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A LINEARLY FIBERED SOUSLINEAN SPACE
 
UNDER MA*
 

J. TATCH MOORE 

ABSTRACT. Under Martin's Axiom a c.c.c. nonseparable 
compact space is constructed which maps continuously 
into [0,1] with linear fibers. Such a space can not, for 
instance, map onto [0, 1]N 1 • 

1. INTRODUCTION 

In 1920, Souslin asked whether the countable chain condi­
tion is a sufficient restriction on linear compacta to imply that 
they are metrizable [6]. Although the answer was shown to 
be independent of ZFC in the 1960's, this now classic question 
has led to a prominent theme of modern set theoretic topology: 
c.c.c. versus separability. There are several results~ for exam­
ple, which state that under Martin's Axiom and the negation of 
the Continuum Hypothesis c.c.c. nonseperable compacta must 
be, in some sense, complex. However until very recently it was 
unknown whether such compacta must always map onto [0, 1]~1 

even if one makes some strong assumption such as PFA. This 
question was asked by S. Todorcevic at the North Bay Summer 
Topology Conference in August 1997. The purpose of this note 

* This paper is based on research which will form part of the author's 
University of Toronto Ph.D thesis written under the supervision of Stevo 
Todorcevic. 
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is to present a general method for constructing a c.c.c. non­
separable compactuill which does not map onto [0,1]N1 . This 
answers the question of S. Todorcevic but leaves the following 
version of the same question (also due to S. Todorcevic) open: 
Is it possible that every c.c.c. compactum without a a-linked 
base maps onto [0,1 ]N 1 ? 

The construction of this paper can be considered a general 
way of associating a compact space to a gap in quotient alge­
bras of the form P(N) II. For the all of the desired properties 
to be present in the space we need that the gap be linear, 
have both sides countably directed, and at least one side ~1 

directed. This method is a generalization of the special case 
I == fin which has been considered already in [2], the original 
version of [8], [10], and other papers. The trouble with using 
gaps in P(N) lfin is that OCA destroys all of the gaps in this 
algebra which are useful in constructing Souslinean spaces (see 
[10]). It was rather surprising when I. Farah discovered ~that 
such gaps do exist only on the basis of ZFC in the algebra 
P(N)II for some Fa P-ideal I [3]. Thus while the natural par­
tition one associates to such gaps (see [la, §8.6]) is still open 
and therefore subject to the consequences of OCA, neither of 
the two alternatives of OCA yield a contradiction. 

I would like to emphasize that while at first sight the ideals 
and the gap which will be constructed differ from those I. Farah 
originally built in [3], the basic idea behind the construction 
presented in this paper is essentially t·he same. It should also 
be pointed out that the final version of the paper [8] contains 
a construction of a C.C.c. nonseperable compact space that 
does not map onto [0,I]N1 which is different from the one in 
this paper (and does not require the use of MA). While this 
space is more optimal in that it does not require additional 
set theoretic assumptions, I feel that it is worth presenting 
an alternate construction, particularly as it fits into the more 
general framework of constructing a topological space from a 
gap. 
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The compact space of interest will be the Stone space of a 
certain Boolean algebra. Consequently the bulk of this paper 
will focus on the construction of a Boolean algebra and will 
be inherently algebraic in nature. Rather than give a technical 
outline of how to modify existing constructions, I will focus first 
on building the Boolean algebra from a gap which is given as a 
parameter. Section two will introduce a template for building 
a Boolean algebra from a gap in P(N) II. In sections three and 
four I will prove different assertions about the Boolean algebra 
and its Stone space, each at the cost of a restriction which must 
be placed on the gap I use as a parameter. Section four will 
also contain some rationalization for considering the notion of 
being linearly fibered. The final section will close the paper 
with the construction of a gap which has all the attributes 
required for the claims in the previous sections. 

It should be remarked here that, particularly in sections two 
and four, I am only modifying existing techniques. The main 
advance is in showing how to get an algebra to satisfy the 
c.c.c. in the general setting. For those readers interested in 
a broader discussioH of associating c.c.c. compact spaces with 
certain structures in P(N) II, I recommend [8]. This source 
also contains an extensive list of related references. I would like 
to thank S. Todorcevic for his thoughts and insights related to 
this ,problem and also the referee for offering some suggestions 
on how to improve this paper. 

