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OF MAPPING SPACES WITH COMPACT OPEN
 

TOPOLOGY
 

NORIHITO SHIMANE AND TAKEMI MIZOKAMI 

ABSTRACT. We investigate the relation of mapping spaces 
with compact open topology and hyperspaces of compact 
subsets with finite topology. Using one of the results, we 
show the Moore spaces with a regular Go-diagonal are 
hereditary to these mapping spaces. 

1. INTRODUCTION. 

All spaces are assumed to be regular T 2. For a space X, we 
denote by r(X) the topology of X. Throughout this paper, 
letter N means the set of all positive integers. For families 
U, V of subsets of X, U < V means that for each U E U, there 
exists V E V such that U C V. Let K(X) be the set of all 
non-empty compact subsets and for the topology of K(X), we 
use here Vietoris topology, which has the base consisting of all 
subsets of the form 
(U1 ,··· ,Uk) 

= {K E K(X)IK c U{Uili = 1,'" ,k} and 

!{ n Ui -:f 0 for each i}., 

where U1 ,··· ,Uk E r(X), kEN. For brevity, we use fre­
quently the notation (U) or (Viii = 1,···, k) in place of 
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(U1 , ... ,Uk), where U == {U1 , ..• ,Uk}. As known already, if X 
is regular T 2 , then so is K(X). As for the fundamental proper­
ties of K(X), refer to [M]. For spaces X, Y, let C(~Y, Y) be the 
set of all continuous mappings of X into Y. As the topology 
of C(X, V), we accept the compact open topology, which has 
the base consisting of subsets of the form 

W(!{I'··· ,!(n; 0 1 , ... ,On) == {f E C(X, Y)lf(!{i) 
C Oi for each i}, 

where !(i E K(X) and Oi E r(Y) for each i. This space is 
written as Ck(X, V). 

In the first part, we investigate the relation between map­
ping spaces and hyperspaces. We show that for a space X, 
Ck(X, Y) is embedded into the product spaces of hyperspaces. 
This embedding is shown to have some additional properties 
for special spaces X. The main result is used in the second 
part. 

Next, we consider the classical problem on heredity of topo­
logical properties: Let P be a class of spaces and let X be a 
compact or hemicompact space. If YEP, then does Ck(X, Y) E 
P? Until now, we have some results for P of metric spaces [A], 
No-spaces [M] or paracompact N-spaces [0] etc. But we do not 
know whether Moore spaces are hereditary to Ck(X, Y) when 
X is a compact space. Here, we show that this is the case for 
Moore spaces with a regular Gs-diagonal. 

As for undefined terms such us Gs-diagonals, w~-spaces, 

etc, refer to [G]. 

2. THE EMBEDDING OF Ck(X, Y) INTO HYPER,SPACES. 

Theorem 2.1. Let K be a compact cover of a space X such 
that K(X) < K. Then for a space Y J 

Ck(X, Y) L--+ II{K(I{ X Y)IK E K}. 

Proof: As in the proof of (g) implies (a) in [MN, Theorem 
3.2], the restriction map embeds Ck(X, Y) into IT{Ck(!{, Y) II{ E 
K}. As is well known (see, for example, exercise 3.12.27(j) in 
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[E]), for compact ]< the map G taking a function in (7k (]<, Y) 
to its graph in K(I< x Y) is an embedding. Combining these 
embeddings gives the claim. 

We remark that by virtue of the above theorem, when X 
is compact, Ck(X, Y) is embedded into K(X x Y) with the 
embedding G : Ck(X, Y) ---+ K(X x Y) such that for each 
f E Ck(X, V), G(f) is the graph of f. 

A space X is called hemicompact [A] if there exists a count­
able compact cover K of X such that K(X) < K. 

Corollary 2.2. If X is a hemicompact space, then for a space 
Y Ck(X, Y) ~ IT{K(]<i x Y)li EN}, where {]<ili E N} C 
K(X). 

In the embedding theorem, we do not have any information 
on what kind of a subset of K(X x Y) <p(Ck(X, Y)) is. The 
next two theorems give it for compact spaces X. 

Theorem 2.3. If X is a compact metrizable space and Y has 
a Gs-diagonal, then Ck(X, Y) is homeomorphic to a Gs-set of 
K(X x V). 

Proof: The projection map, 7rx of X x Y onto X extends 
to a continuous map of K(X x Y) onto K(X). Since K(X) is 
metrizable, the point X in K(X) is a Gs, and so Ko = {L E 
K(X x Y)I7rx(L) = X} is a Gs in K(X x V). 

