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MEASURES ON CANTOR SPACE

Ethan Akin

Abstract

We construct an uncountable family of topologi-
cally distinct measures on the Cantor set. These
measures are all rigid, i.e. the identity is the only
measure preserving automorphism. On the way to
the construction we classify the order isomorphism
classes of full, monotonic measures on an ordered
Cantor space.

0. Introductory Confusions

Perhaps I should not publicly admit how recently I learned about
the classic work of Oxtoby and Ulam or how stunned I was by
their results. In the fall of 1998, Joe Auslander pointed out
to me the paper [9] in which they proved that any measure µ
on a Euclidean ball B which is full (i.e. µ(U) > 0 for every
nonempty open subset U of B), nonatomic (i.e. µ({p}) = 0
for every point p of B) and trivial on the boundary sphere
(i.e. µ(∂B) = 0) is homeomorphic to the Lebesgue measure λ
on B with µ(B) = λ(B) via a homeomorphism h : B → B
which restricts to the identity on the boundary. They used
this Homeomorphic Measures Theorem together with the rich
supply of measure preserving automorphisms of B to prove the
Oxtoby-Ulam Theorem. This says that the ergodic homeomor-
phisms form a residual subset of the space of measure preserving
automorphisms of B. This work still stimulates current research.
For example, at the summer, 1999 Topology Conference,
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H. Murat Tuncali showed me a paper extending the Oxtoby-
Ulam Theorem to Menger manifolds [5].

Let me try to explain my surprise. Consider the following
measure on the unit disk B in the plane:

(0.1) µ = .1λ2 + .9λ1

where λ2 is ordinary two dimensional Lebesgue measure on the
disk and λ1 is linear Lebesgue measure on some concentric cir-
cle C of radius less than 1. Each measure is normalized so that
λ1(B) = λ2(B) = 1. By the Homeomorphic Measures Theo-
rem there exists an automorphism h of B such that h∗µ = λ2.
Then the image h(C) is a Jordan curve in the disk whose two
dimensional Lebesgue measure is .9. Amazing.

I have been told that I should not be amazed. After all, I
am familiar with Cantor subsets of the unit interval whose one
dimensional Lebesgue measure is ε close to 1 (e.g. remove “mid-
dle ε

3
” intervals instead of “middle thirds”). True enough, but

about the Cantor set I will believe anything. Consider the ho-
hum character of the analogue of the Homeomorphic Measures
Theorem for the Cantor set: If µ1 and µ2 are full, nonatomic
measures on the Cantor set X with µ1(X) = µ2(X) then there
exists a homeomorphism h : X → X such that h∗µ1 = µ2.

My next surprise, as I wandered into this area, was the dis-
covery that the proposition stated just above is false.

My stumbles provided some amusement for Raj Prasad when
I recounted them to him. Prasad was one of Oxtoby’s last
students and colleagues, and he is, with Steve Alpern, the au-
thor of a beautiful forthcoming book which provides an expo-
sition and extension of the Oxtoby-Ulam Theorem [2]. He po-
litely restrained his laughter and gently informed me that among
Oxtoby’s associates the failure of the Homeomorphic Measures
Theorem for Cantor Sets was well-known. In fact, they pub-
lished papers proving homeomorphic equivalence in certain spe-
cial cases, e.g. [8].
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In retrospect, one can see a simple reason why so many mea-
sures on the Cantor set X are topologically distinct. For a
measure µ on X we define S(µ) to be the set of values of µ
at the clopen subsets of X. Because there are only countably
many clopen subsets of X the set S(µ) is countable. If µ is
a nonatomic probability measure (i.e. µ(X) = 1) then S(µ)
is a countable, dense subset of the unit interval, I, containing
0 = µ(∅) and 1 = µ(X). Clearly, the set S(µ) is a topologi-
cal invariant of µ. That is, if h∗µ1 = µ2 for a homeomorphism
h then S(µ1) = S(µ2). Using an uncountable collection of dis-
tinct countable, dense subsets of I we will construct uncountably
many measures on X which are homeomorphically distinct in a
very strong sense.

Theorem 0.1. On a Cantor space X there exists a set M∗ of
full, nonatomic probability measures on X such that for µ1, µ2 ∈
M∗ and U1, U2 proper clopen subsets of X

(0.2) µ1(U1) = µ2(U2) ⇒ µ1 = µ2 and U1 = U2

M∗ can be constructed with cardinality that of the continuum.

It follows not only that the measures of M∗ are homeomor-
phically distinct but that each one is rigid, i.e. the only auto-
morphism preserving a measure in M∗ is the identity, 1X :

Corollary 0.2. Let h : X → X be a continuous map. For
measures µ1, µ2 in M∗

(0.3) h∗µ1 = µ2 ⇒ µ1 = µ2 and h = 1X .

Proof. If U2 is any proper clopen subset of X then with U1 =
h−1(U2), h∗µ1 = µ2 implies

(0.4) µ1(U1) = µ2(U2) < 1

and so U1 is a proper clopen subset of X. Thus, (0.2) implies
µ1 = µ2 and h−1(U2) = U2 for every proper clopen subset U2 of
X. Hence, h = 1X 2
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1. Measures on Cantor Spaces

The spaces we will consider are all assumed to be nonempty,
compact and metrizable, and so with a countable base. Such
a space is called a Cantor space when it is perfect and zero-
dimensional. So a Cantor space is a nonempty, compact, second
countable Hausdorff space with no isolated points and whose
clopen subsets form a base for the topology.

Lemma 1.1. Assume that B is a base for the topology of a
space X. Any clopen subset is a finite union of elements of B.
In particular, the collection of clopen subsets of X is countable.

Proof. The elements of B contained in any open subset U of X
form an open cover of U . If U is also closed and hence compact,
we can extract a finite subcover whose union is U . If we begin
with a countable base and close under finite unions we obtain a
countable family of open sets which includes all the clopens. 2

If h : X1 → X2 is a continuous map then clearly

(1.1) U2 clopen in X2 ⇒ h−1(U2) clopen in X1.

It follows that the collection of clopen subsets is a topologically
distinguished countable base for a Cantor space. A homeomor-
phism between Cantor spaces associates not only the topologies
but the bases of the clopens as well.

Of special importance for a Cantor space is the rich supply
of partitions. A partition P of a space X is a finite, pairwise
disjoint cover of X by clopen sets. Another partition P1 refines
P if each member of P1 is contained in some member of P.
Thus, P1 induces a partition of each element of P of P, exactly
those elements of P1 contained in P .

We will call a nonempty, closed, perfect, nowhere dense sub-
set of the unit interval I = [0, 1] a Cantor set, e.g. the original
“middle thirds” Cantor set. Of course, with the topology in-
duced from R a Cantor set is a Cantor space.
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The other important example of a Cantor space is the shift
space on an alphabet. An alphabet A is a finite set with at least
two elements. An n-tuple w ∈ An is then called a word of length
n. AN is the space of infinite sequences in A enumerated by N,
the set of positive integers. From the inclusion of {1, . . . , n} into
N we obtain the projection map:

πn : AN −→ An

(1.2) πn(x)i = xi i = 1, . . . , n.

Equipped with the product topology AN is a Cantor space.
For each word w in An the cylinder set (πn)−1(w) is clopen and
Pn = {(πn)−1(w) : w ∈ An} is a partition of AN. ∪∞

n=1Pn is a
base for the topology.