2.	 A TEMPLATE FOR BUILDING A BOOLEAN ALGEBRA 

FROM A GAP. 

Since both gaps and ideals will be a recurring theme through­
out this paper I will first take the time to review some of the 
associated definitions. The notation A ~* B is the usual ab­
breviation for "A \ B is finite," where A and B are sets of 
integers. The set P(N) is given the standard product topology 
when viewed as the set 2N . 
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Definition 2.1. An l:deal I on N is a subset of P(N) which 
is closed under taking finite unions and subsets. In addition I 
is said to be a P-ideal if (I, ~*) is a-directed (every countable 
set has an upper bound in I). An ideal on N is dense if every 
infinite set contains an infinite subset in the ideal. 

Definition 2.2. If A and B are subsets of N and I is an ideal 
on N then A ~T B abbreviates A \ B E I and A -LT B abbrevi­
ates A n B E I. A pair (A, B) of subsets of P(N) is said to be 
orthogonal modulo an ideal I on N (or orthogonal in P(N) II) 
if A -iT B whenever A is in A and B is in B. 

Definition 2.3. A subset C of N is a said to split a set S ~ 

A x B modulo an ideal I if A ~T C and B -LT C whenever 
(A, B) is in S. If there does not exist a C which splits ~, subset 
S of Ax B and A is orthogonal to B then S is said to be a 
gap modulo I (or a gap in P(N)/I). If S = A x B then I will 
simply say (A, B) is a gap modulo I. 

It is worth noting here that this is a more general defini­
tion than the one which is frequently given to the term gap 
(usually both sides are required to be well ordered by ~*). 

The advantage of this definition is that is allows us to examine 
gaps which are definable - something which will be of use to 
us later. The typical definability restriction on ideals is that 
they are analytic, i.e. the continuous image of a Polish space. 
All of the ideals mentioned in this paper are either Fa or Fa6 
subsets of P(N). I will remark more on this in section four. 

Of course all of the above definitions make sense if N is 
replaced by some other countable set. For technical reasons 
which will become apparent in the final section it will be use­
ful to view the following objects as existing in P(R) for some 

Jinfinite symmetric subset R of N x N for which the projectioT1 
maps are finite to one. There will be a natural way to express 
R as an increasing union of finite sets Rn ~ Rn +1 ~ w. From 
this point on (A, B) will be a gap modulo an Fa P-ideal I. 
The ideal I will moreover be generated by the collection of all 
finite changes of some compact set K ~ I ~ P(R) (it is easy 
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to verify that in fact all Fer P-ideals are of this form). I will 
also assume that all finite subsets of R are in I and that K is 
closed under subsets. 

Let T == {(t, n) : t ~ Rn } and define (s, m) ~ (t, n) to be end 
extension, that is m ~ nand t n Rm == s. Also, for n E N, set 
K n == {!{ n Rn : !{ E K}. Instead of considering an arbitrary 
merrlber of Ax B, it will be necessary to restrict our attention 
to 

A®B == {(A,B) E A x B: AnB E K}. 

Note that for every A E A, B E B there is an n such that 
(A \ Rn,B \ .Rn) is in A ® B and hence A ® B is also a gap 
modulo I. 

In addition to A, B, I, and K, the parameters will also 
include a subset r of A ® B which also forms a gap modulo I. 
Additional restrictions will be placed on r in section four. If 
(A,B) E f and (t,n) E T then define 

(1)	 The type (a) generator T(A,B) == {(s, 171,) E T : ((A n Rm ) \ 

s E K m ) and (B n Rm n s E K m )}. 

(2)	 The type (b) generator T(t,n) == {( s, m) E T : (( s, m) ~ 

(t, n)) or (( t, n) ~ (s, m ))}. 

If C ~ R then let 

(3) be == {(C n Rm , m) E T : mEN}. 
From this define the Boolean algebras 

(4)	 X == (T(A,B),T(t,n): (A,B) E f,(t,n) E T)/fin. 
(5)	 Y == (T(t,n) : (t, n) E T) lfin. 

It is now useful to make some observations. First note that 
(T, ~) is a finitely branching tree. The following two facts are 
useful in dealing with elements of X. 

Fact 2.4. A is in K if and only if A n Rn is in K n fOT all n. 

