this
Bx is as required, let V1 be an arbitrary neighborhood of e in
F (X). Since F (X) is a topological group there is a neighborhood
V2 of e in F (X) such that (x−1V2 x · V2) ∪ (V2 · V2) ⊆ V1. Since
W1 is a neighborhood base of e in F2(X), there is n ∈ N such
that W1(Un) ⊆ V2. Then we have

(x−1W1(Un)x ·W1(Un)) ∪ (W1(Un) · W1(Un)) ⊆ V1. (1)

Let g ∈ xW2(Un) ∩ F3(X). Then there is h ∈ W2(Un) such that
g = xh. Of course we may assume that h 6= e. By the definition
of W2(Un), the length of h is 2 or 4. If the length of h = 2, then
h ∈ W1(Un). Hence g = xh ∈ xW1(Un) ⊆ xV1 ∩ F3(X). So we
assume that the length of h is equal to 4. Since g = xh ∈ F3(X),
h must have the reduced form h = x−1x1x2x3, where x1, x2, x3 ∈
X. Since h ∈ W2(Un) there are the following two cases.

Case 1. (x−1, x−1
1 ) ∈ Un and (x2, x

−1
3 ) ∈ Un.

In this case, x−1x1 ∈ W1(Un) and x2x3 ∈ W1(Un). Thus, by
the property (1), h = x−1x1x2x3 ∈ W1(Un) · W1(Un) ∈ V1. This
implies that g = xh ∈ xV1 ∩ F3(X).

Case 2. (x−1, x−1
3 ) ∈ Un and (x1, x

−1
2 ) ∈ Un.

It follows that x−1x3 ∈ W1(Un) and x1x2 ∈ W1(Un). Since h
can be represented as h = x−1x1x2x3 = x−1x1x2xx−1x3, by the
property (1), h ∈ x−1W1(Un)x · W1(Un) ⊆ V1. Hence g = xh ∈
xV1 ∩ F3(X).

Thus, xW2(U2) ∩ F3(X) ⊆ xV1 ∩ F3(X), and hence Bx is a
neighborhood base at x in F3(X).

The following facts about F3(X) are well known ([1] and [11]):
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Fact. Let X be a space. Then:

1. F3(X) = [(F3(X) \ F2(X)) ∪ (F1(X) \ {e})] ⊕ [(F2(X) \
F1(X)) ∪ {e}].

2. F3(X) \ F2(X) is open in F3(X) and homeomorphic to a

subspace of X
3
.

3. F2(X) \ F1(X) is open in F3(X) and homeomorphic to a

subspace of X
2
.

Again, let X be a metrizable space such that the set of all non-
isolated points of X is compact. By Proposition 4.10, each point
of X ∪X−1 has a countable base in F3(X). From the above Fact
it follows that every point of (F3(X)\F2(X))∪ (F2(X)\F1(X))
also has a countable neighborhood base in F3(X). Further-
more, since the universal uniformity UX has a countable base U ,
Corollary 2.10 implies that e has a countable neighborhood base
B = {W1(U) : U ∈ U} in F2(X). It is clear that every element
W1(U) of B is contained in the subset (F2(X) \ F1(X)) ∪ {e} of
F2(X). Then, by item 1 of the above Fact, B is a neighborhood
base at e in F3(X). Consequently, F3(X) is first countable. We
will improve this result in Theorem 4.12 by showing that F3(X)
is metrizable.

For a space X and a continuous pseudometric (or metric) d
on X, The notation Bd(x, ε) means the open ball with center at
x ∈ X and radius ε > 0 with respect to d.

Theorem 4.11. Let X be a metrizable space, and suppose that
the set C of all non-isolated points of X is compact. Then F3(X)
is metrizable.

Proof. Fix a compatible metric d on X and extend d to a con-
tinuous invariant metric d̂ on F (X) (see Theorem 1 of [7]). The
metric d̂ is called the Graev’s metric on F (X). Then we shall
show that d̂|F3(X) is a metric on F3(X) that induces the original
topology of F3(X).
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It is well known that Fn+1(X) \Fn(X) is homeomorphic to a

subspace of X
n+1

for each n ∈ N (see [1] and [11]). To show the
fact, Joiner [11] proved the following:

Let X be a space. Given n ∈ N, g = x1 · · · xn+1 ∈ Fn+1(X) \
Fn(X) and a neighborhood Ug of g in Fn+1(X) \ Fn(X), let ρ
be a continuous pseudometric on X such that in+1(Bρ(x1, δ) ×
· · · ×Bρ(xn+1, δ)) ⊆ Ug for some δ > 0. Then there exists ε > 0
such that Bρ̂(g, ε)∩ (Fn+1(X) \Fn(X)) ⊆ in+1(Bρ(x1, δ)× · · · ×
Bρ(xn+1, δ)).