Especially important is the shift map:

s : AN −→ AN

(1.3) s(x)i = xi+1 i ∈ N.

The shift map is a continuous surjection.
All of these examples are really just different versions of the

“same” space. This is the important principle which we will call:
The Uniqueness of Cantor.

Proposition 1.2. Any two Cantor spaces are homeomorphic.
In particular, any two nonempty, clopen subsets of a Cantor
space are homeomorphic.

Proof. As this proof is well-known, we will just recall it with a
sketch.

It suffices to show that any Cantor space X equipped with
a metric is homeomorphic to one particular version. We use
{0, 1}N.

Inductively construct a sequence of partitions Pn on X. Begin
by choosing for some positive integer k1, a partition P1 of X into
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2k1 distinct sets of diameter at most 1. Index the elements of
P1 by the words in {0, 1}s1 with s1 = k1.

At the nth stage we have a partition Pn indexed by the words
in {0, 1}sn for some positive integer sn. We can choose a positive
integer kn+1 so that each P ∈ Pn can be partitioned into 2kn+1

distinct sets of diameter at most 1
(n+1)

. These are then labelled

by the {0, 1}sn index of P followed by a word in {0, 1}kn+1 . Vary-
ing P in Pn we obtain the partition Pn+1 indexed by {0, 1}sn+1

with sn+1 = sn + kn+1.
Because the diameters in Pn tend to zero as n tends to infinity,

there is a bijection between the points of X and the infinite
words in {0, 1}N. This is the required homeomorphism.

Finally, any closed, perfect subset of a Cantor space, and so
any clopen subset, is itself a Cantor space. 2

By a measure µ on a space X we will mean a Borel probability
measure so that µ(X) = 1. Such a measure is called full if
every nonempty open set has positive measure and non-atomic
if singletons, and hence countable subsets have measure zero.

Lemma 1.3. Assume that X is a space with metric d and µ is
a nonatomic measure on X. For every ε > 0 there exists δ > 0
so that for every Borel subset B of X

(1.4) diam(B) ≤ δ ⇒ µ(B) < ε,

where the diameter, diam(B) is sup{d(x1, x2) : x1, x2 ∈ B}.

Proof. If {Bn} is a sequence of Borel sets with diam(Bn) tending
to zero, then there is a limit point p ∈ X whose every neighbor-
hood contains some Bn. If µ(Bn) ≥ ε for all n then µ({p}) ≥ ε
and so {p} is an atom for µ. 2

On a finite set A a measure is determined by its value on the
singletons and so by a distribution function

p : A −→ [0, 1], such that
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(1.5)
∑

a∈A

p(a) = 1.

A positive distribution satisfies, in addition,

(1.6) p(a) > 0 for all a ∈ A.

Equivalently, the associated measure on A is full.
If P is a partition of X then a measure µ on X induces a

distribution on P by P 7→ µ(P ) for P ∈ P. If µ is full then this
is a positive distribution.

Associated with a positive distribution p on an alphabet A
there is a full, nonatomic measure β(p) on the shift space AN

called the Bernoulli measure for p. It is determined by its value
on the cylinder sets. For a word w ∈ An:

(1.7) β(p)((πn)−1(w)) = Πn
i=1p(wi).

Instead of the function p we will often just list the values. For
example, β(1

2
, 1

2
) is the measure for the space of outcomes of an

infinite sequence of independent flips of a fair coin.
If h : X1 → X2 is continuous and µ1 is a measure on X1 then

image measure h∗µ1 on X2 is defined by

(1.8) h∗µ1(B) = µ1(h
−1(B))

for all Borel subsets B of X2. The measure h∗µ1 is full iff µ1

is full and h is surjective. h∗µ1 is nonatomic if the preimage of
singletons in X2 have measure zero in X1, which requires that
µ1 be nonatomic. Clearly, if h is injective and µ1 is nonatomic
then h∗µ1 is nonatomic.

The Bernoulli measures β(p) on AN are invariant with respect
to the shift map s of (1.3). That is:

(1.9) s∗β(p) = β(p),

for every positive distribution p. These measures are all ergodic
with respect to s and so they are all mutually singular.
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For a measure µ on a space X define the clopen values set:

(1.10) S(µ) = {µ(U) : U clopen in X}.

Proposition 1.4. If h : X1 → X2 is a continuous map and µ1

is a measure on X1, then

(1.11) S(h∗µ1) ⊂ S(µ1)

with equality if h is a homeomorphism.

Proof. If U2 is clopen in X2 then h−1(U2) is clopen in X1 so
the inclusion is obvious from (1.8). If h is a homeomorphism we
obtain all clopens in X1 this way and equality follows. 2

For any measure µ on any space X the set S(µ) is contained
in the unit interval, I, and it includes 0 = µ(∅) and 1 = µ(X).
By Lemma 1.1, S(µ) is countable. Of course, if X is connected
the only clopens are ∅ and X and so then S(µ) = {0, 1}. For
Cantor spaces the set becomes more interesting.

Proposition 1.5. If X is a Cantor space and µ is a nonatomic
measure on X then S(µ) is a countable, dense subset of I con-
taining 0 and 1.

Proof. To prove density we choose a metric d for X. Given ε > 0
we apply Lemma 1.3 to choose δ > 0. Let P = {P1, . . . , Pm}
be a partition of X by sets of diameter less than δ. The lemma
implies that µ(Pi) < ε for i = 1, . . . ,m. Hence, some point of
the finite subset of S(µ)

(1.12) {µ(∪k
i=1Pi) : k = 1, . . .m}

is ε close to any arbitrarily chosen point of I. 2

We will call measures µ1 on X1 and µ2 on X2

homeomorphic when there exists a homeomorphism h : X1 →
X2 such that h∗µ1 = µ2. Proposition 1.4 says that for
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homeomorphic measures S(µ1) = S(µ2), i.e. this countable set
is a topological invariant of the measure.

We apply this to Bernoulli measures. For any integer m ≥ 2
we will write β( 1

m
) for the Bernoulli measure on the shift space

AN where A is an alphabet with cardinality m and the distrib-
ution function p on A is given by p(a) = 1

m
for all a ∈ A. Thus,

we use β(1
2
) for what we earlier denoted by β(1

2
, 1

2
). We speak

of the Bernoulli measure, being sloppy about just which set is
used as the alphabet. Similarly, interpreted properly we have:

(1.13) β( 1
m1m2

) = β( 1
m1

) × β( 1
m2

),

and

(1.14) β( 1
mk ) = β( 1

m
)

for all integers with m1,m2,m ≥ 2 and k ≥ 1.
Equation (1.13) says that if Aα is an alphabet of cardinality

mα (α = 1, 2) then A = A1 × A2 is an alphabet of cardinal-
ity m1m2. The resulting bijection between AN and the product
AN

1 ×AN
2 is a homeomorphism mapping β( 1

m1m2
) onto the prod-

uct measure.
Similarly, if A has cardinality m then Ak has cardinality mk

and we can identify AN with (Ak)N by regarding the sequences
of letters in the former set as sequences of words of length k.
This homeomorphisms maps β( 1

m
) to β( 1

mk ).