Proof. This follows from the compactness of K. D 

Fact 2.5. If F is a positive element of X then there is a finite 
collection of generators 1vhose meet is positive and contain,ed 
in F. 
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Proof. Observe that if B is the complement of a generator and 
(t, n,) is in B, then 

T(t,n) ~* {(s, m) E T : (t, n) <:: (s, m)} ~ B 

(for type (a) generators this is a consequence of the previous 
fact). By considering the disjunctive normal form of F and 
applying this observation the fact follows immediately. D 

An ultrafilter v in Y records a unique subset C of R which 
splits a portion of the gap (for every n there is a unique tn ~ n 
such that T(tn,n) E v - let C == U~=l tn). If this ultrafilter is 
extended to a filter in X which contains type (a) generators, 
then the pairs (A, B) corresponding to these generators must 
be split modulo J( by the set C (note that even though J( is not 
an ideal, this notion still makes sense). The Boolean algebra 
we will be interested in is X and the map f : st(X) ---+ st(Y) 
defined by u ~ u n Y will be the map which witnesses that 
st(X) is linearly fibered. 

We are now ready to make an important observation about 
X. It is time to place our first restriction on (A,B): 

I. Both A and B are a-directed when ordered by ~*. 

This guarantees that the algebra will not be a-centered. To 
see this suppose X is the union of countably many ultrafilters 
{vn}~=l. Then it is possible to find a countable sequence Cn 
of subsets of R which correspond to the unique infinite branch 
each V n determines in (T, <::). For each n pick a pair (An' Bn) E 
A ® B which is not split by Cn modulo I (i.e. either An Cl:.r Cn 
or Bn /-r Cn). Since both sides of the gap are a-directed, find 
a pair (A, B) such that An ~* A E A and Bn ~* B E B for all 
n,. Notice that we may assume (A, B) is in A ® B. Pick a m 
such that T(A,B) is in V m . The set Cm splits (A, B) modulo J( 

and hence splits (Am, B m) modulo I, a contradiction. 
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3. How TO ENSUR,E X WILL SATISFY THE c.c.c .. 

Element of the Boolean algebra X can be thought of as a 
collection of splitters for some portion of the gap f modulo the 
compact set K. If we are given that 

II. in A, every uncountable C ~ A contains an uncountable 
Co which is ~* bounded 

then there is a standard approach to showing that X satisfies 
the c.c.c .. As we will see later, this is usually the case if MA + 
-,CH holds (see the remark on the role of Martin's Axiom in 
the next section). The general idea is as follows. If F ~ X 
is uncountable, then consider the members of A used in the 
definitions of the IIlembers of F. Using II~ refine F to an 
uncountable subfamily Fa such that there is a Co in A which 
bounds any A' such that T(A',B') is mentioned in Fa. By making 
a finite modification to Co, it is possible to produce a C ~ R 
which splits many members of Fa. 

The real trick turns out to be how to make this finite modi­
fication. Loosely speaking, we are given a collection F of finite 
pieces of the gap, where each F E F is split by some "local" 
splitter CF modulo K. We are also given some "global" splitter 
C which works for all of the pieces in F, but only modulo the 
larger object I. The goal is to repair C by altering some finite 
portion of it so that it also splits many members of F modulo 
K. 

The sufficient condition which I will use is that (A, B) is 
actually orthogonal modulo a smaller ideal .J which satisfies 
the following "exchange" property: 

III. For every J in J there are infinitely many n such that for 
every!{ E K the set (J \ Rn ) U (!{ n Rn ) is in K. 

We are now ready to prove the following claim about X as­
suming that (A,B), f, I, .J, and K satisfies conditions II and 
III. 

Claim 3.1. X is has precaliber N1 and in particular satisfies 
the C.c.c .. 
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Proof. Pick an uncountable family F of positive elements of X. 
Applying Fact 2.5 it may be assumed without loss of generality 
that the members of F are meets of finitely n1any generators. 

For each F E F pick a finite set SF ~ r and a (tF, nF) in T 
such that 

F = T(tF,nF) n n T(A,B). 