In the notation of the paragraph preceding Lemma 3.3 for 
a Gs-diagonal sequence {Unln E N} for Y, let Wn = UW[n]. 
Then Wn is an open subset of K(X x V), and it is easy to check 
that Ko n nnEN Wn = G(Ck(X, Y)). Thus G(Ck(X, Y)), a Gs 
subset of Ko which is a Gs subset of K(X X V), is also a Gs 
subset 

We state the definition of being eql1icontinuous of Ck(X, V). 
Let F C C(X, Y), where X is a space and Y is a uniform 

space with the uniformity fl = {Uala E A}. If for each a E A 
and each p EX, there exists a neighborhood N (p) of p such 
that 

f(N(p)) C S(f(p),Ua ) 
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for each f E F, then F is called equicontinuous, [N, p. 282]. 

Theorem 2.4. Let X be a compact space and Y be a uniform 
space. If C(X, Y) is equicontinuous) then G(Ck(X, Y)) is a 
closed subspace of K(X x Y)) i.e.) Ck(X, Y) is embedded 1:nto 
a closed subspace of K(X x Y). 

Proof: We show that G(Ck(X, Y)) is closed in K(X x Y). 
Take L E K(X x Y)\G(Ck(X, Y)). Suppose ILn( {x} x Y)I ~ 2 
for some x E X. Take (x, Yl), (x, Y2) E L with Yl =1= Y2. Let 
11 == {Uala E A} be the uniformity of Y compatible with Y. 
Then there exists U E f1 such that Yl ~ S(Y2' U) and let V 
be arl open cover of Y SUCft that V E f1 and V** < l.A. For 
this V, there exists an open neighborhood N( x) of x in X 
such thatf(N(x)) C S(f(x), V) for each f E C(X, Y). Take 
Vi, \12 E V such that Yl E Vi, Y2 E \12. Then it is easy to see 

6 == (N(x) x Vi, N(x) x \12, X x Y) 

is an open neighborhood of L in K(X x Y) such that 6 n 
G(Ck(X, Y)) == 0. Next, suppose IL n ({x} x Y) I ::; 1 for each 
x EX. If there exists x E X such that Ln ({x} X Y) == 0. Then 
it is easy to see that ((X\ {x }) X Y) is an open neighborhood 
of L in K(X X Y) missing G(Ck(X, V)). For the last case, 
we suppose L == {(x,b(x))lx E X}. Since L ~ G(Ck(X,Y)), 
the correspondence b is not continuous. This means that for 
some A c X there exists Y E b(A)\b(A). Let Y == b(x) with 
x E A. There exists U E f1 and an open cover V E f1 such 
that S(y,U) n b(A) == 0 and V** < U. Since Ck(X, Y) is 
equicontinuous, there exists an open neighborhood N(x) of x ) 
in X such that f(N(x)) C S(f(x), V). Take V, V' E V such 
that Y E V, b(xo) E V', where Xo E N(x)nA. Then it is easy to 
see that (N(x) x V, N(x) X V', X x Y) is an open neighborhood 
of L in K(X x Y) missing G(Ck(X, Y)). This completes the 
proof. 
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3. MAPPING SPACES AND MOORE SPACES. 

Let us recall the definition of a regular Gs-diagonal: A space 
X has a regular Gs-diagonal if the diagonal set of )( X X is 
a regular Gs-set, and equivalently, if there exists a sequence 
{U(n)ln E N} of open covers of X such that if x =I- y, x, Y E X, 
then there exists n E N and open neighborhoods (), 0' of 
x, y in X, respectively, such that S(O,U(n)) n 0' == 0, [Z, 
Theorem 1]. In this characterization, we can assumeU(n+1) < 
U(n), n E N, and this is assumed in the sequel without any 
specification. 

Theorem 3.1. If X is a compact space and Y has a regular 
Gs-diagonal (Gs-diagonal, G5-diagonal), then Ck(X, }T) has a 
regular Gs-diagonal (Gs-diagonal, as-diagonal, respectively). 