Proposition 1.6. Let m,m1,m2 be integers larger than one.
(a) The set S(β( 1

m
)) consists of those rational numbers in I

which can be expressed as a fraction with denominator dividing
a power of m. That is,

(1.15) S(β( 1
m

)) = { a
mn : n ∈ N, a = 0, . . . ,mn}.

(b) If m1 and m2 have the same prime divisors, i.e. p|m1 iff
p|m2 for all primes p, then β( 1

m1
) and β( 1

m2
) are homeomorphic

and so S(β( 1
m1

)) = S(β( 1
m2

)).
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(c) If m1 and m2 do not have the same prime divisors then
S(β( 1

m1
)) 6= S(β( 1

m2
)) and so β( 1

m1
) and β( 1

m2
) are not homeo-

morphic measures.

Proof. (a) For any n ∈ N, { a
mn : a = 0, 1, . . . ,mn} are exactly

the values of the measure β( 1
m

) on finite unions of the partition
Pn by words of length n. By Lemma 1.1 every clopen set is a
union of elements of Pn for some n. So (1.15) follows.

(b) This is an easy exercise using (1.13) and (1.14).
(c) For any prime p, (1.15) implies

(1.16) 1
p
∈ S(β( 1

m
)) ⇔ p|m.

So if p|m1 by p 6 |m2 then 1
p
∈ S(β( 1

m1
)) but not S(β( 1

m2
)). 2

Proposition 1.7. Let β(1
3
, 2

3
) be the Bernoulli measure on the

shift space with a two element alphabet and distribution function
with values 1

3
and 2

3
. The measure β(1

3
, 2

3
) is not homeomorphic

to β(1
3
) but

(1.17) S(β(1
3
, 2

3
)) = S(β(1

3
)).

Proof. Use {0, 1} as the two element alphabet, with p(0) = 1
3

and p(1) = 2
3
. Let X = {0, 1}N and µ = β(1

3
, 2

3
).

To show µ is not homeomorphic to β(1
3
) it suffices to show

that if P = {P1, P2, P3} is a three element partition of X then
it cannot happen that µ(Pα) = 1

3
for α = 1, 2, 3.

By Lemma 1.1, Pn refines P for sufficiently large n. Let 0 be
the word of length n with every letter 0. From (1.7) we have:

(1.18) µ((πn)−1(0)) = 1
3n ,

while if w 6= 0 then

(1.19) µ((πn)−1(w)) = a
3n with 2|a.

If (πn)−1(0) ⊂ P1 then µ(P2) and µ(P3) have a 2 in their numer-
ator when reduced to lowest terms.
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To prove (1.17) we show that for every n ∈ N and a =
0, . . . , 3n there exists a clopen set U in X such that µ(U) = a

3n .
The equation then follows from (1.15). This is clear for n = 1.
Proceed by induction on n.

First we write

(1.20) a
3n = 1

3
· a0

3n−1 + 2
3
· a1

3n−1

with a0, a1 ≤ 3n−1. If a ≤ 2 · 3n−1 then we obtain (1.20) with
a1 = [a

2
] and a0 = 0 or 1. If a ≥ 2 · 3n−1 then we obtain (1.20)

with a1 = 3n−1 and a0 = a − 2 · 3n−1 ≤ (3 − 2) · 3n−1.
By induction hypothesis there exist clopen subsets Uα of X

such that µ(Uα) = aα (α = 0, 1). Now define the one-sided
inverses sα : X → X of the shift map by

sα(x)i =

{
α i = 1
xi−1 i > 1,

(1.21)

for α = 0, 1. From (1.21) we have µ(U) = a
3n with U = s0(U0)∪

s1(U1). 2

Thus, while S(µ) is a topological invariant it is not a complete
invariant. We will be able to obtain a complete invariant when
we introduce additional structure, namely ordering.

This invariant does suffice to show that there are uncountably
many nonhomeomorphic measures, recovering Theorems 3.1 and
3.2 of [7].

Proposition 1.8. For each r in (0, 1) there are only count-
ably many s in (0, 1) such that β(r, 1 − r) is homeomorphic to
β(s, 1− s). Thus, among the measures {β(r, 1− r) : 0 < r < 1}
the set of homeomorphism equivalence classes has the cardinality
of the continuum.
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Proof. Since s ∈ S(β(s, 1 − s)), β(r, 1 − r) homeomorphic to
β(s, 1−s) requires that s is in the countable set S(β(r, 1−r)) =
S(β(s, 1− s)). As each equivalence class is countable the set of
equivalence classes has the cardinality of (0, 1) itself. 2

2. Ordered Cantor Spaces

By an order ≤ on set X we will mean a reflexive, anti-
symmetric, transitive relation on X which is also complete, i.e.
either x1 ≤ x2 or x2 ≤ x1 for every pair x1, x2 ∈ X. As usual,
we will write x1 < x2 for x1 ≤ x2 and x1 6= x2. We will adopt
the usual interval notation so that, for example,

(2.1) (x1, x2] = {x ∈ X : x1 < x ≤ x2}.

As a relation on X, ≤ is a set of ordered pairs, i.e. a subset
of X ×X. Hence, if X is a space we can define ≤ to be a closed
order if it is an order which is closed as a subset of X × X. An
order space is a pair (X,≤) where X is a space and ≤ is a closed
order on X. An example is (I,≤) where I is the unit interval
and ≤ is the usual order.

If (Xα,≤α) (α = 1, 2) are order spaces then h : (X1,≤1) →
(X2,≤2) is an order space map when h : X1 → X2 is a continuous
map which preserves order, i.e.

(2.2) x ≤1 y ⇒ h(x) ≤2 h(y).

Proposition 2.1. Let (X,≤) be an order space.

(a) There exists an injective order space map L : (X,≤) →
(I,≤) so that L is a homeomorphism of X onto a closed subset
of the interval I. We will call such a map a Lyapunov function
for the order ≤.

(b) Every nonempty closed subset of X contains a maximum
and a minimum. In particular, we will denote by 1 and 0 the
maximum and minimum elements of X.
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(c) The topology on X is the order topology induced by ≤.
That is, the collection of all intervals of the form (x, 1] and [0, x)
for x ∈ X is a subbase for the topology.

Proof. The result in (a) is a special case of the existence theorem
of complete Lyapunov functions for closed relations. We refer
to [1] Theorem 2.12 for a proof of this dynamics result. The
results in (b) and (c) are obvious for closed subsets of the interval
whence they lift to an arbitrary (X,≤) by using a Lyapunov
function. 2

Remark. (a) By using an affine change if necessary we can
adjust the Lyapunov function so that it satisfies

(2.3) L(0) = 0 and L(1) = 1.

We will assume these equalities for any Lyapunov function we
use.

(b) It is an easy exercise to show that an order ≤ on a space
X is closed iff the intervals [0, x] and [x, 1] are closed for all
x ∈ X (see [1] Exercise 2.19 for a hint).

Corollary 2.2. Let (X1,≤1) and (X2,≤2) be order spaces. If
h : X1 → X2 is an order preserving bijection then it is a home-
omorphism and so h : (X1,≤1) → (X2,≤2) is an order space
isomorphism.

