
Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT c© by Topology Proceedings. All rights reserved.



TOPOLOGY 
PROCEEDINGS 
Volume 24, Spring 1999 

ON THE PLANE FIXED POINT PROBLEM 

VLADIMIR N. AKIS 

ABSTRACT. We prove every smooth map of a planar do­
main with non-negative Jacobian and isolated singulari­
ties must have a fixed point in every invariant continuum 
that does not separate the plane. The language and 
techniques used are from basic complex analysis and dif­
ferential topology in dimension two. 

1. INTRODUCTION. 

L. E. J. Brouwer established several theorems that are cor­
nerstones in fixed point theory. The best known is the follow­
ing [Brl]. 

Theorem 1. [Brouwer Fixed Point Theorem]. Every 
continuous map of the n-dimensional cube into itself has a 
fixed point. 

A topological space S has the fixed point property if ev­
ery continuous map f : S ~ S has a fixed point. Since 
this property is invariant under homeomorphisms, every topo­
logical cube has the fixed point property. It was suspected 
for some time that the intersection n]{j of a nested sequence 
(]{j+l C ]{j ) of topological cubes must also have the property. 
However, this was proved to be false for n > 2. K. Borsuk 
first provided in [Bol] a fixed point free self homeomorphism 
of the intersection of a nested sequence of topological cubes 
in }R3. Other examples followed for n == 3. Our favorite is 
R. J. Knill's fixed point free self map of the cone over the disk 
with a spiral [K], [AI]. The case for n == 2 remains a classical 
unsolved problem called the Plane Fixed Point Problem. To 
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16 VLADIMIR, N. AKIS 

our knowledge the first printed reference to the problem ap­
peared in a 1930 paper of W. L. Ayres [Ay]. It is believed 
however that the problem was known even earlier as folklore. 
More on its history can be found in [Brow], [H2], [KW], and 
[St]. 

A compact connected metric space is called a cOTLtinu'u'm. 
We note that a continuum M C IR 2 is homeomorphic to the 
intersection of a nested sequence of topological disks if and 
only if M is non-separating ( IR 2 

- M is connected). We 
should also note that such spaces may be very intricate. The 
Mandelbrot set and the components of filled Julia sets of poly­
nomial maps are examples of non-separating plane continua 
(see for example [CG] or [M]). The intricate'nature'of these 
sets has been revealed recently by a plethora of computer gen­
erated fractal images. A measure of the "intricacy" is the 
extent to which neighborhoods in M are disconnected~, and 
thus they fail to resemble the Euclidean space. In particular, 
a locally connected space (one with arbitrarily small connected 
neighborhoods at every point), is considered to be "nice". An 
important unsolved problem in complex dynamics is to de­
termine whether the Mandelbrot set is locally connected [M]. 
K. Borsuk proved that every locally connected non-separating 
plane continuum is a retract of the plane [B02]. This implies 
that such, continua must have the fixed point property. C. 
L. Hagopian improved Borsuk's result by showing that every 
arcwise connected non-separating plane continuum has the fixed 
point property [HI]. Earlier, H. Bell [B2], S. Iliadis [I], and 
K. Sieklucki [S] had proved independently, if there were a non­
separating continuum M C}R2 admitting a fixed point free 
map, then its boundary 8M would contain an indecomposable 
subcontinuum. Hagopian showed this cannot happen if Mis' 
arcwise connected. 

An indeco'mposable continuurn is one that cannot be ex­
pressed as the union of two proper subcontinua. This defi­
nition may seem innocent enough to an inexperienced reader 
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until she/he tries to construct an example. As it turns out, an 
indecomposable continuum is locally disconnected everywhere 
(it is very intricate). The simplest planar example is the so 
called Knaster V-continuum described in [HY] and [Ku]. The 
most intricate cases are given by indecomposable continua in 
which all subcontinua are indecomposable. In particular, the 
pseudoarc is an indecomposable continuum that is homeomor­
phic to each of its subcontinua. However, the pseudoarc has 
a nice property that implies the fixed point property; it is a 
chainable continuum. By that we mean a continuum home­
omorphic to the inverse limit space· lim{fj, I} where each fj 

f-

is a self map of the llnit interval I == {t : 0 ~ t ~ I}. Ev­
ery chainable continuum is homeomorphic to a non-separating 
plane continuum. O. H. Hamilton [Ha] proved that all chain­
able continua have the fixed point property. More recent work 
of P. Minc [Mil] generalized both Hamilton's and Hagopian's 
results mentioned above. 

