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A SUBSPACE OF THE UPPER STONE-CECH
COMPACTIFICATION

VRUNDA PRABHU

ABSTRACT. We construct a space pX which contains an
unique copy of every strict H-closed extension of e[X]
( and no others). pX is compact, homeomorphic to the
set of all open filters on X with the Alexandroff topology,
and an atomic complete upper semi-lattice.

1. BACKGROUND AND INTRODUCTION

We explain some of the terms required for this sequel in this
section. A detailed treatment can be found in [6].

A Hausdorft space X is H-closed if it is closed in every
Hausdorff space containing X as a subspace.

H(X) = {Y € E(X) : Y is H-closed} is a set of H-closed
extensions of X such that no two are equivalent and each H-
closed extension of X is equivalent to some Y € H(X).

kX = XU{U : U is a free open ultrafilter on X} and {U : U
isopen in X}U{UU{U}:U e U,U € kX \ X} is an open
base for the open sets in kX, called the Katetov extension
of X. A characterization of kX is the following:
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Theorem 1.1. Let X be Hausdorff. Then

(a) kX is an H-closed extension of X and X is open in kX

(b) If Y € H(X), there is a unique continuous function f :
kX —Y such that flx =idx, i.e., kX > Y and

(c) If ZeH(X) and Z > Y forallY € H(X), then kX =x
Z, in particular kX = VH(X).

Let Y be a Hausdorff extension of X. For U € 7(X),
oU=U{W : WerY)and WNX CU}. {oU:U€7(Y)}
is an open base for a Hausdorff topology 7# on Y that is con-
tained in the original topology of Y, called the strict exten-
sion topology on Y. The Hausdorff extension Y with the
strict extension topology 7# is denoted by Y#. The strict ex-
tension (kX)* of X is denoted as X and called the Fomin
extension of X. The Fomin extension o X of X has the strict
topology, and as a set 0 X = kX.

A Hausdorff space is minimal Hausdorffif X has no strictly
coarser Hausdorff topology.

Proposition 1.2. Let X be Hausdorff. T.F.A.E.:

(a) X is minimal Hausdorff
(b) X is semiregular and H-closed
(c) Every open filter with an unique adherent point converges.

The semiregularization kX (s) of the Katetov extension kX
is the set kX with the topology generated by {oU : U €
RO (X)} (RO (X) is the set of regular open sets of X). The
semiregular H-closed extension kX(s) of X is denoted as uX
and called the Banaschewski-Fomin-Sanin minimal Haus-
dorff extension for the semiregular Hausdorff space X.

In this article, we will work with the unit interval with a
special topology. Let It be the unit interval with (1) =
{@,17}U{[0,a) : 0 < a < 1}. The class of all Tj spaces can be
embedded in a product of copies of I*. For a T, space X, the
To compactification 87+ X of X is denoted as 4t X and called
the upper Stone-Céch compactification of X [3]. I is called
the generating space for the class of Tj spaces. Let Ct(X) =
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C(X,I*) and ]+ (x) " denote the product of C*(X) copies
of I*.

There is no T; space that works as a generating space for
the class of Hausdorff or H-closed spaces [2]. But, there are Tj
spaces, namely IT and S (S = {0,1} with 7(S) = {9, {0},S})
that are generating spaces for all H-closed spaces. The usual
embedding function embeds a Tychonoff space X in HC*(X) 1
in such a way that its closure is the Stone-Céch compactifica-
tion X of X. A natural question is whether there is a parallel
analogue of embedding a Hausdorff space X in HC+(X) I*t. In
1976, Porter [4] asked if it possible to construct in terms of
[To+x) I*, the Fomin H-closed extension ¢ X for a Hausdorff
space X or the Banaschewski-Fomin-Sanin minimal Hausdorff
extension X for a semiregular space X. In 1993, we [7] showed
that it is possible to embed 0 X in [[,4 /T in such a way that
oX C B+ X. We showed that ¢ X, uX, and in fact a very large
class of extensions of X are embedded in S+ X.

2. ptX

The results in this section are proved in [8], and are stated
here to demonstrate the need for finding the space described
in section 3.

Definition 2.1. Let X be a Hausdorff space and f € C*(X).
Fory € o X \ X (recall thaty is a free open ultrafilter on X ),
let f(y) be the unique point in I to which y converges in the
usual topology on I, and for y € X let f(y) = f(y).

Proposition 2.2. [8] Let X be a Hausdorff space and f €
CH(X). Then f € C*(cX). In particular, X is CT-embedded
inoX.

Notation 2.3. For A C X, the reverse characteristic func-
tion, x, : X — {0,1} is defined by

_J o ifzeA
Xa(z) = 1 ifz¢g A
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Theorem 2.4. [8][9] For a Hausdorff space X, the function
€:0X o [[orx) I defined by é(y)(f) = f(y) is an embed-
ding.

Corollary 2.5. [1]A Hausdorff space X is H-closed iff e[X]
is a maximal Hausdorff subspace of 4 X.

The following notation is helpful in showing that yz can be
embedded in T X when X is a Hausdorff space.