Proof. Since h−1([h(x), h(y)]) = [x, y] when h is bijective and
order preserving, continuity of h follows from part (c). 2

Let ϕ : (I,≤) → (I,≤) be an order space isomorphism. Let
l ≥ 1 be a real number. We call ϕ a Lipschitz isomorphism with
constant l if x1 < x2 in I implies

(2.4) l−1 ≤ ϕ(x2)−ϕ(x1)
x2−x1

≤ l.

It is easy to check that if ϕ is piece-wise linear, i.e. the graph
consists of a finite number of line segments, then (2.4) holds iff
each segment has slope between l and l−1.
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Lemma 2.3. Let D1 and D2 be countable dense subsets of I
with {0, 1} ⊂ D1 ∩ D2. For any l > 1 there exists a Lipschitz
isomorphism ϕ : (I,≤) → (I. ≤) with constant l such that

(2.5) ϕ(D1) = D2.

Proof. We use some care with a classic construction. Enumerate
so that D1 = {0, 1, a1, a2, a3, . . .} and D2 = {0, 1, b1, b2, . . .}.
Define A0 = B0 = {0, 1} and ϕ0(x) = x for all x ∈ I. Proceed
inductively. Assume that An and Bn are finite sets with

{0, 1, a1, . . . , an} ⊂ An ⊂ D1

(2.6) {0, 1, b1, . . . , bn} ⊂ Bn ⊂ D2

and that ϕn : (I,≤) → (I,≤) is an isomorphism with

(2.7) ϕn(An) = Bn.

I\An and I\Bn are finite unions of open intervals bijectively
associated by ϕn, which is assumed to be linear on each of these
intervals with slope strictly between l−1 and l.

For the next step choose α to be the first element of D1\An

in the enumeration. Choose α̃ in D2\Bn close to ϕn(α). Define
ϕn+.5(x) = ϕn(x) for x ∈ An and ϕn+.5(α) = α̃. Connect the
dots, i.e. interpolate linearly. The point α lies in one of the
intervals of I\An. We are replacing the point (α,ϕn(α)) on the
segment by the point (α, α̃) and thus breaking this particular
segment in two. Since D2\Bn is dense we can choose α̃ close
enough that the slopes of the two new pieces still lie strictly
between l−1 and l. Since the slope of ϕn+.5 is everywhere positive
it is an increasing function and so is an isomorphism on (I,≤).

Similarly, choose β to be the first enumerated element of
D2\(Bn∪{α̃}) and choose β̃ in D1\(An∪{α}) close to (ϕn+.5)

−1(β).
Define ϕn+1(x) = ϕn+.5(x) for x in An ∪ {α} and ϕn+1(β̃) = β.
Extend linearly. Again we can make the choices so that the
slopes lie strictly between l−1 and l.
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Define An+1 = An ∪{α, β̃} and Bn+1 = Bn ∪{α̃, β}. Observe
that either an+1 ∈ An or α = an+1. Similarly, bn+1 ∈ Bn+1.

By the Arzela-Ascoli Theorem the set of functions ϕ : I →
I with Lipschitz constant ≤ l is compact in the topology of
uniform convergence. So the sequence {ϕn} has a limit point
ϕ : I → I with Lipschitz constant at most l. The limit point is
unique since for each x ∈ D1, the sequence {ϕn(x)} is eventu-
ally constant and so eventually equal to ϕ(x). Similarly, {ϕ−1

n }
converges uniformly to ϕ−1 with Lipschitz constant ≤ l. The
equation (2.5) is clear from the construction. 2

In an order space (X,≤) a point x is called a left endpoint
(or a right endpoint) if the closed interval [0, x] (resp. [x, 1])
in X is clopen. Thus, 0 is a right endpoint and 1 is a left
endpoint. Except for these two, the left and right endpoints can
be matched up. If x− 6= 1 is a left endpoint then (x−, 1] is a
nonempty closed interval and so it equals [x+, 1] where x+ is its
minimum. Thus, x+ is a right endpoint with x− < x+ and the
open interval (x−, x+) is empty. Notice that if a point is both
a left and right endpoint then {x} = [0, x] ∩ [x, 1] is open and
so x is an isolated point. So if X is perfect then the set of left
endpoints other than 1 and the set of right endpoints other than
0 are disjoint sets bijectively associated by this pairing. We call
these the endpoint pairs of (X,≤). If L is a Lyapunov function
for (X,≤) satisfying (2.3) then the image of the endpoint pairs
are exactly the endpoints of the disjoint open intervals whose
union is I\L(X).

We will call (X,≤) an ordered Cantor space if (X,≤) is an
order space with X a Cantor space. In that case, L(X) is a
Cantor set and so the left endpoints and right endpoints are
each countable dense subsets of X.

Lemma 2.4. Let (X,≤) be an ordered Cantor space.
(a) A closed interval [x1, x2] with x1 ≤ x2 is clopen iff x1 is

a right endpoint and x2 is a left endpoint. The set of clopen
intervals is a base for the topology of X.
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(b) If U is a nonempty clopen subset of X then U contains
finitely many maximal clopen subintervals and U is the disjoint
union of them. That is, there is a unique increasing sequence
x1 < x2 < . . . < x2k for some positive integer k such that each
xi with i odd (or even) is a right (resp. left) endpoint,

(2.8) U = ∪k
j=1[x2j−1, x2j],

and for j = 1, . . . , k − 1 the pair {x2j, x2j+1} is not an endpoint
pair, i.e.

(2.9) (x2j, x2j+1) 6= ∅ j = 1, . . . , k − 1.

Proof. (a) Since [x1, x2] = [0, x2] ∩ [x1, 1] the interval is clopen
if x1 is a right and x2 is a left endpoint. The converse follows
from the easily verified fact that if U is a nonempty clopen set
then max U is a left endpoint and min U is a right endpoint.
Since the left and right endpoints are each dense in X every
point in X can be contained in clopen intervals of arbitrarily
small diameter. Hence the clopen intervals form a base.

(b) Applying Lemma 1.1 to (a) we can express U as a fi-
nite union of clopen intervals in U . If [x1, x2] and [x3, x4] are
subintervals of U which intersect or which satisfy x2 < x3 and
{x2, x3} is an endpoint pair, then the union is a subinterval of
U . Concatenating intervals successively until we can no longer
do so we arrive at a sequence x1 < . . . < x2k satisfying (2.8)
and (2.9). Clearly, the [x2j−1, x2j] for j = 1, . . . , k are the maxi-
mal subintervals of U by (2.9). Uniqueness of the decomposition
follows. 2

If (X,≤) is an order space and µ is a measure on X we define
the cumulative distribution function, written CDF, of µ to be

Fµ : X −→ I

(2.10) Fµ(x) = µ([0, x]).
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Proposition 2.5. With (X,µ) an order space and µ a measure
on X, let Fµ be the CDF of µ.

(a) The function Fµ is order preserving, continuous from the
right with respect to ≤ and satisfies Fµ(1) = 1.

(b) The function Fµ is continuous iff the atoms of the measure
µ, if any, are right endpoints of (X,µ).

(c) The measure µ is nonatomic iff Fµ is continuous and sur-
jective, i.e. Fµ(X) = I.

(d) Assume now that X is perfect, i.e. there are no isolated
points. The measure µ is full iff for any three points x1, y, x2∈X

(2.11) x1 < y < x2 ⇒ Fµ(x1) < Fµ(x2).