Proof: We show the case of a regular Gs-diagonal and the 
others are the same. By the characterization, there exists a 
sequence {U( n) In E N} of open covers of Y such that if y =I­
y', y, y' E Y, then there exists n E N and open neighborhoods 
0, 0' of y, y' in Y, respectively, such that S(O,U(n)) n 0' == 
0. We construct a sequence {W(n)ln E N} of open covers 
of Ck ( X, Y) by the following method (*) which is used later 
frequently: 

(*)	 Let n E Nand {8 == (K(8),U(8))18 E ~(n)} be the to­
tality of pairs of subfamilies JC(8), U(8) of K(X), U(n), 
respectively, such that JC(8) == {IiI,··· ,lit} is a finite 
cover of X and U(8) == {VI,··· , Vt}. For each 8 E ~(n), 
let 

W(8) == W(I{I,··· ,I{t;UI ,··· ,Ut) 

and	 W(n) == {W(8)18 E ~(n)}. 

Since X is compact, for each f E Ck(X, Y) and n E N, we 
can easily find <5 E ~ (n) such that fEW (8). Thus each 
W(n) is an open cover of Ck(X, V). Suppose f =I- g, ,I, 9 E 
C(X, V). Then f(xo) =I- g(xo) for some Xo. By the property of 
{U(n)}, there exists n E N and open neighborhoods 0, 0' of 
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!(xo), g(xo) in Y, respectively, such that S(O,U(n)) n 0' == 0. 
It is easy to check that 

S(W( {xo}; 0), W(n)) n W( {xo}; 0') == 0. 

Hence by the characterization, Ck(X, Y) has a regular G8­

diagonal. 

Corollary 3.2. Let X be a compact space. If {U(n)ln E N} 
is a nor~mal sequence of open covers ofY, then {W(n)ln EN}, 
defined by the same method as (*) above, is also a normal 
sequence of open covers of Ck(X, Y). 

Proof: We show W(n + 1)* < W(n) under the condition 
U(n+l)* < U(n). Suppose W(8)nUl (8') =I- 0, 8, 8' E ~(n+1), 
where · 

K(8) == {!{l,··· ,!{s}, U(8) == {Vl ,··· ,Us}, 

K(8') == {L l ,··· ,Lt }, U(8') == {VI,··· , ~}, 

U(8) UU(8') C U(n + 1). 

For each i, take UI E U(n) such that S(Ui,U(n + 1)) cUI. 
Let 8* == (K(8), {V~,··· , U~}) E ~(n). Then we can show 
W( 8') c W( 8*). Indeed, if f E W(8'), then f(L j ) C Vi for 
each j == 1,··· ,t. Since K(8') covers X, for each ]{i E K(8), 
let N(i) ==.{jILj nI{i =f. 0,j == 1,··· ,s}, which implies 

f(Kd c U{f(Lj)Jj E N(i)} c U{Vilj E N(i)} c UI. 

Therefore we have! E W(8*). Hence we haveW(n + 1)* < 
W(n). 

For each 8 == (K(8),U(8)) E ~(n), n E N, we define 

W[b] = n{(X X Y\(I<i X (Y\Ui)))IKi E K(b)}. 

Then obviously W[8] is an open subset of K(X X Y) such 
that G(W(8)) == W[8] n G(Ck(X, Y)). For each n, W[n] == 
{W[8]18 E ~(n)} is an open cover of G(Ck(X, Y)) in K(X X Y). 
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Lemma 3.3. Let X be a compact space and let Y have a reg­
ulqr Gs-diagonal. Then there exists a closed subspace !Co of 
!C(X x Y) containing G(Ck(X, V)) such that if f E C(X, Y)J 
L E Ko with L =I G(f) J then there exists n E N such that 
L ~ S(G(f), W[n])- . 

Proof: Let 

!Co == {L E !C(X x Y)I1rx(L) == X}, 

where 1rx : X X Y ~ X is the projection. As easily checked, K o 
is a closed subspace of !C(X x V). We show that Ko, {W[n]} 
have the property. Let G(f) E G(Ck(X, Y)), L E K:o with 
G(f) =I- L. Then there exists (x, y) E L\G(f). For the first 
case, suppose y ~ f(X). Using compactness of f(X) and the 
property of {U(n)}, we can take n E N and an operl neighbor­
hood 0 of y in Y such that S(f(X),U(n)) n 0 == 0. Then it is 
easy to see that (X x Y, X x 0) is an open neighborhood of L 
in K(X x Y) such that 

S(G(f), W[n]) n (X x Y, X x 0) == 0. 

For the second case, suppose y E f(X). Then y =/: f(x). 
There exists disjoint open neigllborhoods 0, 0' of f( x), y in Y, 
resrectively. We take the open neighborhood (PI X Ql, P2x Q2) 
of G(f) in K(X x Y) as follows: 

(1) 
Ql == Y\{y}, PI == f- 1(Ql) and P2 X Q2 == f- 1(O') X 0'. 