Notation 2.6. Let Y be an extension of X and f : X — It
be a function. For each 0 < r < 1, let U, = Y \ cly f[[r, 1]].
Then U, is open in Y. Define x;,:Y — I by

(y) = r ifyel,
XerWI =11 ifyeY \ U,

This is a modification of the characteristic functions of U, in
X.

Proposition 2.7. [8]LetY be an extension of X, f € C*(X),
then, f cY# o I f = NMxysr: 0 < r <1} is continuous.
(Note that in this conclusion the domain of f is changed to Y#
and is not Y.)

Theorem 2.8. [8]Let Y be a strict Ty extension of X. The

function éy : Y — HC+(X) It defined by éy(y)(f) = f(y) is
an embedding and e[X] C éy[Y] C ptX.

As a semiregular extension is a strict extension (7.1(e)(4) of
[6]), the next result is a consequence of 2.8.

Proposition 2.9. [8]Let H be an H-closed extension of X.
Then Hy is semiregular off Hy = H(s).

Theorem 2.10. [13]Every minimal Hausdorff extension of a
semiregular space can be embedded in HC+(X) I*. In particular,

pX can be embedded in [[o x) It.

Another application is that Tikoo, in 1984, extended the
definition of the Banaschewski-Fomin-Sanin minimal Hausdorff
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extension pX for semiregular Hausdorff spaces X to arbitrary
Hausdorff spaces. The extended definition of the extension pX
is a strict extension. Thus, X can be embedded in At X. This
answers a 1976 question posed by Porter [4].

Thus, 8% X contains all the strict H-closed extensions of X
and may in fact contain other non-strict H-closed extensions.
As noted in [7], many copies of the same strict H-closed exten-
sion of X are contained in At X.

In the next section we construct an extension pX of X
which contains all the strict H-closed extensions of e¢[X] (and
no others) corresponding to the open filters on X, inside of
HC+(X) I*, and in fact exactly one copy of each strict H-closed
extension. The reverse characteristic functions of open sets on
X still play an important role as the basic open sets of the new
structure pX formed inside of cle[X] can be expressed in terms
of these functions. We show that pX is homeomorphic to the
set of all open filters on X with the Alexandroff topology.

3. CONSTRUCTION OF pX

We describe here some facts that are useful for later results.

Remarks 3.1. Let X be aspace, f € C*(X) and F an open
filterbase on X.

(a) Then f(F) always converges to 1. The filterbase f(F)
may converge to other points but 1 is always in ¢(f(F))
(= set of convergent points of f(F) in IT).

(b) If f(F) converges to b € I and d is such that 6 < d <1,
then f(F) converges to d.

(c) There is some a € I, such that ¢(f(F)) = [a,1]. This
can be easily justified using the above two facts. Let
a = inf(c¢(f(F))). Then (a,1] C ¢(f(F)). It suffices to
show that f(F) converges to a. We are done if a = 1, so
assume that ¢ < 1. An open neighborhood of a is of the
form [0, b), where a < b. Let a < d < b, f(F) converges to
d, thus thereis a F' € F such that f[F] C [0,b). But, [0, b)
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is an arbitrary neighborhood of a; so, f(F) converges to
a

(d) If @ € [To+(x)IT, then cl{a} is denoted as cla. Thus,

cla = Clnc+(x){a(f)} = HC+(X)Cl{a(f)}
= Hc+(x)[0‘(f)a 1].

For a, B € Hc+(x)1+> define o < B iff o(f) < B(f) for
every f € C*(X). The binary relation < is a partial order on
[Ic+ () I* with 0 as its smallest element and 1 as its largest
element. For o, B € [+ (X) I*, it follows that oV (3 exists and
is defined by (aV B)(f) = a(f)VB(f). The product [[o4 x) 1"
with this partial order is a complete lattice. Note that o < 3
iff 8 € cla. This is a partial order which can be defined on a
To space but which becomes trivial for 7} spaces.

Let X be a T, space and e be the map that embeds X in
[Ic+ ) It. It follows that the partially ordered set (47X, <)
is a complete upper semilattice. The maximum element of
B+ X is denoted as 1, i.e., 1(f) = 1 for all f € C*(X). For
a € HC+(X) I*, define

G(e) = {77 [[0,a(f) + 1/n)] Ne[X]: f € C*(X),n € N}.

Proposition 3.2. Let a € [[o4(x) ™. Then o € B*X iff
G(a) is an open filter subbase on e[ X].

Proof: Let F be a finite subset of C*(X), {n;: f € F} C N,
and T = ({r7[[0,a(f) + 1/ny)] : f € F}. Now, T' is a basic
open set of a € HC+(X) I*. Thus, a € Bt X iff for each T,
T Ne[X] # @. This shows that @ € ST X iff G(«) is an open
filter subbase on e[ X]. O

For a € f*X, G(a) need not be a base as is shown in the
following example.