This is equivalent to saying that Fµ(x1) = Fµ(x2) for a pair
x1, x2 of distinct points implies that x1, x2 is an endpoint pair.

Proof. (a) Fµ(1) = µ(X) = 1. If x1 < x2 then

(2.12) Fµ(x2) − Fµ(x1) = µ((x1, x2]) ≥ 0.

So Fµ is order preserving. If {xn} is a decreasing sequence in X
converging to x then [0, x] = ∩n{[0, xn]} implies

(2.13) Fµ(x) = Limn→∞Fµ(xn).

(b) If {xn} is a (strictly) increasing sequence converging to x
then [0, x) = ∪n{[0, xn]} implies

(2.14) Fµ(x) − µ({x}) = Limn→∞Fµ(xn).

Hence, continuity from the left at x is equivalent to µ({x}) =
0. Continuity is equivalent to left and right continuity and so
requires µ({x}) = 0 for every point x which is a limit point of
some increasing sequence, i.e. x is not a right endpoint.

(c) If µ({p}) > 0 then

x ≥ p ⇒ Fµ(x) ≥ Fµ(p) ≥ µ({p}).
(2.15) x < p ⇒ Fµ(x) ≤ Fµ(p) − µ({p}).
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If p is the minimum point 0, then the first inequality says Fµ(x) ≥
Fµ(0) > 0 for all x. In any case, the numbers in the open subin-
terval of I: (Fµ(p) − µ({p}), Fµ(p)) are not in the image of Fµ.

Conversely, if µ is a nonatomic then by (b) Fµ is continuous
and so Fµ ◦ (L)−1 is continuous on the closed subset L(X) of I
where L Is a Lyapunov function. If x− < x+ is an endpoint pair
then because x+ is not an atom

(2.16) Fµ(x−) = Fµ(x+).

Hence, Fµ ◦ (L)−1 can be extended to a continuous map from
GL

µ : I → I which is constant on each open subinterval of
I\L(X). Since 0 is not an atom GL

µ (0) = Fµ(0) = 0 (we are
assuming (2.3) here). Hence, Fµ(X) = GL

µ(I) = I by the Inter-
mediate Value Theorem.

(d) The inequalities x1 < y < x2 imply that the open interval
(x1, x2) is nonempty. If µ is full then Fµ(x1) < Fµ(x2) follows
from (2.12). In general, if x1 < x2 then the interval (x1, x2) is
empty only when {x1, x2} is an endpoint pair. This proves the
equivalent statement made after (2.11).

If X is perfect then any nonempty open set U is infinite and
so contains some triple x1 < y < x3. Hence, (2.11) implies
µ(U) > 0. Thus, assumption (2.11) implies µ is full. 2

Remark. An isolated point is an atom for any full measure. So
a full, nonatomic measure exists on a space X only when X is
perfect.

We will need the converse of part (a):

Proposition 2.6. Let (X,µ) be an order space. If F : X →
I is an order preserving, right continuous function satisfying
F (1) = 1, then there is a unique measure µ on X such that
F = Fµ.
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Proof. This is the familiar Lebesgue-Stieltjes construction which
begins by defining µ on the semiring of half open intervals by

(2.17) µ((x1, x2]) = F (x2) − F (x1).

See, e.g. [4] Chapter II. 2

If h : (X1,≤1) → (X2,≤2) is an order space map then for
every y1 ≤ y2 in X2:

h−1([y1, y2]) = [x1, x2], with

(2.18) x1 = minh−1([y1, y2]) and x2 = maxh−1([y1, y2]).

Furthermore, if y1, y2 ∈ h(X1) then

(2.19) x1 = minh−1({y1}) and x2 = max h−1({y2}).

Lemma 2.7. For α = 1, 2 let (Xα,≤α) be an order space and
µα be a nonatomic measure on Xα. If h : (X1,≤1) → (X2,≤2)
is a surjective order space map then

(2.20) h∗µ1 = µ2 ⇔ Fµ1 = Fµ2 ◦ h.

Proof. Assume h∗µ1 = µ2. Since h is surjective 01 = minX1 =
minh−1(02) and so h(01) = 02. By (2.18) and (2.19) Fµ2(y) =
Fµ1(x) where x = maxh−1({y}). For any x1 = h−1({y}) we
have

(2.21) 0 ≤ µ1((x1, x]) ≤ µ1(h
−1({y})) = µ2({y}) = 0

because µ2 is nonatomic. By (2.12) Fµ1(x1) = Fµ1(x) = Fµ2(y) =
Fµ2(h(x1)).

Assume instead that Fµ1 = Fµ2 ◦ h. For y ∈ X2 let x =
maxh−1({y}). By (2.18) and (2.19):

(2.22) µ2([0, y]) = Fµ2(h(x)) = Fµ1(x) = h∗µ1([0, y]).

Because these intervals generate the σ-algebra of Borel subsets
of X2 we have µ2 = h∗µ1. 2
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Corollary 2.8. Let (X,≤) be an order space and µ be a full
nonatomic measure on X with CDF Fµ : X → I. With λ
Lebesgue measure on I,

(2.23) Fµ∗µ = λ.

Proof. Clearly, Fλ : I → I is the identity map. So with h = Fµ

we have Fλ ◦ h = Fµ. Equation (2.23) follows from (2.20). 2

For a measure µ on an order space (X,≤) we can define an
invariant closely related to S(µ) of (1.10), the special clopen
values set:

(2.24) S̃(µ) = {Fµ(x) : x a left endpoint of (X,≤)} ∪ {0}.

Recall that x is a left endpoint exactly when [0, x] is clopen and
then Fµ(x) = µ([0, x]). It clearly follows that

(2.25) S̃(µ) ⊂ S(µ).

In particular, S̃(µ) is a countable subset of I. Since the maxi-
mum point 1 of X is always a left-endpoint we always have

(2.26) 1 ∈ S̃(µ).

Our remaining results are all obtained from the following
Lifting Lemma:

Lemma 2.9. For α = 1, 2 let (Xα,≤α) be an order space and
µα be a full, nonatomic measure on Xα. An order isomorphism
ϕ : (I,≤) → (I,≤) satisfies the condition

(2.27) ϕ(S̃(µ1)) ⊃ S̃(µ2)

iff there exists a continuous map h : X1 → X2 such that the
following diagram commutes.
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X1
-

h
X2

Fµ1

? ?

Fµ2

I -
ϕ

I

(2.28)

When such a lifting h exists it is unique and h : (X1,≤1) →
(X2,≤2) is a surjective order map. Furthermore, h is an order
isomorphism iff equality holds in (2.27).

Proof. By Proposition 2.5 each Fµα : (Xα,≤α) → (I,≤) is a
surjective order map with Xα a perfect space. Furthermore, the
map is almost one-to-one. That is, by (2.16) and part (d) of
Proposition 2.5 a pair of distinct points in Xα is mapped by Fµα

to the same point in I iff the pair is an endpoint pair. The set
of all endpoints in Xα is a countable subset. We will denote by
Eα the set of endpoints in Xα. By (2.16) and (2.24) we have

(2.29) Fµα(Eα) = S̃(µα).