(A,B)ESF 

Applying II it is possible to find an uncountable Fa ~ F and a 
Co E A such that A ~* Co whenever A E 7r"A(SF) and F E Fa. 
If F E Fo, let 

JF = U [(A \ Co) U (B nCo)] 
(A,B)ESF 

and choose a CF such trlat bCF ~ F. 
Applying property III find a NF > nF such that (,IF\RNF)U 

(!{ n RN
F ) is in K whenever !{ is in K. Now pick an uncount­

able subset F1 of Fa such that NF = Nand CF n RN = t 
for some fixed N E Nand t ~ RN whenever F E Fl. Let 
C = (Co \ RN) U t. 

I will now show that bc ~ F for all F E Fl. Let F E F1 

and (A, B) E SF. Since F ~ T(t,N) n T(A,B) is nonempty, !{A = 
A n RN \ t and !{B = B n RN n t are both in K N ~ K. It 
follows from the choice of N that 

Thus 

A \ C ~ !{A U (JF \ RN ),
 

BnG ~!{BU(JF\RN)
 

are both in K and therefore be ~ T(A,B).	 D 

4.	 How TO ENSURE X DOES NOT CONTAIN AN 

UNCOUNTABLE INDEPENDENT FAMILY. 

I will start this section with a condition which ensures a 
compact space does not map onto [0,1 ]N1 • 
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Definition 4.1. A compact space X is said to be linearly 
fibered if there is a continuous filap f : X ---+ [0, 1] such that 
the inverse images of points are linearly orderable compacta. 

Remark. Clearl~y this property is inherited to all closed sub­
spaces. Consequently every closed subset E of a linearly fibered 
compact space X contains a linearly orderable subspace which 
is a G8 set. Since every lin.ear compactum contains a point 
of countable 7r-character, E IIlllst contain a point of countable 
7r-character and X can not map onto [0,1]N1 by a well known 
result of Shapirovskir[7]. 

A c.c.c. nonseperable linearly fibered compactum can be 
thought of as a generalization of a Souslin line (which is lin­
early fibered by the constant map) and also of the c.c.c. non­
separable metrizably fibered compactum which exists if MAN1 

fails (see [8]). The latter example shows that I am justified in 
assuming that c is greater than ~1 in this construction. 

For st(X) to be linearly fibered it is sufficient that 

IV. r is well ordered by ~* x ~*. 

To ensure that it is possible to find such a linear sequence it 
suffices (in the presence of MA) to kIIOW that both A and B 
are analytic subsets of P(R). Before doing this, however, I will 
make a few remarks concerning analytic P-ideals. 

It has recently been shown by S. Todorcevic (see [9]) that if 
A is an analytic P-ideal then (f1 ,:::;) can be mapped mono­
tonicly and cofinally into (A, ~). Here f 1 is the collection 
{x E jRN : 2:~=1 Ix(n) I < oo} of absolutely convergent series 
and the order :S is the coordinatewise order. Thus ideals which 
are associated with Lebesgue measure are the most complex, 
at least as far as analytic P-ideals go. If add*(A) and add*(f~) 

are defined to be the sizes of the smallest unbounded fami­
lies in (A, ~*) and (f1 ,:S*) respectively, then it follows that 
add*(f1 ) :S add*(A). Since it also known (see [5, 33C]) that 
Martin's Axiom implies that add*(f1 ) == c we can conclude 
that, assuming Martin's Axiom, add*(A) == c for every ana­
lytic P-ideal A. 
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Returning to our construction, if both sides of our gap are 
analytic P-ideals and Martin's Axiom holds, then there are 
cofinal ~*-increasing sequences {Ae}e<c and {Be}e<c in (A, ~*) 
and (B, ~*) respectively. Certainly if this is true then there is 
a linear subgap r ~ A @ B . Note that if c is greater than N1 

then condition II will be satisfied as well. 

Remark. The role Martin's axiom is twofold in this paper. 
First, due to the construction in [8] mentioned above, MANl 

can be assumed throughout the construction. The purpose 
of doing this is to guaranteed that condition II will be satis­
fied. This is not really a set theoretic assumption as far a con­
structing the c.c.c. nonseparable linearly fibered compactum is 
concerned. The second role of Martin's Axiom (and its use as 
quoted in the title) is to obtain a linear subgap of the definable 
gap (A, B). It is unknown whether any assumption is neces­
sary to find such a subgap - this question may be of interest 
in its own right. 