Example 3.3. Let X = R and x(-12) and x(-2,;1) be the
reverse characteristic functions of the sets (—1,2) and (—2,1).
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Define o € Hc+ I+ as follows:

)= ] e X
Now, €(0) € e[R] and €(0) < a, so a € cle(0) C cle[R]. If
f = X2 (resp. X(- 21)) then W}“[[O,a(f) + 1/n)] Ne[R] =
e[(=1,2)] (resp. 7[[0,a(f) + 1/n)] N e[R] = €[(—2,1)]) for
all n € N. If f # x(<1,2) OF X(=2,1), then 7 [[0,a(f) + 1/n)] N

efR] = ¢€R] for all n € N. So, G(a) =
{e[(—1,2)],e[(—2,1)],e[R]} is an open filter subbase but is not
an open filterbase. O

Let f € C*(X), @ € B*X, and (G(a)) be the open filter
generated by G(«) on e[X]. By 3.1(a), m¢[{(G())] converges to
1. Moreover, since ;[e[X] N 77 [[0,a(f) + 1/n)]] C [0, a(f) +
1/n) for alln € N and e[X]N7 ([0, a(f)+1/n)] € G(a), then

7[(G(a))] converges to a(f).
We now introduce two notational definitions.

Definition 3.4. For f € C*(X)and o € f+X, let o*(f) =
inf(c(ms[(G(@))])), i.e., the infimum of the set of convergent
points of the filterbase m;[(G())] on I, and let pX = {a* :
a € X},

Proposition 3.5. Let a € 7 X. Then o* € X, o < «
and for f € CH(X), m;[(G(a))] converges to o*(f).

Proof: Let F be a finite set. Suppose o* € ({7 7[[0,5;)] :
i € F}. Then o*(f;) < b; and 7 [{0,6;)] N e[X] € (G(a)). As
{G(a)) has the finite intersection property, e[ X]N({7~{[0, b:)] :
i € F} # Q. Thus, o* € 8t X. By the note preceding Defini-
tion 3.4, for f € C*(X) and o € X, 74[(G(«x))] converges to
olf). Also, a*(£) = inf(c(r[(G(c))])). Hence, a*(f) < a()
and so, o* < a. |

The partial order on pX is the one induced by the natural
partial order on [[o4(x)/*. The maximum element Teptx

and G(1) = {e[X]} is an open filter on e[X]. Also, Wf[e[X]]
FIX] S [0,1], e(x ((G(1))) = [supflX], 1] and inf(c((G(1)))) =
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supf[X]. Thus, T*(f) = supf[X]. When f = x, (the reverse
characteristic function of X), 1*(f) = 0. This means 1* # 1
and 1 ¢ pX. By 3.1(c), 7¢[(G())] converges to a(f).

Remark 3.6. (a) First, we show that e[X] C pX, i.e., for
z € X, e(z)* = e(z). By Proposition 3.5, we have that
e(z)* < e(z). To show that e(z) < e(z)*, let f € CH(X)
and n € N, and note that each element of G(e(z)), e.g.,
7+ ([0, f(z) + 1/n)] N e[ X], always contains e(z). If g €
C*(X) and 7,[(G(e(z)))] converges to a € I, then for
e > 0, there are Uy,--- ,U, € G(e(z)) such that 7,[U; N
-NU, C[0,a+¢). As,e(z) € Uy N---NU,, my(e(z)) <
a+te,ie., e(z)(g) < ateforalle > 0. Hence, e(z)(g) < a.
Since my[(G(e(z)))] converges to e(x)*(g) by Proposition
3.5, it follows that e(z)(g) < e(z)*(g). This shows that
e(z) < e(z)*.

(b) By (a), we have that e[X] C pX C f*X and clpX =
prX.

(c) Note that the minimal element 0 in [Ic+(x)I* need not
bein clpX. To see this let U, V be nonempty disjoint open
setsin X. Then 7~ [[0,1/2)]Nx [[0,1/2)]Ne[X] = e[U]N
e[V] = e[@] = @. But, 0 € = [[0,1/2)] n 7y [[0,1/2)];
hence 0 ¢ BTX. If o € Bt X, then o* < a. We have that
o € cla* C clpX. Hence clpX = 1 X.

The next four propositions describe the structure of pX and
establish some of its properties. Earlier, when trying to embed
cX in HC+(X) It in‘order to define a function from o X —
HC+(X) I we used the fact that I with the usual topology is
Hausdorff. Here, in a Tj setting we are able to determine a
unique point in I that corresponds to an open filter on X and
so can extend functions and have a correspondence between
points of pX and the set of open filters on X.