In particular, for every point x of X1 which does not lie in
the countable exceptional set

(2.30) S̃12 ≡ (ϕ ◦ Fµ1)
−1(S̃(µ2)),

there is a unique point h(x) of X2 such that Fµ2(h(x)) =
ϕ(Fµ1(x)). The function h : X1\S̃12 → X2 is order preserv-
ing. In fact, since ϕ is an order isomorphism, Proposition 2.5d
implies that for x1, x2 ∈ X1\S̃12:

(2.31) x1 < x2 ⇒ h(x1) ≤ h(x2),
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with equality iff {x1, x2} is an endpoint pair for µ1. Because X1

is perfect and S̃12 is countable, X1\S̃12 is dense in X1 and the
set of pairs (x1, x2) with x1, x2 ∈ X1\S̃12 and x1 < x2 is dense
in the closed order ≤1⊂ X1 × X1.

Consequently, if h extends to a continuous function from X1

to X2 then the extension is uniquely defined and is order pre-
serving. Similarly, the equality Fµ2 ◦ h = ϕ ◦ Fµ1 extends to all
of X1. Because

(2.32) h(X1\S̃12) = X2\E2

and E2 is a countable subset of the perfect space X2, it follows
that the continuous extension is surjective.

Now we derive condition (2.27). Clearly, h(11) = 12 as {1α} =
(Fµα)−1(1) for α = 1, 2. Similarly for 0. Any other point of
S̃(µ2) is Fµ2(y−) = Fµ2(y+) for some endpoint pair y+, y− in
X2. Because h is a surjective function there exist distinct points
x+, x− ∈ X1 such that

(2.33) h(x±) = y±.

The commutative diagram (2.28) then implies that ϕ(Fµ1(x+))
and ϕ(Fµ2(x−)) are both the common value Fµ2(y±). Because ϕ
is an isomorphism we have Fµ1(x+) = Fµ2(x−). Because x+ 6=
x− they must be an endpoint pair of X1. So Fµ1(x±) is a point
of S̃(µ1) mapped by ϕ to the point Fµ2(y±).

Now assume that (2.27) holds for ϕ. It says that S̃12 ⊂ E1.
That is, for every endpoint pair y−, y+ in X2 there is an endpoint
pair x−, x+ such that ϕ(Fµ1(x±)) = Fµ2(y±). We extend the
definition of h to all of X1 by mapping the left endpoint x− to
the left endpoint y− and the right to the right. This is exactly
the choice so that the extension h : X1 → X2 is order preserving.
It is then easy to check that if y1 < y2 ∈ X2 then

(2.34) (x1, x2) = h−1((y1, y2))
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where x1 is the maximum of the one or two elements in the set
h−1(y1) and x2 is the minimum of the set h−1(y2). Continuity
of h follows from Proposition 2.1c.

Finally, by reversing the order and applying the result to ϕ−1

we see that h : X1 → X2 is a homeomorphism iff equality holds
in (2.27). 2

Remark. When equality does not hold in (2.27), h(x1) = h(x2)
iff {x1, x2} is an endpoint pair in

E1\S̃12 = F−1
µ1

(S̃(µ1)\ϕ−1(S̃(µ2))).

Our first application says that S̃(µ) is a complete invariant
for order isomorphisms between full nonatomic measures.

Theorem 2.10. For α = 1, 2 let (Xα,≤α) be an order space and
µα be a full, nonatomic measure on Xα. There exists an order
space isomorphism h : (X1,≤1) → (X2,≤2) such that h∗µ1 = µ2

iff S̃(µ1) = S̃(µ2).

Proof. By Lemma 2.9 with ϕ the identity on I, an order iso-
morphism h : (X1,≤1) → (X2,≤2) exists with Fµ1 = Fµ2 ◦ h iff
S̃(µ1) = S̃(µ2). By Lemma 2.7, Fµ1 = Fµ2 ◦ h iff h∗µ1 = µ2. 2

In particular, if (X,≤), is (I,≤) then 1 is the only left end-
point and so S̃(µ) = {0, 1} for any measure µ. There is thus
no obstruction finding an order isomorphism between any two
full nonatomic measures. This, however, is the classic result,
captured in Corollary 2.8, that for any such measure µ its CDF
Fµ is an order isomorphism mapping µ to Lebesgue measure. Of
course, our real interest is in Cantor spaces.

Proposition 2.11. If (X,≤) is an ordered Cantor space and
µ is a nonatomic measure on X then S̃(µ) is a countable dense
subset of I containing 0, 1.
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Proof. Fµ is a continuous surjection by Proposition 2.5c. In a
Cantor space the left endpoints form a dense set. Because the
continuous image of a dense set is dense, S̃(µ) is dense in I by
definition (2.24). 2

We already know that there are nonhomeomorphic measures
on a Cantor space. The following describes how close we can
come.

Theorem 2.12. For α = 1, 2 let (Xα,≤α) be an ordered Cantor
space and µα be a full, nonatomic measure on Xα. Let l > 1
be a real number. There exists an order space isomorphism
h : (X1,≤1) → (X2,≤2) such that the Radon-Nikodym deriv-
ative dh∗µ1/dµ2 exists and satisfies:

(2.35) l−1 ≤ dh∗µ1

dµ2

≤ l

everywhere on X2.

Proof. Define the countable dense set Dα = S̃(µα) (α = 1, 2).
By Lemma 2.3 we can choose a Lipschitz isomorphism
ϕ : (I,≤) → (I,≤) with constant l so that ϕ(D1) = D2. Be-
cause ϕ satisfies (2.27) with equality, Lemma 2.9 implies there
exists an order space isomorphism h : (X1,≤1) → (X2,≤2) such
that Fµ2 ◦ h = ϕ ◦ Fµ1. If we let ν = h∗µ1 then by Lemma 2.7,
Fν ◦ h = Fµ1 or, equivalently, Fν = Fµ1 ◦ h−1. Consequently

(2.36) Fµ2 = ϕ ◦ Fν.

It follows from (the reciprocal of) (2.4) that if x1 < x2 in X2

and the interval (x1, x2) is nonempty then:

(2.37) l−1 ≤ ν((x1, x2])/µ2((x1, x2])

= (Fν(x2) − Fν(x1))/(ϕ(Fν(x2)) − ϕ(Fν(x1))) ≤ l.
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From this it follows that for every Borel subset B of X2

(2.38) l−1µ2(B) ≤ ν(B) ≤ lµ2(B).

It follows that the Radon-Nikodyn derivative dν/dµ2 exists and
is bounded by l (almost everywhere but we can choose a version
bounded everywhere) and its reciprocal dµ2/dν is also bounded
by l. (See, e.g [4] Chapter VI, Section 31). 2

As a corollary we obtain The Uniqueness of Cantor, II.

Corollary 2.13. Any two ordered Cantor spaces are order iso-
morphic. In particular, any two nonempty clopen subsets in an
ordered Cantor space are order isomorphic.

Proof. Given ordered Cantor space (X1,≤1) and (X2,≤2) choose
full, nonatomic measures µα on Xα (α = 1, 2). For example, use
Uniqueness of Cantor to move a Bernoulli measure to each Xα.
Apply Theorem 2.12 and forget the measures. 2

3. Many Rigid Measures on Cantor Space

We begin by reinterpreting some results from the previous
section.