Since X is compact, there exists a closed cover {F1 , F2 } of X 
such that 0 =I- Fi C Pi for each i == 1,2. By the property of 
{U(n)}, for F1 , there exists no E N and an open neighborhood 
V(y) of y in Y such that 

(2) S(!(F1 ),U(no)) n V(y) == 0. 
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By virtue of (1) and (2), we can easily show the following: 

If G(f) E W[<5] , where <5 == (K(8),U(<5)) E L\(no), 
K(8) == {I<l,'" ,I<s},

(3) U(8) == {U1 ,'" ,Us}, then for each i == 1,'" ,S 

(f-l(O) X V(y)) n (I<i X Ui) == 0. 
From (3), it follows that (f-l (0) X V(y), X X Y) is an open 
neighborhood of L in K(X X Y) missing S(G(f), W[no]). Hence 
we have L ~ S(G(f), W[no])-. 

Lemma 3.4. Let X' be a subspace of a wL\-space X and sup­
pose that there exists a sequence {U( n) In E N} of open covers 
of X' in X such that for each x E X', Y E X with x -I y, 
there exists n E N such that y ~ S(x,U(n))-. Then X' is a 
developable space. 

Proof: Let {U'(n)ln E N} be a w~-sequence for X. Let 
V(n) == (U(n) I\U I (n))IX' , n E N. Without loss of generality, 
we can assume V( n+1) < V(n) for each n. To see that {V( n)} 
forms a development for X', let p E 0 E r(X' ). Assume that 
for each n there exists Pn E S(p, V(n))\O. Then {Pn} has a 
cluster point p'. But by the property of {U( n)}, we have p == p', 
a contradiction. Hence S(p, V(n)) C 0 for some n. 

Theorem 3.5. Let X be a hemicompact space. Then Y is a 
Moore space with a regularG6-diagonal if and only if so is 
Ck(X, Y). 

Proof: If part follows easily from the fact that Moore spaces 
and regular Gs-diagonals are hereditary and the fact Y '---t 

Ck(X, Y). Only if part: Since Moore spaces and regular Gs­
diagonals are countably productive and hereditary, by Corol­
lary 2.2, it suffices to show it for a compact space X. Sup­
pose that Y is a Moore space with a regular G6-diagonal and 
that X is a compact space. Since by Theorem 2.1 Ck(X, Y) 
has a regular Gs-diagonal, it suffices to show that Ck(X, Y) 
is a Moore space. By Lemma 3.3, there exist a closed sub­
space Ko of K(X X Y) containing G(Ck(X, Y)) and a sequence 
{W[n] In E N} of open covers of G(Ck(X, Y)) in K(X x Y) such 
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that for each G(f) E G(Ck(X, Y)), L E Ko with G(f) ::f- L, 
there exists n E N such that L ~ S(G(f), W[n])-. Let U( n) == 
W[n]IKo, n E N. By [SM, Theorem 2.2], there exists a perfect 
mapping of K(X X Y) onto K(Y) because K(X) is compact. 
By [Mi], K(Y) is a Moore space. Thus Ko is a w~-space. Us­
ing Lemma 3.4 with Ko and {U(n)}, X' == G(Ck(X, V)) (and 
hence Ck(X, Y)) is a Moore space. 

Exercising our discussion used in the proof of Lemma 3.3, 
we can settle the following proposition, the result of which is 
well known as the Arens theorem [A, Theorem 7]. But this is 
the "topological" version of his proof. 

Proposition 3.6. If X is a compact space and Y is a mt~triz­
able space, then Ck(X, Y) is metrizable. 

Proof: Let {U(n)ln E N} be a strong development for Y [E, 
Theorem 5.4.2] such that U(n+ 1)* < U(n), n E N. Then by 
Corollary 3.2, W(n + 1)* < W(n), n E N. So, for the metriz­
ability of Ck(X, Y) it suffices to show that {W(n)} is a de­
velopment for Ck(X, Y). Let f E W(!{1,··· ,!(s; 0 1 , ... ,Os), 
where !(i E K(X) and Oi E r(Y) for each i. Since {U(n)} is a 
strong development, for each i there exists n( i) E N such that 
S(f(!{i),U(n(i))) C Oi. Let n == max{n(i)li == 1,··· ,s}. For 
this n, we can easily show S(f, W(n)) C W(!{1'··· ,!(s; 
0 1 , ... ,Os). 
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