Proposition 3.7. Let o € tX. Then G(a*) = (G()); in

particular (a*)* = a*.
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Proof: As o* < a, it follows that for all f € C*(X), and
n e N, 77([0,a(f) + 1/n)] 1 elX] € 77 ([0, alf) + 1/n)] N
e[X]. Thus, (G(a)) C (G(la*)). Also, for f € CT(X), as
7¢[(G())] converges to o*(f), for each n € N, 7 [[0, o*(f) +
1/n)] Ne[X] € (G(a)). Thus, G(e*) C (G()) and, hence,
(G(a*)) C (G(a)). So, we have established that (G(o*)) =
(G(a)). Next, we show that G(a*) = (G(*)). The first step is
to show that G(a*) is closed under finite intersections. Suppose
f, g € C*(X) and n, m € N. There is some U € 7(X) such
that e[U] = 77[[0, 0*(f) + 1/m)] A w10, a*(g) + 1/m)] A e[X].
Now, the reverse characteristic function of U, x, € C*(X). As
e[U] € (G(a)) and Ty [e[U]] = {0}, it follows that 7y [(G(a))]
converges to 0. So, a*(x,) = 0 and e[U] € G(*). The final
step in showing that G(a*) is an open filter, is to show that
if W is an open set in e[X] and W D V for some V € G(a*),
then W € G(a*). As W is open in e[X], there is an open
set R in X such that e[R] = W. As 7 [V] C my,[e[R]] C
{0}, it follows that =, .[(G(a))] converges to 0. So, a*(xr) =
0 and W = e[R] = 7 [[0,a"(xz) + 1/2)] N e[X] € G(a*).
Finally, to show that (o*)* = a*. For f € C*(X), (e*)*(f) =
nf(e(r,(G()) = nfle(rs((G(e))) = (1) So, ()" =
a*

The next result is a corollary to the proof of Proposition
3.7 but is stated separately as it is used frequently in the se-
quel. This result characterizes those open filters on e[ X] that
converge to points in pX.

Corollary 3.8. For an open set U in X and o € pB*X,
elU] € G(a*) iff my () =0, i.e., G(a*) = {e[U] : U € 7(X),
a*(xy) = 0}.

Proposition 3.9. Let a,y € Bt X. Then (G(v)) = (G(«))
ff o =4* <.

Proof: Suppose a* = 4*. Then by Proposition 3.7, (G(v)) =
G(v*) = G(a*) = (G(a)). Conversely, suppose a,v € f+X and
(G(7)) = (G(a)). For f € CF(X), y*(f) = inf(c(r;({G(7))))) =
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inf(c(r;((G(@))))) = o*(f). So, a* = 7~ As, v < 7 by

Proposition 3.5, the conclusion follows. O

Proposition 3.10. Let o € X, B € HC+(X) IT and o <
B. Then B € X, o* < f* and (G(B)) C (G(w)).

Proof: B € cl{a} C cl(Bf*X) = p+X. Next, let f € Ct(X)
and n € N. [0,a(f) + 1/n) C [0,3(f) + 1/n), therefore,
77 ([0, a(f) +1/n)] Ne[X] € 77[[0, B(f) + 1/n)] N e[X]. Thus,
w100, 8(F) + 1/m)] N e[X] € (G(a)) 1en(G(A)) C (G(a). So.
{rs({G(3))) C e(rs((G(e)))) and a*(f) = infe(ms({G(a)})) <
inte(x/((G(8)))) = (/). Hence, a* < B 5

Another way of viewing pX is that it arises from a partition
of BtX. For a € X, let P, = {y € p*X : v* = o*}. Then
{P, : a € BT X} is a partition of §*X. By Proposition 3.5,
for a € BT X, o* is the smallest element of P,. For a € 7 X,
VP, exists in B+ X since X is a complete upper semilattice.
One question is whether VP, € P,. This is answered in the
negative by the next results.

Proposition 3.11. Let a € pX and f-€ C*(X). Define
B(g) = a(g) for g # f and B(f) =1. Then o* = 3*.

Proof: Since a < B, by Proposition 3.10, 8 € X, a =
o* < B* and (G(fB)) € G(a). By Proposition 3.9, it suffices
to show that G(a) C (G(f)). A typical element of G(«) is
of the form 7;7[[0,a(g) + 1/n)] N ¢[X] where g € C*(X) and
ne N 1 £ # g, r[0,a(g) + 1/m)] N e[X] € G(3). We
need to consider the case when f = ¢g. There is an open set
U in X such that e[U] = 77[[0,a(f) + 1/n)] N e[X]. Since
e[X] = 777 [[0,8(f) + 1/m)] N e[X] for any m € N, we can
assume that U # X. If f # x,, then B(x,) = o(x,) and
e[U] = W;j[[O,ﬁ(xU) + %)] Ne[X] € G(B). So, suppose that
f = Xy Since, X\U # O, f # 3x,. But for g = 1x,,
710, 8(9) + DI N e[X] = 1[0, a(g) + 1] el X] = €[(] €
G(8). O
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Remark 3.12. By Proposition 3.11, we have that for each
a € pX, VP, = 1. This emphasizes that 8+ X is too unstruc-
tured.

Proposition 3.13. Let a, f € BTX such that (G(B)) C
(G()). Then o* < p* < .

Proof: By Proposition 3.5, f* < ; so, it suffices to prove that
a* < B*. Let f € C*(X). Then B*(f) = infe(r;((G(B)))).
By Proposition 3.5, 5*(f) € e(n;((G(3). Since (G(5))
(G()), it follows that B*(f) € c(ms((G()))). As o*(f)
infe(r1((G(e)))), o*(f) < F*(f).

Now, X =~ e[X] C pX C B*X. The extension f+X of
e[X] is closed in the compact space [q4(x) " and hence is

O N

compact. On the other hand, pX is not closed in HC+(X) It
so, it is natural to ask if pX is also compact. We answer this
in the affirmative in the next theorem.