In the next section I will construct a Fa8 gap (A, B) modulo 
an Fa P-ideal I satisfying properties I-III and then apply MA 
to obtain the linear subgap r thus satisfying IV and completing 
the construction. From now on I will write r = {(Ae, Be) : 
~ < A} for some A where TJ < ~ implies that ArJ ~* Ae and 
BrJ ~* Be· To simplify the notation I will write Te instead 
of T(Ae,B ). Notice that since y. is countable, st(Y) is a 0­e
dimensional compact metric space and thus homeomorphic to 
a subspace of 2W The following theorem now finishes the proof• 

of our claims about st,{X). 

Proposition 4.2. The map f : st(X) ~ st(Y) defined by 
f (u) = u r Y has fibers which are linear compacta. 

Proof. Let v be an ultrafilter on Y and define r v to be the 
collection of all ~ < A for which {Te} U v is a filter. It now 
suffices to show that if TJ < ~ E r v then TrJ r v ~ Te r v. 

Pick a mEN such that
 

ArJ \ Rm C Ae \ Rm ,
 

BrJ \ Rm C Be \ Rm
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and let s ~ R m be the unique set such that T(s,m) E v. If 
(s,m) ~ (t,n) is in Te then 

(Aen (Rn \ Rm )) \ t E {I{ n (Rn \ Rm ) : I{ E K}, 
(Be n (Rn \ Rm )) n t E {I{ n (Rn \ Rm ) : I{ E K} .

Since 

A1} n (Rn \ Rm ) C Ae n (Rn \ Rm ), 

B1} n (Rn \ Rm ) C Be n (Rn \ Rm ), 

we also have that 

(A1J n (Rn \ Rm )) \ t E {I{ n (Rn \ Rm ) : I{ E K}, 
(B1} n (Rn \ Rm )) n t E {I{ n (Rn \ Rm ) : I{ E K}. 

Because T1} n T(s,m) =I 0, (A1J n R m ) \ t E K m . Therefore (A1J n 
Rn)\t E Kn and B1JnRn nt E Kn. Thus (t,n) E ~1 and 
T1} r v :2 Te r v. D 

5.	 How TO BUILD THE PARAMETERS WHICH SATISFY 

CONDITIONS I-IV. 

I will now construct an analytic gap with the properties spec­
ified in the previous sections. First it is necessary to make some 
preliminary definitions. For A ~ N define p(A) = L:nEA lin. 
Let an == In 2 - max{p(A) : A ~ nand p(A) < In 2}. 1 Then 
for all n it is true that 1 > an ~ an+l > o. Also it is clear that 
limn an =-'0. Define h : N ---+ N by setting h( k) to be the least 
integer n such that lin is less than ak/2k+1. Define 9 : N ---+ N 
recursively so that g( 1) == h( 1) and g(n+1) = h(g(n)). For con­
venience I will also define hk(n) = h(kn). Let E : [N]W ~ NiN 

denote the canonical bijection which identifies subsets of N 
with their increasing enumeration. It will be useful to think of 
E as being defined on the on the finite sets as well: if a set A 
has no nth element then set E(A)(n) = 00. I will use [m, n] 
denote the interval of integers between (and including) m and 
n. Define 

(6) Un = [g(n) + 1,g(n + 1)] = [g(n) + 1, h(g(n))], 

1There is nothing particularly special about In 2 - any irrational num­
ber between 0 and 1 will work equally well. 
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(7) R = U~=1 Un X Un, and 
(8) Rn = U~1 Ui X Ui· 

Note that h(n) is at least 2n and therefore 

2g(n) 1 1 

L lin ~ g(n)2g(n) = 2". 
i=g(n)+1 

Define the following: 

(9) La = {L ~ N,: J1 ({n EN: Un n L # 0}) < oo} n {L ~ ~ N : 
Vk(hk <* E(L))} 

(10) L1 = {L ~ N :1J1(L) < oo} 
(11) A = {A ~ R : 7r1(A) E La} 
(12) B = {B ~ R : 7r2(B) E La} 
(13) I = {I ~ R : 7r1(I) E L1 and 7r2(I) E L1} 
(14) J = An B = {J ~ R : 7r1(J) E La and 7r2(J) E La} 
(15) K = {!( ~ R: J1( 7r1(!{)) ~ In2 and J1(7r2(!{)) ~ In2} 

Remark. Notice that La ~ L1 since whenever 2n <* E(L) it 
always follows that J1( L) < 00. From this it is immediate that 
J ~ I. Since J = AnB, it follows automatically that A .-L J B 
and A.iz B. 