In view of Hamilton's result, it was natural to ask whether 
all tree-like continua must also have the fixed point property. 
Such continua are homeomorphic to an inverse limit space of 
trees Tj (acyclic graphs): 

l~{Ii,Tj} = {(Xl,X2,"'): Xj = Ii (Xj+l)} C lITj. 

Every tree-like continuum is homeomorphic to the intersection 
of a nested sequence of topological cubes in lR.3. David Bel­
lamy [Be] was first to construct a tree-like contirluum with a 
fixed point free self map. More recent work has produced 
several variations of Bellamy's construction (see for example 
[Mi2], [OR]). 

Another branch in the history of the planar problem involves 
non-separating plane continua invariant by homeomorphisms 
of the plane. The Cartwright-Littlewood theorem states that 
an orientation preserving homeomorphism of the plane that 
maps a non-separating continuum onto itself has a fixed point 
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in the continuum [CL]. A one page proof of this fact was pro­
vided later by M. Brown in [Bro], using the following theorem 
also attributed to Brouwer: 

Theorem 2. [Brouwer [Br2]]. If h is an orientation 
preserving homeomorphism of the plane that keeps invariant 
a (non-empty) bounded set, then h must have a fixed point 
(possibly not in the set). 

H. Bell showed in [B3] that the Cartwright-Littlewood The­
orem is also true for orientation reversing homeomorphi~ms of 
the plane. The question about homeomorphisms of M that 
do not extend to th(j plane has not been resolved. Recently we 
[A2] proved an analytic map of a planar region that keeps in­
variant a non-separating plane continuum has a fixeq point in 
the continuum. This is related to the Cartwright-Littlewood 
theorem in the sense that an analytic map is locally an orienta­
tion preserving homeomorphism at all regular points. In this 
paper we generalize the result in [A2] by solving the problem 
for maps f : M ---+ M that can be extended to a planar domain 
U whose restriction to U - M is smooth with non-negative 
Jacobian and isolated critical points. 

2. THE COVARIANT INDEX. 

The index of a vector field on a simple closed curve is a useful 
tool for proving fixed point theorems. Let D denote the open 
unit disk consisting of all complex numbers with modulus less 
than one. Its boundary is the unit circle 51 . Reca.ll that the 
degree of a continuous map f : 51 ---+ 51, denoted by deg f, is 
the order of the homotopy class of f in 11'"1 (31 

). The integer 
deg f represents the number of times the image of f is wrapped 
around 3 1 

. Given a simple closed curve C in the complex 
plane C, parametrized by a continuous map a : 3 1 ---+ C, and 
given a continuous vector field X that does not vanish on C, 
the index of X on C is defined by 

. X(a)
z(X, C) = deg IX(a)I' 
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It represents the number of revolutions made by X (z) as z 
traverses C in the counter-clockwise direction. Suppose that 
C is continuously deformed into another simple closed curve 
C' by a homotopy at and X (z) =I a for every z in the image 

of at. Then deg ,i~::~, is a continuous function of an interval 
into the integers. Thus it must be constant. Therefore, 
i(X, 0) == i(X, 0'). Hence, if 0 can be continuously deformed 
into another simple closed curve C', and if i(X, 0) =I i(X, 0'), 
then X vanishes somewhere in the image of the homotopy from 
C to C'. 