Proposition 3.14. Let f € C*(X) and ¢ > 0. Then
[0, 1*(f) + €)] N pX = pX.

Proof: Let a € pX. Then a < 1;s0, a = o* < I* and a(f)
I*(f). Hence, a(f) € [0,1%(f) +¢). Thus, a € 7;7[[0, T*(f)
e)].

Theorem 3.15. pX s compact.

O+ IN

Proof: From the paragraph after Proposition 3.5, 1* € pX.
Let C be an open cover of pX. There is some U € C such that
1* € U. There is a finite set ' C C*(X) and € > 0 such that
1" e (¢ [[0 1*(f)+¢)]: f € F}NpX C U. By Proposition
3.14, = 7[[0, 1*(f) + €)] N pX = pX. Thus, 1* € pX C U.
Hence, pX can be covered by exactly one element. O

Remark 3.16. Actually, we show in the proof of Theorem
3.15, that if e[X] C Y C pX, then Y U {(1)"} is compact. An
improvement of Proposition 3.10 would be: for o, 8 € X,
a < g iff a* < p*. This is false. For example, let a € pX
such that a # 1. Then there is some f € C*(X) such that
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a(f) # 1(f). Define § € B*X by B(g) =
B(f) = 1. Now, o* = B* and G(a) = G(f
even though o < f.

Proposition 3.17. Leta € 37X such that (G(a)) is an open
ultrafilter on e[X]. Then o* is a minimal element of f1X.

a(g) for g # f and
). However, § £ «

Proof: Suppose (G(«)) is an open ultrafilter on e¢[X]. To show
that o* is a minimal element of 3* X, let v € T X and v < o*.
By Proposition 3.10, G(o*) = (G()) C (G(7)). As, G(o*) is
an open ultrafilter, G(o*) = (G()) = (G()). By Proposition
3.9 a* = 4* <. Thus, v = a*. O

Proposition 3.18. Let o € 7 X. Then o is a minimal el-
ement of BT X iff = o* and G(«a) is an open ultrafilter on
e[ X].

Proof: Suppose « is a minimal element of 37 X. By Propo-
sition 3.5 o* < a and o* € BT X. Hence, a = o*. Let H be

an open filter such that ® 2 G(a). Define 8 € [y (x) 1™ as
follows

_Jo iff=x,andU€eH
ﬁ(f)_{l otherwisl:e

It follows that G(8) = H. Now, c¢(7s(G(8))) 2 c(ms(G(a))).
So, B*(f) = infe(m(G(B))) < infe(mp(G(a)) = o*(f) < alf).
Hence, #* < a. As, o is a minimal element of X, o = 5* <
B. By Proposition 3.10, H = G(#) C G(«). This completes
the proof that G(a) is an open ultrafilter on e[ X].
Conversely, suppose that & = o* and G(«) is an open ul-
trafilter on e[X]. By Proposition 3.17, & = o* is a minimal

element of AT X. O

Remark 3.19. Let X denote the set of open ultrafilters on
X. If a € Bt X is a minimal element, then by Proposition 3.18,
G(«) is an open ultrafilter on e¢[X] and o = o*. In particular,
there is an open ultrafilter & on X (i.e., there is Y € 6.X) such
that efd] = {e[U] : U € U} = G(a). If, also, e[U] = G(B)
for some # € *X, then G(8*) = G(3); by Proposition 3.7,
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= B*. In particular, there is a unique element oy € pX
such that e[f] = G(ay). Thus, the set of minimal elements of
BTX ={ay:U € X}.

Proposition 3.20. %X = {[[¢+xyclou(f) : U € 0X}.
Proof: By Remark 3.1[d],
AT+ (xyclon(f) s U € 6X} = | J{elow : U € 6X} C B+X.

Conversely, let v € #+*X. The open filter (G(v)) is con-
tained in e[U] for some U € #X. By Remark 3.19, G(ay) =
eld], o = oy, and ay is a minimal element of St X. Now,
(G(7)) € G(au). By Proposition 3.13, ay < v* < 4. For
f et X), v(f) € [au(f),1] = cl{au(f)}. This implies that

v € [lo+ xyclou(f). 0
Theorem 3.21. pX is an atomic, complete upper semilat-
tice.

Proof: By Propositions 3.17 and 3.18, it is seen that the
minimal elements of pX are {ay : U € 6X}. 1* is the largest
element of pX.

To show that pX is atomic, let @ € pX. Now, G(a) is
an open filter on e[X] and there is some U € 6X such that

e[] D G(«). But, e[d] = G(ay) for some oy € pX, by Remark
3.19. Hence, g(au) ) g(a) By Proposition 3.13, ay < o*
Since, ay, @ € pX, oy = of; < o = a.