Definition 3.1. (a) Let G denote the group (under composi-
tion) of order isomorphisms of (I,≤). Thus, ϕ ∈ G iff ϕ is an
increasing continuous, real valued function on the unit interval
with ϕ(0) = 0 and ϕ(1) = 1.

(b) Let D denote the set of countable, dense subsets of [0, 1]
which contain 0, 1. Thus, D ∈ D iff D is a countable dense,
subset of the unit interval with {0, 1} ⊂ D.

(c) For an ordered Cantor space (X,≤) let MX denote the
set of full, nonatomic measures on X.

For example, let Q̃ ≡ Q∩[0, 1], where Q is the field of rational
numbers. Q̃ is an element of D.
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For the remainder of the section we will fix (X,≤) and drop
the subscript writing M for MX.

Theorem 3.2. (a) The group G acts on the set M. For
(ϕ, µ1) ∈ G ×M and µ2 ∈ M:

(3.1) µ2 = ϕµ1 ⇔ Fµ2 = ϕ ◦ Fµ1.

The action is transitive and free, i.e. for any µ1 ∈ M the map
ϕ 7→ ϕµ1 is a bijection from G onto M.

(b) The group G acts on the set D. For (ϕ,D1) ∈ G ×D and
D2 ∈ D:

(3.2) D2 = ϕD1 ⇔ D2 = ϕ(D1).

The action is transitive, i.e. for any D1 ∈ D the map ϕ 7→ ϕD1

is a surjection from G onto D.
(c) S̃ : M → D defined by µ 7→ S̃(µ) is a G equivariant

surjection, i.e.

(3.3) S̃(ϕµ) = ϕS̃(µ).

Proof. (a) For µ1 ∈ M, Fµ1 : (X,≤) → (I,≤) is a surjective
order map by Proposition 2.5c. As ϕ ◦ Fµ1 is also a surjective
order map it equals Fµ2 for a unique measure µ2 by Proposition
2.6. By Proposition 2.5 c,d µ2 is also full and nonatomic, i.e.
µ2 ∈ M. This clearly defines an action of G on M. Furthermore,
µ2 = µ1 iff Fµ1 = ϕ ◦ Fµ1 iff ϕ is the identity since Fµ1 is
surjective. Hence the action is free.

On the other hand, given any pair µ1, µ2 ∈ M the function
ϕ = Fµ2 ◦ (Fµ1)

−1 is well defined on I, because for any y ∈ I,
(Fµ1)

−1(y) is either a singleton or an endpoint pair, by Propo-
sition 2.5d. In the latter case, Fµ2 maps the two points to the
same value by (2.16). By compactness the surjections Fµ1 and
Fµ2 are quotient maps and so ϕ ◦ Fµ1 = Fµ2 implies that ϕ is
continuous. Clearly, y1 < y2 in I implies ϕ(y1) < ϕ(y2) and so ϕ
is an order isomorphism, i.e. ϕ ∈ G. Hence, G acts transitively.
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(b) Equivalence (3.2) clearly defines a G action on D. The
action is transitive by Lemma 2.3.

(c) S̃(µ) ∈ D by Proposition 2.11. If µ2 = ϕµ1 then Fµ2 =
ϕ ◦ Fµ1 and so Fµ2(x) = ϕ(Fµ1(x)) for every left endpoint x.
This implies S̃(µ2) = ϕ(S̃(µ1)) which says that the map S̃ is G
equivariant. It follows that S̃ is surjective because the action of
G on D is transitive. 2

Corollary 3.3. The map S̃ : M → D induces a bijection from
the order isomorphism classes of full, nonatomic measures on X
onto the set of countable dense subsets of (0,1). For any µ ∈ M
the order isomorphism class of µ admits a bijection onto

(3.4) IsoQ̃ = {ϕ ∈ G : ϕ(Q̃) = Q̃}.

Proof. By Theorem 2.10, µ1, µ2 ∈ M are order isomorphic mea-
sures, i.e. there exists h an order isomorphism of (X,≤) such
that h∗µ1 = µ2, iff S̃(µ1) = S̃(µ2). Hence, S̃ induces a bijection
from order isomorphism classes onto D. Then D 7→ D\{0, 1} in-
duces a bijection from D onto the set of countable dense subsets
of (0, 1).

For µ ∈ M and D = S̃(µ) the order isomorphism class of µ is
S̃−1(D). Because the action of G on M is free and transitive the
inverse of the bijection ϕ 7→ ϕµ restricts to a bijection of S̃−1(D)
onto the isotropy subgroup of D (also called the stabilizer of D):

(3.5) IsoD = {ϕ ∈ G : ϕD = D}.

Now choose µ0 ∈ M such that S̃(µ0) = Q̃. (Recall that
S̃ : M → D is surjective) and let ϕ0 be the element of G such
that µ = ϕ0µ0. Since S̃ is equivariant ϕ0Q̃ = D. Hence:

(3.6) IsoQ̃ = ϕ−1
0 IsoDϕ0.

The isotropy subgroups are conjugate. The inner automorphism
ϕ 7→ ϕ−1

0 ϕϕ0 provides the required bijection from
IsoD to IsoQ̃. 2
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It is easy to construct many elements of IsoQ̃. Use piecewise
linear maps on I made up of segments whose lines have positive
rational slope and rational intercepts.

Corollary 3.3 shows that there are uncountably many order
isomorphism classes of measures on M. Of course, two noniso-
morphic measures might still be homeomorphic. However, we
can use these results together with a bit of algebra to construct
the uncountably many nonhomeomorphic measures, described
in the Introduction. To do this we relate the invariants S̃(µ)
and S(µ).

For µ ∈ M and U a nonempty clopen subset of X we define
the conditional measure, µU , a full nonatomic measure on U by

(3.7) µU (B) = µ(B)/µ(U)

for every Borel subset B of U .
Define the U part of S̃(µ):

(3.8) S̃(µ,U) = {Fµ(x) : x ∈ U is a left or right endpoint of
(X,≤)}.

Since the left endpoints are dense, this set is nonempty. In fact,
max U is a left endpoint in U since U is clopen. Similarly, min U
is a right endpoint in U . Because µ is nonatomic, (2.16) implies
that every nonzero right endpoint value is also a left endpoint
value. Consequently, as expected from the notation

(3.9) S̃(µ,U) ⊂ S̃(µ).

We included right endpoints in the definition because, for exam-
ple, we need to include the Fµ value of min U even though the
corresponding left endpoint does not lie in U .

Now for any subset A of R we denote by Q[A] the extension
field obtained by adjoining the points of A to the rationals. That
is, Q[A] is the smallest subfield of R which contains A. By
analogy, we will let G[A] denote the additive subgroup of R
generated by A, i.e. the sums of differences of elements of A. In
particular, Q[∅] = Q and by convention G[∅] = {0}.
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Lemma 2.3. if U is a clopen subset of X, then

(3.10) µ(U) ∈ G[S̃(µ,U)]

and

(3.11) S(µU) ⊂ Q[S̃(µ,U)].

Proof. By Lemma 2.4, U can be expressed as a finite disjoint
union of intervals [x1, x2] with x1 a right endpoint of (X,≤) and
x2 a left endpoint. Of course, x1, x2 ∈ U . Since µ([x1, x2]) =
Fµ(x2) − Fµ(x1) (µ is nonatomic) which is Fµ(x2) if x1 = 0, we
see that µ([x1, x2]) is an element of S̃(µ,U) or else a difference
between two such elements. Since µ(U) is a finite sum of such
µ([x1, x2])’s we have (3.10).