The following lemma will handle conditions I and IV. 

Lemma 5.1. All of the collections mentioned in 9-15 are dense 
analytic P-ideals and J( is compact. 

Proof. The compactness of K follows from the fact that for any 
set L ~ N, J1( L) > lIt 2 iff J1( F) > In 2 for some finite subset F 
of L. It is a routine exercise in descriptive set theory to verify 
that all the remaining objects are Fa8 . It is easily seen that 
L1 is a dense P-ideal and since 7r1, 7r2 are finite-to-one maps, it 
suffices to show that 

L = {L ~ N : Vk(hk <* E(L))} 

is a dense P-ideal. Let {Lk}~1 be a sequence of elements of 
L. For each k, pick a nk > k such that hk(k+l)(n) < E(Li)(n) 
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whenever i ~ k and n > nk. Now let 

L = U,Lk \ [l,nk)' 
k=l 

To see that L is in £, let kEN be given and q > nk and r < k. 
Notice that 

E(L)(qk + r) ~ E(L)(qk) ~ min{E(Li)(q) : 

i ~ max{j : nj ~ qk + r}}. 
Furthermore the right hand side is at least 

hk(k+l)(q) == hk(q(k + 1)) 2 hk(qk +r) 

by our choice of q (note that r < k ~ nk < q). 
The density of £ follows from the fact that for any f E NN 

and any infinite set L ~ N, there is an infinite set Lo such that 
f <* E(Lo). D 

Lemma 5.2. If J is in J, there are infinitely rnany n such 
that /1(7ri(J \ Rn)) < ag(n+l)' for i == 1,2 and hence J and JC 
satisfy condition III. 

Proof. Pick a No such that h(n) < E(7ri(J))(n) for all n > No, 
i == 1,2 and let N == maXi E(7ri(J)(No + 1)). Notice that for 
all n, i == 1, 2 

E(E- 1 (h) \ [l,g(N + l)])(n) < E(7ri(J) \ [l,g(N + l)])(n) 

Now for infinitely many n > N, Un X Un n J == 0. Thus for 
such n 

/1( 7ri(J \ Rn)) == /1( 7ri(J \ Rn+1 )) ~ L:~g(n+l) l/h(k) 
~ L:~g(n+l) ak/2k+1 

k 1:::; ag(n+l) L:~=g(n+l) 1/2 +
< ag(n+l)' 

The proceeding inequality follows from this dominance and the 
fact that the least element in 7ri(J \ Rn) is at least g(n + 2) == 
h(g(n + 1)), for i == 1,2. D 

Finally I will use a Fubini style argllment to show that (A, B) 
is indeed a gap as I have promised all along. 
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Lemma 5.3. (A, B) is a gap in P(R)/I. 

Proof. Suppose that C ~ R. If A ~ R, define 

J-l2(A) = L limn 
(n,m)EA 

and note that this is just the product measure when restricted 
to the finite rectangles Un X Un (since /1 is determined by its 
value on the singletons). Set 

Cn == /12 (Un X Un n C)/ /12( Un X Un)' 

I now will consider two overlapping cases. 
Case 1. L == {k EN: Ck 2:: 1/2} is infinite. Let L1 be an 

infinite subset of L such that /1( L1 ) is finite. Then for each k 
in L 1 , let nk be an element of Uk such that 

/1( {m : (m, nk) E C}) 2:: (1/2)/1(Uk). 

This choice is possible by Fubini's theorem. Now let 

B = C n U Uk X {nd· 
kEL1 

By choice of nk, 

J-l( 7fl(B)) ~	 L (l/2)J-l(uk) = 00. 

kEL1 

On the other hand, 1r2(B) n Uk contains at most one element 
and thus hk <* 9 :S* E( 1r2(B)) for all k. Furthermore {n EN: 
1r2(B) n Un =I 0} == L1 and therefore B E B \ I. 

Case 2. N \ L is infinite. It is now possible to apply a 
symmetric argument to find an A E A \ I such that A n C == 
0.	 0 
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