Thus it only remains to prove that pX is closed under ar-
bitrary joins. We denote by V. and V,, the joins in the spaces
Bt X and pX respectively. It follows that V,o; (Vao;)*. Let
{o; -2 € J} C pX. Then, for i € J, (Vaa;) > (Vao;)* >
af = «. Let v € pX such that v > «;, for every ¢ € J. Then
¥ 2 Vaog, so, ¥* = v > (Vaey)* and thus V,o; = (Vaa,)*.
Hence, V,a; € pX. O

Example 3.22. Let X = w with the discrete topology and
let e : w — HC+(W) It be the usual embedding function. Let
a € fw and let U be the neighborhood trace filter of a on
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w. It is easy to describe a(f) for every f € C(w) in terms of
the neighborhood trace filter #. In fact, f(U) converges to an
unique point in the usual topology in I, and that point is a( f).

Thus, {a(f)} = er(fU]) = infers (flU]) = ouu(f). Hence,
a = ay. Now oy is a minimal element in f*w by Remark

3.19. Also, as cloy = [[o+(y)lou(f), 1], BTw = U{cla : a €
pw}. O

4. EMBEDDING STRICT EXTENSIONS OF X IN pX

In this section we look at the conclusion of Theorem 2.8
with respect to the space pX. Let Y be an extension of X
and f € CH(X), f € C*(Y) be the continuous extension of
f defined in 2.7. Consider the continuous function éy : Y —
[Io+(x) " (defined in Remark 2.8) such that e[X] C éy[Y] C
BT X. In this section, we show that éy[Y] C pX. Fory € Y,
let 0v = {UNX :y e U € 7(Y)}. For V € 7(X), let
oyV={yeY:Ve0O'}

Proposition 4.1. Let Y be an extension of X. Fory € Y,
G(éy(y)) = {elU] : U € 0¥}, in particular, G(éy(y)) is an
open filter on e[ X].

Proof: Now, G(éy(y)) = {7 [[0,ér(y)(f) + 1/n)Ne[X]: f €
C*(X),n € N}. First note that for f € C*(X) and n € N,

5 [0, év (y)(f) + 1/n)] N e[X]

= 75100, f(y) + 1/n)] N e[X]
=e[{z e X : f(z) < f(y) + 1/n}]

= elf 7[00, f(y) + 1/m)].
As, /7110, f(y)+1/m)] = XOS[[0, f(y)+1/n)] € 0%, we have
shown that G(éy(y)) C {e[U]: U € O¥}. Conversely, suppose
that U € OY and let x, denote the reverse characteristic func-
tion of U in X. It is easy to verify that X, is the reverse
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characteristic function of oy U in Y. Asy € oyU, X,(y) = 0.
Also, x;7[[0,X,(2) +1/n)] = U for all z € oyU. Now,

e[U] = elx; [10, Xy (y) + 1/n)]]

= 7 [10, 6 (4)(x,) + 1/m)] N e[X].

So, e[U] € G(éy(y)). Hence, {e[U] : U € O¥} € G(éy(y)). This
completes the proof of the Proposition. O

For an extension Y of X,y € Y and f € C*(X), (év(y))*(f) =
infe(rs[(G(év(y))]) = infc(m¢[e(O¥)]) by Proposition 4.1. But
as mfoe = f, we have that (éy(y))*(f) = infc(f(OY)).

Proposition 4.2. LetY be an extension of X and f € CT(X).
Define F : Y — It by F(y) = inf(c(f(OY))) fory € Y. Then
F is continuous, F |x= f and F(y) € c(f(OY)) fory e Y.

Proof: Let z € X. Since f(O%) converges to f(z), it follows
that f(z) € ¢(f(O%)) and F(z) < f(z). Let n € N. Then
f(O%) converges to F'(z) + 1/n. There is an open set U € O®
such that f[U] C [0, F(z)+1/n). Asz € U, f(z) < F(z)+1/n.
Therefore, f(z) < F(z). By the above, f(z) = F(z). To
show that F' is continuous, let y € Y and n € N. Since
f(OY) converges to F(y) + 1/2n, there is an open set U €
OY such that f[U] C [0,F(y)+ 1/2n). Suppose U € O* for
some z € Y. As f[U] C [0, F(y) + 1/2n), f(O*) converges to
F(y) +1/2n. Hence, F(z) < F(y) 4+ 1/2n. Thus, FloyU] C
[0, F(y) + 1/2n] C [0, F(y) + 1/n). This completes the proof
that F'is continuous.

By the continuity of F', for y € Y, F/(OY) converges to F(y).
But F(O¥) = f(OY). This shows that F(y) € ¢(f(OY)). O

Theorem 4.3. Let Y be an extension of X. Consider the
continuous function éy such that e[X] C éy[Y] C ftX. Then
éY[Y] C pX.

Proof: Fory € Y and f € C*(X), we must show that

(év(¥))*(f) = (év(y)(f)) by Proposition 3.5. But éy(y)(f) =
f(y) by Theorem 2.8.
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Fix f and let F(y) = (éy(y))*(f) = infe(f(OY)) as in the
above Proposition. Since F' is continuous and F' |x= f, by
Proposition 4.2, f < F. So, f(y) < F(y). D

For an extension Y of X and z € X, since éy(z) = e(2), it
follows by the proof of the above theorem that e(z)* = e(z).
Using Theorem 4.3, we have the following improvement of The-
orem 2.8.