If V is a clopen subset of U then clearly,

(3.12) S̃(µ, V ) ⊂ S̃(µ,U)

and so both µ(V ) and µ(U) lie in G(S̃(µ,U)). Hence their ratio
lies in the field. 2

Remark. It follows from (3.9) and (3.10) that

(3.13) S(µ) ⊂ G[S̃(µ)].

For our construction we recall that a set A of irrationals is
called algebraically independent if no α ∈ A is algebraic with
respect to Q[A\{α}]. and so, a fortiori,

(3.14) α 6∈ Q[A\{α}].
Just as with linear independence we can choose A∗ a maximal
algebraically independent subset of R. Such a set is called a
transcendence base for R over Q and maximality implies that

(3.15) R = Q[A∗].

See, e.g. [6] Section X.1.
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For an infinite set A, the field Q[A] has the same cardinality
as A. Hence, we can choose a bijection α : R × N → A∗.
Furthermore, if we multiply α(t, n) by a nonzero rational number
the conditions (3.14) and (3.15) remain unaffected. Thus, we can
assume that A∗ and α satisfy

(3.16) 0 < α(t, n) < 1 and |α(t, n) − rn| < n−1

where {r1, r2 . . .} is some enumeration of the rational numbers
in (0, 1). Now define for t ∈ R

(3.17) Dt = {0, 1} ∪ {α(t, n) : n ∈ N}.

From condition (3.16) and injectivity of α we have

(3.18) Dt ∈ D for all t ∈ R.

(3.19) Dt1 ∩ Dt2 = {0, 1} for t1 6= t2 ∈ R.

(3.20) (∪t∈RDt)\{0, 1} is algebraically independent.

Use Theorem 3.2c to choose for each t ∈ R a measure µt ∈ M
such that

(3.21) S̃(µt) = Dt for all t ∈ R.

Theorem 3.5. The family of measures M∗ = {µt : t ∈ R}
satisfies the following property:

For t1, t2 ∈ R and proper clopen subsets U1, U2 of X:

(3.22) µt1(U1) = µt2(U2) ⇔ t1 = t2 and U1 = U2.

In particular, for t1 6= t2:

(3.23) S(µt1) ∩ S(µt2) = {0, 1}.
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Proof. Write µα and Dα for µtα and Dtα (α = 1, 2).
Suppose that U is a proper clopen subset of X. Apply Lemma

2.4 to write U as the union of its maximal clopen subintervals,
i.e.

(3.24) U =
k⋃

j=1

[x2j−1, x2j]

where x1 < x2 < . . . x2k in U is a sequence of endpoints al-
ternately right and left, and the open intervals (x2j, x2j+1) are
nonempty for j = 1, . . . , k − 1. Note that for any µ in M this
implies

(3.25) Fµ(x1) < Fµ(x2) < . . . < Fµ(x2k)

in I. Because µ in M is nonatomic

(3.26) µ(U) =
k∑

j=1

(Fµ(x2j) − Fµ(x2j−1)).

Because U is not ∅ or X, some xi 6= 0, 1 in X. If µ = µ1 each of
the 2k summards in (3.26) is in D1. So algebraic independence,
i.e. (3.14), yields

(3.27) xi 6∈ {0, 1} ⇒ µ1(U) 6∈ Q[A∗\{Fµ1(xi)}].
Assume that t1 6= t2. By (3.13) S(µ2) ⊂ Q[D2]. With

xi 6= 0, 1, Fµ1(xi) ∈ D1\{0, 1} which is disjoint from D2 by
the construction, (3.17). Hence, D2 ⊂ A∗\{Fµ1(xi)}. So (3.27)
implies that for U a proper clopen subset of X and t1 6= t2:

(3.28) µ1(U) 6∈ S(µ2).

This completes the proof of (3.23) and implies that when t1 6= t2,
µ1(U1) 6= µ2(U2) for any proper clopen subsets U1 and U2.

Now assume that t1 = t2 and that U1, U2 are clopen subsets
such that µ1(U1) = µ1(U2). We must prove that U1 = U2. By
removing U1∩U2 from both we can assume that they are disjoint
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and so the common value is at most 1
2
. If the common value is

0 then U1 = U2 = ∅.
We are left with deriving a contradiction from the assumption

that U1 and U2 are disjoint proper clopen subsets with the same
µ1 measure. Applying (3.27) with U = U1 or U2 we see that the
common value cannot be rational. In particular it is not equal
to 1

2
so U = U1 ∪ U2 is a proper clopen subset.

Decompose U as in (3.24). Suppose that xi 6= 0, 1 is an end-
point on the list for U . Assume xi ∈ U1. Since U2 is disjoint from
U1, xi 6∈ U2. The endpoint paired with xi does not even lie in
U and so is not in U2. Hence, Fµ1(xi) 6∈ S̃(µ1, U2). Equivalently
this says

(3.29) S̃(µ1, U2) ⊂ {0, 1} ∪ A∗\{Fµ1(x2)}.

By (3.27) this implies

(3.30) µ1(U) 6∈ Q[S̃(µ1, U2)].

But µ1(U) = 2µ1(U2) and so this contradicts (3.10). 2

This result did not require algebraic independence and a tran-
scendence base. Linear independence over Q and a Hamel base
could have been used instead. The fields are needed for the
following.

Theorem 3.6. Let U be the countable family of nonempty
clopen subsets of X. The family of measure M∗ = {µt : t ∈ R}
constructed above satisfies the following property.

For t1, t2 ∈ R and U1, U2 ∈ U

(3.31) S(µt1U1) = S(µt2U2) ⇔ t1 = t2 and U1 = U2.

Hence, for the uncountable family of measures {µtU} indexed by
(t, U) ∈ R× U no two distinct members are homeomorphic.
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Proof. Assume that U1, U2 are distinct elements of U . Without
loss of generality we can assume that U = U1\U2 is nonempty.
Partition U as in (3.24) and choose y a left endpoint of X in
the open interval (x1, x2). Let V be the clopen interval [x1, y].
Observe that (with µtα = µα and Dtα = Dα, α = 1, 2):

(3.32) µ1U1(V ) = (Fµ1(y)−Fµ1(x1))/(µ1(U)+µ1(U1∩U2)).

Notice that the right endpoint associated with y also lies in
(x1, x2) and so

(3.33) Fµ1(y) 6∈ Ã, where

Ã = {Fµ1(xi) : i = 1, . . . , 2k} ∪ S̃(µ1, U2) ∪ S̃(µ2, U2).

The remaining terms in the numerator and denominator of (3.32)
do lie in Q[Ã]. So algebraic independence implies

(3.34) µ1U1(V ) 6∈ Q[Ã].

On the other hand, by (3.11)

(3.35) S(µ2U2) ⊂ Q[Ã].

Since µ1U1(V ) ∈ S(µ1U1) we see that

(3.36) S(µ1U1) 6= S(µ2U2).

For the remaining case, where U1 = U2 and t1 6= t2 we proceed
as above letting U = U1 = U2, decomposing and defining V =
[x1, y] with y ∈ (x1, x2) just as before. We leave the final details
to the reader. 2
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