Proof of Theorem 1 for n == 2. Let f : IIJ) ---+ IIJ) be 
continuous. If f has a fixed point on 51, then there is nothing 
to prove. Otherwise, the vector field X f == f - id does not 
vanish on 51 and i( X f' 51) == 1. The maps at (e i8

) 

tei8 deform 51 to the constant curve O. But i(XJ,O) 
degli{~~1 = O. Therefore, Xf(z) = 0 for some Z E D.D 

Let a: 1 ---+ C denote a parametrization of a C 1 curve 
C == a (1) such that a' does not vanish. The unit tangent 

vector T (z) = I::m" together with the unit normal vector 
N (z) == -iT (z), form an orthonormal basis {N (z), T (z)} for 
the tangent space TzC at each point z == a (t). The pair of 
vector fields {N, T} is called the Frenet frame field, in contrast 
to the Euclidean frame field, defined by E 1 (z) == (1, O)z ,E2 == 
(O,I)z· 

Definition. Let X be a 0 1 non-zero vector field on a 0 1 

closed curve C. The covariant index of X on C, also called 
the variation of X on C, is defined to be 

v(X, C) == i(X', C), 

the index of the vector field X' == Xl + iX2, where Xl, X2 are 
functions on 0 satisfying X == Xl N + X2T. 

The covariant index represents the number of revolutions 
made by X (z) as z traverses C from the point of view of 
an observer riding on the Frenet frame field. 
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The numerical relationship between the covariant index and 
the usual index is easily obtained by considering the functions 
0:', (3, cP of C into [0, 27r), where 0:' is the angle from E1 to X, 
(3 is the angle from N to X, and cP is the angle from E 1 to 
N (See Figure 2.1). 

Figure 2.1 

We have 

1 
i(X, C) == -2 j da, v(X, C) = J.-j d(3, and 

1r c - 21r c 

deg G = i (N, C) = 2- [ d<jJ,
27r lc 

, 
where G d~notes the Gauss map of C. And 0:' == (3 + cP 
implies 

Therefore, 

i(X, C) == v(X, C) + deg G. 
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If C is a simple closed curve, then Ie dcP == 21r, and we have 
that 

(2.1 ) i(X, C) == v(X, C) + 1. 

We have seen that the index of a vector field is invariant among 
simple closed curves homotopic on a region where the vector 
field has no zeros. It also follows directly from the definitions 
that homotopic non-zero vector fields on a simple closed curve 
have the same index. Therefore, we extend the definition of 
the covariant index to a continuous non-zero vector field X 
on a simple closed curve C, by defining it to be v( Y, G'), the 
covariant index of a G1 vector field Y homotopic to X on a 
C 1 simple closed curve C' homotopic to C. Thus, the above 
equations hold for every continuous vector field X and every 
simple closed curve C. 

Corollary 1. Let D denote the bounded complementary do­
main of positively oriented simpl~ closed curve C. If a contin­
uous map f : D -+ C is fixed pointfreeJ then v (X j , C) == -1) 
where X j == f - id . 

3. LOCAL VARIATION AND ORIENTATION. 

Under certain constraints imposed on a function j~ : D -+ <C, 
the covariant index of X j == f - id on C can be decomposed 
into a sum of local variations Var(f, A), where A denotes an 
arc in C. We proceed to define Var(f, A). 

We adopt the following terminology: A closed arc A == ab c 
C with initial point a and final point b is the homeomorphic 
image of the closed interval from °to 1, where a, b denote the 
images of 0,1 respectively. An open arc is a closed arc minus 
its initial and final points, or a simple closed curve minus one 
of its points. When it is clear from the context, we will often 
refer to an open or closed arc, or to a point a == b, as the arc 
A == abo A ray R c <C is the homeomorphic image of the half 
open interval [0,1). 
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Definition. Let an open arc ab == A c C, and a continuous 
function f : A ~ C be given such that f(A) n A == 0. A 
ray R c C is admissible for (f, A) if the initial point of 
R is the only point in A n R, its final point is at infinity, and 
neither f(a) nor f(b) are in R. The union of f(A) with 
a curve from f( b) to f( a) that is contained in C - A U R 
defines a closed curve whose winding number around A does 
not depend on the particular choice of the arc from f (b) to 
f(a). We denote this number by VR(f, A) and we call it the 
variation of (f, A) with respect to R. 