Since both F3(X)\F2(X) and F2(X)\F1(X) are open subsets
of F3(X), the above fact implies that for every g ∈ (F3(X) \
F2(X))∪(F2(X)\F1(X)), {Bd̂(g, 1/n)∩(F3(X)\F2(X)) : n ∈ N}
and {Bd̂(g, 1/n) ∩ (F2(X) \ F1(X)) : n ∈ N} are neighborhood
base at g in F3(X), respectively. In addition, since F2(X) is open
in F3(X), Corollary 2.10 implies that W1 is a neighborhood base
at e in F3(X). If we apply the proof of Theorem 2.3, then it is
easy to see that {Bd̂(e, 1/n)∩F3(X) : n ∈ N} is a neighborhood
base at e in F3(X).

Thus, we need to show that for every x ∈ X ∪ X−1

{Bd̂(x, 1/n) ∩ F3(X) : n ∈ N} is a neighborhood base at x in
F3(X). For each m ∈ N, let

Um =
⋃

{Bd(x, 1/m) × Bd(x, 1/m) : x ∈ C ∪ C−1}
∪ ∆X ∪ ∆X−1 ∪ {(e, e)}.

Then {Um : m ∈ N} is a base for UX. The argument of the proof
of Theorem 2.3 implies that for every m,n ∈ N,

Bd̂(e, 1/m) ∩ F2n(X) ⊆ Wn(Um). (∗)

Let x ∈ X ∪ X−1 and Ux be a neighborhood of x in F3(X).
Since we have already proved that {xW2(Um)∩F3(X) : m ∈ N}
is a neighborhood base at x in F3(X) in the proof of Proposition
4.10, we can choose m ∈ N such that xW2(Um) ∩ F3(X) ⊆ Ux.
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Take g ∈ F3(X) with d̂(x, g) < 1/m. Since d̂(x, g) = d̂(e, x−1g),
we have x−1g ∈ Bd̂(e, 1/m) ∩ F4(X). Apply (∗) with n = 2, to
conclude that x−1g ∈ W2(Um). It follows that g ∈ xW2(Um) ∩
F3(X) ⊆ Ux. Therefore, we conclude that d̂|F3(X) induces the
original topology of F3(X), and hence F3(X) is metrizable.

Using Theorem 4.12 we will now deduce a criterion for F3(X)
and F2(X) to be metrizable.

Theorem 4.12. For a metrizable space X, the following are
equivalent:

(1) F3(X) is metrizable;

(2) F3(X) is first countable;

(3) F2(X) is metrizable;

(4) F2(X) is first countable;

(5) the set of all non-isolated points of X is compact.

It is well known that every first countable topological group
is metrizable. Though Fn(X) and An(X) are not topological
groups, we obtain from Theorems 4.5, 4.9 and 4.13 the following
result.

Corollary 4.13. Let X be a metrizable space and n ≥ 2.

(1) If An(X) is first countable, then it is metrizable, and

(2) if Fn(X) is first countable, then it is metrizable.

Finally, we answer the question stated in Introduction as follows.

Corollary 4.14. Let R be the real line, Q be the space of ra-
tional numbers and J(κ) be the hedgehog space of spine κ such
that each spine is a sequence which converges to the center point.
Then neither Fn(R), An(R), Fn(Q), An(Q), Fn(R\Q) nor An(R\
Q) are first countable for each n ≥ 2, and if n ≥ 4 and κ ≥
ω, then Fn(J(κ)) is not first countable. On the other hand,
F3(J(κ)), F2(J(κ)) and An(J(κ)) (n ∈ N) are metrizable.
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We conclude this paper with a problem.

The family Wn = {Wn(U) : U ∈ UX} of neighborhood of
e in F2n(X) constructed in §2 is not a neighborhood base at
e in Fn(X) in general. For example, let X be a non-compact
and non-discrete metrizable space such that the set of all non-
isolated points is compact. Then UX has a countable base B. Let
WB = {W2(B) : B ∈ B}. Then WB is a countable subfamily of
W2 such that every element of W2 includes some element of WB.
On the other hand, from the proof of Proposition 4.6, it follows
that e cannot have a countable neighborhood base in F4(X).
Therefore, W2 is not a neighborhood base at e in F4(X). It is
difficult to know the reduced form of each word in each element
of W|F2n(X), however W|F2n(X) is a neighborhood base of e in
F2n(X). So we raise the following problem. It is definitely a
hard problem even for F4(X). However, some steps towards its
solution (for F4(X) only) were made before (see Theorems 1.4,
1.5 and 2.1 of [19]).

Problem. Construct a neighborhood base of e in F2n(X) for
an arbitrary space X such that the reduced form of each word of
each element of the neighborhood base be represented clearly.
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