Theorem 4.4. LetY be an extension of X. Define éy : ' Y —

[owx)IT by év(y)(f) = f(y). If the strict extension Y# of
X is Ty, then éy @ Y# — HC+(X)I+ is an embedding and
e[X] C éy[Y#] C pX.

5. pX AND THE OPEN FILTERS ON X

In this section we establish the properties of p X further. We
show that pX is homeomorphic with the set of all open filters
on X with the Alexandroff topology.

Proposition 5.1. Let F be an open filter on e[X|, then there
is an unique element ar € pX such that G(ar) = e(F).

Proof: Let F be an open filter on X and U be open in X. For
f € Ct(X), define ar(f) = inf(c(f(F))). First we show that
ar € B X. Suppose ax € T' = ({r 7 [[0,ar(fi) +1/n:)] : 1 <
t <n}. Then, for1 <7 < n, 7y (ar) € [0,ax(fi)+1/n;). Now,
75 (ar) = ar(f;) and fi(F) converges to ax(f;) € [0, ax(fi)+
1/n;). Thus, there is a F; € F such that f;[F;] C [0, ax(fi) +
1/n;). Let F=n{F;:1<i:<n}and z € F. Then fi(z) €
[0,z (fi) + 1/n;) for every i such that 1 <7 < n. But, fi(z) =
T1.(e(z)), so, e(z) € 77 [[0, ax(fi)+1/n;)]. Thus, e(x) € T and
we have shown that ar € 7 X. Next, we prove that G(ar) =
e(F). Let U be open in X, f € C*(X) and n € N such that’
U] = 7110, a(f) + 1/m)] N e[X]. As ar(f) = imnf(c(/(F))),
there is a F' € F such that f{F] C [0,ax(f)+ 1/n). But, since
my0e = g for g € C*(X), we have that f[F] = 7f o e[F]. In
particular, m; o e[F] C [0,ax(f) + 1/n) from which it follows
that e[F] C 777[[0, ap(f) +1/n)|Ne[X] = e[U]. Then, F C U
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and U € F. This proves that G(ax) C e(F). Now to show that
e(F) C G(ar), let F € F. Since 7r;<_F[[0,1/2)] Ne[X] = e[F],
it suffices to show that m, . (ar) = 0. An open neighborhood
of 0 in It is of the form [0,a), where, 0 < a < 1. Note
that xg[F] = 0 € [0,a). Thus, xp(F) converges to 0 and
we have that inf(c(xr(F))) = 0, i.e., ax(x;) = 0. Hence,
e(F) = G(ax). Also, note that a%(f) = inf(c(m;[(G())])) =
inf(c(ms[e(F)])) = inf(c(f(F))) = ax(f) ie., ar € pX. The
uniqueness of ar is an immediate consequence of Proposition
3.9. O

Let OF(X) denote {F : F is an open filter on X}. The set
OF(X) is partially ordered by inclusion.

Theorem 5.2. ¢ : pX — OF(X) defined by ¢(a) = G()

is a reverse-order isomorphism.

Proof: First, we show that ¢ is one-one. Let o, 3 € pX. Since
o = a # f = f* by Proposition 3.9 G(a*) # G(#*). By
Proposition 5.1, ¢ is onto. Thus it only remains to show that
¢ 1s a reverse-order homomorphism. Let a, 8 € pX. Suppose,
a < 3. By Proposition 3.10, ¢(a) = G(a) 2 G(B) = ¢(B).
Conversely, suppose that ¢(3) < ¢(a). Then, G(a) D G(5).
By 3.13,a=a" <=4 ]

We now define a topology on OF(X) and show that in fact
pX and OF(X) are homeomorphic.

Definition 5.3. For U open in X let OU = {F € OF(X) :
UeF}.
Proposition 5.4. Let U, V be open in X.

(a) IfU CV, then OU C OV.

(b) OX =0OF(X) and OO = 0.

(cy OUNOV =0(UNYV).

(dy OUUOV COU UYV).

Proof:  The proof to this is similar to Proposition 7.1(c) in
[6]. O

Proposition 5.5. {OU : U open in X} forms a base for a
To topology on OF(X) .



302 VRUNDA PRABHU

Proof: By Proposition 5.4, {OU : U € 7(X)} is a base for a
topology on OF(X) . Let F and G be distinct open filters on
X. There is an open set U in X such that U € F\G (or G\ F).
Then, F € OU and G ¢ OU (or G € OU, F ¢ OU). O

Recall by Proposition 3.7 that a basic open set in pX is a set
of the form 77[[0,8)] N pX, where 0 < b < 1 and f € C*(X).
The next fact shows that we can reformulate the basic open
sets in terms of the characteristic functions of open sets in X.

Proposition 5.6. {77 [{0}]NpX : U is open in X} forms a
base for pX.