Suppose the interior of R is contained in the unbounded 
complementary domain of a simple closed curve C containing 
A. We define an extension 7: C ~ C - A of f by mapping 
C - A injectively onto a closed arc from f(b) to f(a) that 
is contained in C - A U R. Then 

where f * denotes the induced homomorphism on the group 
of integers. 

If R1 , R2 are disjoint admissible rays for (f,A), and f(a), 
f(b) are in the same complementary connected domain of R 1 U 
A U R2 , then 

for every admissible ray R whose interior is a subset of the com­
plementary connected domain of R1 U A U R2 not containing 
f(a) and f(b). 

Suppose that C'1 is a positively oriented continuous simple 
closed curve in C, and D is the bounded complementary 
dornain of C. Let f be a map of D == CUD into C, 
where fie is fixed point free. Let h be a homeomorphism 
of the closed unit disk D == {z : Izi ~ I} into the extended 
complex plane it satisfying h(O) = 00 and h(Sl) = C. The 
Riemann Mapping Theorem implies that h can be chosen to 
be conformal in D. For each s == h( eiB ) E C , the external 
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ray R s is defined by 

Rs=={h(teiB 
) :O<t~1}. 

Definition. Let L denote the collection of all open arcs 
A == ab c C such that, f(a), f(b) E D and A n f(A) == 0. 
We observe that if A E L, then Rs is admissible for (fIA' A) 
for each sEA. Hence VRs(fI A , A) is constant for all sEA. 
We denote this number by Var(f, A) and call it the variation 
of f at A. 

Lemma 1. [Bell's Equation [B1]]. Suppose fie is fixed 
point free and that C can be partitioned into finitely many 
subarcs L'i E L. Then 

i(Xj , C) = L VarU, Li ) + 1. 

Proof: If Li c D then Var(f, Li ) == o. Suppose 
Var(f, L'i) =I o. Let a' be the last point in L i and let b' be 
the first point in Li , with the property that aa' U bb' C Li 

and f (aa') U f(bb') C D. We define a fixed point free contin­
uous function 9 on C. For every Li not contained in D, 
9 maps a'b' homeomorphically onto the unique subarc of C 
that is disjoint from L i , with initial point f( a') == g( a') and 
final point f(b') == g(b'). Elsewhere 9 agrees with f. Hence, 
g( C) c D. Therefore, i(g - id, C) == 1. On the other hand, 
i(Xj , C) == i(g - id, C) +L:i Var(f, Li ). 0 

Nate that if f satisfies the hypotheses of Lemma 1, then 
(2.1) implies that the covariant index of X f on C can be 
expressed as the sum 

(3.1 ) 

Also note that the integer L:i Var(f, Li) does not depend on 
the particular parametrization h. Furthermore, the condition 
L i E L holds if the diameter of L i is strictly less than 
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inj{lj(z) - zl : z E C} and if the images of the erldpoints of 
Li under j are in D. 

Suppose j is a complex valued function defined on a do­
main U (open, connected) of the complex plane that has no 
fixed points in the invariant non-separating continuum M c U. 
The following lemma will be used to construct simple closed 
curves C with bounded complementary domain D satisfying 
the hypotheses of Lemma 1. Its proof can be found in [Bo]. 

Lemma 2. [Borsuk Lemma]. Let M be a non-separating 
plane continuum. For every E > 0 there exists a piecewise lin­
ear simple closed curve C with bounded complementary domain 
D satisfying the following three conditions: 

(i)	 M c D. 
(ii)	 If x E D then dist(x, M) ::; E. 

(iii) C	 is the union of a finite number of arcs L1 , L 2 , .•. , L n 

with ends belonging to M, with interiors lying in C - M, 
and with diameters less than E. 

Lemma 3. Suppose j : U ---t C has no fixed points in 
an invariant continuum M C U. There exists EO > 0 such 
that if - EO > E > 0 and C, Dare as'in Lemma 2, then 
{L 1 ,L2 , .•. ,Ln } C [, and v(Xj,C) == 2:i Var(j,L i ) == -1. 

Proof: By choosing a smaller domain U, we may assume 
U is a topological disk and I has no fixed points in an open 
set containing U. Therefore, inj{lj(z) - zl : z E U} > O. 
Note that II V is uniformly continuous. Therefore for all 'TJ > 
o there exists 8(77) such that II(Zl) - I(Z2)1 < 77 when­
ever IZI - z21 < 8 and Zl,Z2 E fJ. Let C,D be as in 
Lemma 2 with E < Eo == min (8(77), inj {If(z) - zl : z E U}) 
where 'TJ == !diam M. Suppose there exists z E L'l such that 
I(z) E Li n I(L i ). Then we obtain 

11(z) - zl < di,amL i < ~in1{11(z) - zl : z E U}, 

a contradiction. Furthermore, since f keeps M invariant 
it follows that the endpoints of L i are mapped by I into 
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M CD. Therefore, L'i E L. The rest follows from Corollary 
1 and (3.1). 0 

So far in this section we have confined our discussion to 
continuous maps. Next we will introduce smoothness to the 
objects in the definition of variation to obtain a method for 
computing VR (!, A). This method involves the sense of the 
angle in which ! (A) crosses R at finitely many points. To be 
more precise, we must first define the concept of transversality 
as it applies to smooth planar curves. 

Definition. Suppose,: U -+ C and a: V -+ Care 
smooth parametrizations of planar curves, where U, V are 
open subsets in JR. We say , and a are transverse, if for 
every 8 E U and t E V such that ,(8) == a(t) == z, the 
vectors ,'(8), a' (t) span TzCC, the tangent space at z. Two 
piecewise smooth curves are transverse if they intersect only in 
the interiors of smooth tra.nsverse subarcs. 

For the general definition of transversality we refer the reader 
to [Hi]. 

Definition. Given two linea.rly independent vectors v, wE 
TzCC the orientation of (v, w) is 1 or -1 depending on the 
sign of the determinant of the matrix whose colull1ns are the 
vectors v, w. 

Lemma 4. Let f: A -+ C be a piece7.vise smooth function 
defined on the closure of a smooth open arc A. Suppose a 
s'mooth ray R is admissl:ble for (f, A) and R is transverse 
to j·(A). Then Rnf(A) is finite, and 

VR(J, A) = L sign djz! 
zEj-l (R) 

where sign dfz denotes the orientatio'n of ((' (t) , (j. 0 ,)' (8)) , 
where (" denote smooth parametrizations of R and A, 
respectively, and z == ,(8), f(z) == ((t). 
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Proof: That R n f (A) is finite follows from transversality. 
An appropriate diffeomorphism h of the plane maps R onto 
the non-negative imaginary axis, and A onto an interval of 
reals containing zero so that h (a) < h (b). Thus, the restric­
tions of h to R and A are maps of oriented segments into 
the reals that preserve orientation. Yet h itself may preserve 
or reverse the orientation of the plane. Let f* == h 0 f 0 h-1 

, 

then h (R) is admissible for (f*, h(A)). Let 7rl denote the 
retraction of the plane onto the lower half plane that collapses 
{(x,y):OS;y} to (x,D). Let g:h(A)~IRdenote7r1of*. 

Then 

VR(J,A) = Vh(R) (J*,h(A)) = L signg'(x) = L signdj;. 
xEg- 1 (0) f*(x)Eh(R) 

Now let I be the restriction of h-1 to the real axis, and let a­
be the restriction of h- 1 to the imaginary axis. Therefore, 
x == h (z) and y == h 0 f (z). Now, f* (x) E h(R) if and 
only if f (z) == f 0 h-1 (x) E R. Finally, note that the linear 
transformation Dh(f(z)) maps (foh-1)'(x) to Df*(x), 
and (h- 1 )' (y) to y. See also 1.8 in [BG]. D 

R 

f(a) 

a 

feb) 

Figure 3.1 
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In Figure 3.1 we represent objects found in Lemma 3.4. The 
horizontal interval between a and b represents the arc A. 
For z == ,(8) in the figure, sign djz == 1, and VR(j-,A) == 2. 