Proof:  First note that for U € r(X), = [{0}] N pX =
r;j[[O,l/Z)] N pX is open in pX. Let f € C*(X) and o €
7 [[0,8)] N pX. Then 7m¢(a) < b. Let 0 < a < 1 such that
Ti(a) < a < b Now, a € 7[[0,a)] N pX and o = o*.
Thus, there is an open set U in X such that e[U] € G(a)
and ms[e[U]] C [0,a). By Proposition 3.8, 7,, () = 0. Hence,
a € 7 [{0}] N pX. To complete the proof of this result, it
suffices to show that =~ [{0}] N pX C «7[[0,)] N pX. Let
B € n [{0}]NpX. Then m,,(B) = 0 and by Proposition 3.8,
e[U]) € G(B). But m¢[e[U]] C [0, a) implies 7¢[{G(5))] converges
to a and since, B(f) = B*(f) = infe(7m¢[(G(B))] < a < b, then
B e 7{0,6)] N pX. Thus, a € 7 [{0}] N pX C 75[[0,6)] N
pX. : O

Theorem 5.7. pX is homeomorphic to OF (X) .

Proof: Define ¢ : pX — OF(X) as in Theorem 5.2. By
Theorem 5.2, ¢ is a bijection, so all that remains to be proven is
that ¢ is continuous and open. In proving that ¢ is continuous
we show that the pre-image of basic open sets in OF(X) isin
fact basic open in pX and this fact along with Proposition 5.6
shows that ¢ is open, since ¢ is a bijection.

Let U be open in X. Then ¢~ [OU] = {ar : F € OU} =
{ar : U € F}. But, e[F] = G(ar) by Proposition 5.1, so by
Proposition 3.8, U € F iff ny, (ar) = 0. Hence, ¢~[OU] =
far : myp(az) = 0} = {a € pX : myp(a) = 0} = 72, [{0}] N
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pX, which is open in pX. Thus, we have shown ¢ to be con-
tinuous and hence, pX is homeomorphic to OF (X)) . O

6. pX AND STRICT Ty, EXTENSIONS

The Ty compactification X of e[X] has now been pruned
to pX, so that the number of extensions of e[ X] is reduced. The
construction of pX and its being homeomorphic to OF(X)
enables us to completely characterize all the extensions of e[ X]
contained in pX. pX has been formed by selecting the minimal
elements o* from ]+ (X) I* based on the open filter subbases

G(a).
Lemma 6.1. Let Y C pX be an extension of e[ X].

(a) Fora €Y, G(a) = 05.
(b) ForU € 7(X), = [{0}]ﬂY~0ye[U]

Proof: To prove (a), let U € G(«). By Proposition 3.7, there
are f € C*(X) and n € N such that U = 77[[0,(f) +
1/n)] N e[X]. Since 77[[0,a(f) + 1/n)] N'Y is an open set
containing «, we have that U € Oy. Conversely, let V € Oy.
There is an open set W in HC+(X) It such that a € W and
(WnNY)ne[X] = V. There is a finite set ' C C*(X) and
{ns: f € F}C Nsuch that a € ({7 7[[0,a(f) +1/ny)]: f €
F} CW. Let T = ({r;7[[0,a(f) + 1/ns)lNe[X] : f € F}.
ThenT CWne[X]=V. AsT € G(a), V € G(a).
To prove (b), note that

a € m” [{O}]OY iff o € Yand my () =0

iff a€Y and a(x,) =0

iff (using Proposition 3.8) a € Y and e[U] € G(a)

iff (using Proposition 6.1 (a)) « € Y and e[U] € Oy

iff o€ oye[l].
Thus, 7~ [{0}] NY = oye[U]. O

Theorem 6.2. The space pX is a strict To compactification
of e[X]. In particular, if Y C pX is an extension of e[ X], then
Y is a strict Ty extension of e[ X].
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Proof: Since HC;L(X)I*' is a Ty space, any subspace is Tp; so
pX is To. By Theorem 3.15, pX is a compactification of e[X].
By Proposition 5.6 and Proposition 6.1 (b), if ¥ C pX is an
extension of e[X], Y is a strict extension of e[X]. O

Lemma 6.3. LetY, Z C pX be extensions of e[ X]. Ifa €Y
and B € Z such that Oy = 0%, then o = f3.

Proof: If O3 = O, then G(a) = G(8) by Lemma 6.1. By
Propositions 3.7 and 3.8, a = . O

Theorem 6.4. If X is Ty, pX contains all the strict Ty ez-
tensions of X and no others. Also, pX contains only one copy
of each strict Ty extension.

Proof: By Theorem 6.2, pX only contains strict Ty extensions
of X, and by Lemma 6.3, pX contains a copy of every strict Tj
extension of X. Suppose Y and Z are extensions of e[ X}, and
YUZ CpX,and Y =.x] Z. Then there is a homeomorphism
f:Y — Z such that f(e(z)) =e(z) forallz € X. f a € Y,

then Oy = Og(a). In particular, & = f(«) by Lemma 6.3.
Hence, Y = Z as subsets of pX. So, pX contains only one
copy of each extension of e[ X]. O

One of the primary research goals of this article was to deter-
mine which H-closed extension of e[X], when X is Hausdorff,
are contained in pX. As a consequence of 6.4, we have the
next result.

Corollary 6.5. Let X be a Hausdorff space.
(a) If Y C pX is an H-closed extension of e[X], then pX

contains no other copy of Y.
(b) pX contains exactly one element from each S-equivalence
class of H-closed extensions.
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