4. PROOF OF THE MAIN THEOREM. 

Theorem. Suppose f is a continuous function defined on a 
domain U in the plane and f keeps invariant a non-separating 
continuum M CU. If the restriction of f to U - M is 
smooth with non-negative Jacobian and isolated critical points" 
then M must contain a fixed point of f. 

Proof: Suppose M contains no fixed points of f. By replac­
ing U with a smaller domain if necessary, we may assurne 
that U is bounded and simply connected. Let V equal 
to U ­ M minus the all critical points of j. Let E, C and 
D be as in Lemma 3 with E so small that j(D) C U, and 

n 
C == .U L i such that each L i is smooth with interior lying in 

t=1 

V. Hence, {L 1 , L 2 , ..• ,Ln } C [, and 

L
n

Var(j, Li ) = -1. 
i=1 

We will get a contradiction by showing that 

Var(j, L i ) 2: 0, for all i == 1,2, ... ,n. 

Let R denote a smooth ray containing no critical values of 
!, with initial point in Li - M, final point at infinity, with 
interior RO contained in C - D, and such that R n U is an 
arc. By applying the Transversality Theorem, we choose R 
transverse to j (Li ). 

In Figure 4.1 the shaded area represents an open set of M. 
The horizontal line segment L i is p,art of the bold polygonal 
curve representing C. The bold vertical. line is the visible part 
of the ray R. And the thin curve labeled f (Li ) represents 
the image of L i . 



28 VLADIMIR N. AKIS 

Figure 4.1 

Note that 

flv : V C----t 

is an immersion. Therefore, f- I (RO) is a one dimensional 
submanifold of V. As the Jacobian l(f) > 0 on V, it 
follows that f- I (RO) is the union of finitely many arcs R~ 

in V c U - 1\1. The initial point of each R~ is mapped by f 
to the initial point of R, and the final point of R~ is mapped 
to au n R. Note that the final point of R~ must be a point 
of au, for it cannot be in D as f(D) C U, and it cannot be 
a critical point of f since R contains no critical values of f. 
By defining P~ == L i n R~, we create. a partition {P~} of 
fiLiI (R). By Lemma 3.4, 

Var(j, Li ) = VR(J, L i ) = L L sign dfzo 
~ zEP"" 

In the above dfz means d (fILi)z. 
Now note that f preserves the sense of the angle between 

tangent vectors to Li and R~ at each point z E P~, 

since the Jacobian l(f) > 0 on V and P~ == L i n R~ c V. 
Therefore, for smooth parametrizations "a of Li and R~ 
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respectively, 

L sign dfz = L sign dz, 
zEP"" zEP"" 

where sign dz denotes the orientation of (0-' (t) , ,'(s)), and 
sign dfz denotes the orientation of ((f 0 0-)' (t), (}' 0 ,) , (s)). 
Next we observe that L:zEP""sign dz ~ O. In fact, note that 
when R"" crosses L i at z E P"", either R"" enters D at 
z if sign dz == -1, or R"" exits D at z if sign dz == 1. 
With its final point in au, R"" must eventually stay outside 
D. It follows that there are at least as many elements z E P"" 
with sign dz == 1 as there are with sign dz == -1. See Figure 
4.2. 

Therefore, 

Var(j, L i ) = L L sign dfz 2 0.0 
""EK zEP"" 

Figure 4.2 

Corollary. Every smooth map of a planar domain 1LJith non­
negative Jacobian and isolated 8ingularities must have a fixed 
point in every invariant continuum that does not separate the 
plane. 

Corollary. Every holomorphic map of a planar domain with 
must have a fixed point in every invariant continuum that does 
not 'separate the plane. 
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In conclusion we ask the following: 

Problem 1. Let f denote a smooth complex valued function 
defined on a plane domain. Must f have a fixed point in every 
invariant non-separating continuum? 
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