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TOWARDS COMPUTING HOMOLOGY FROM
FINITE APPROXIMATIONS
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Abstract

We consider the problem of extrapolating the ho-
mology of a compact metric space from a finite
point-set approximation. Our approach is based
on inverse systems of ε-neighborhoods and inclu-
sion maps. We show that the inclusion maps are
necessary to identify topological features in an ε-
neighborhood that persist in the limit as ε → 0.
We outline a possible algorithm for computer im-
plementation. As test examples, we present data
for some iterated function system relatives of the
Sierpinski triangle.

1. Introduction and Basic Definitions

A fundamental task in the study of dynamical systems is to
identify the topological and geometric structure of attractors
and other invariant sets. Such information can contribute to
our understanding of global properties of the dynamics. An
example where topological structure is important comes from
nearly-integrable area-preserving twist maps of the cylinder. In
these maps, invariant circles trap chaotic orbits and imply some
degree of stability that is destroyed when the nonlinearity is
increased and the invariant circles become Cantor sets [13].
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The geometry of an attractor, as measured by its fractal di-
mension, is related to its Lyapunov exponents, which measure
the exponential rate of divergence of nearby orbits [17]. The
various fractal dimensions are the most popular tools for quan-
tifying geometric structure. However, the family of examples in
Section 4 show that such information says nothing about topo-
logical structure. Topological information, such as whether or
not an attractor is connected or how many and what type of
holes it has, is more fundamental but more difficult to extract
from data. Previous applications of computational topology in
the context of dynamical systems include the computation of
homology from flows that lie on smooth manifolds, [15], and the
application of Conley index theory to time-series data, [14].

The standard computer representation of an attractor is a fi-
nite set of points generated along the orbit of a typical initial
point. Our goal, therefore, is to develop computational tech-
niques that allow us to extrapolate topological properties of the
underlying attractor, given only the finite approximation. The
basic trick is to coarse-grain the data at a sequence of resolu-
tions that tend to zero. Of course, the extrapolation will always
be constrained by the accuracy of the data and we address this
problem by identifying a cutoff resolution.

This multiscale approach is applied to computing connected-
ness in [19, 20]. In the current paper, we investigate the more
difficult problem of deducing the homology of a compact metric
space from a finite amount of data. We derive sound mathe-
matical foundations for the heuristic of the previous paragraph,
using ideas from shape theory [12]. Although the applications
we describe are in dynamical systems, our approach is quite gen-
eral and is valid for any situation where a finite set of points is
viewed as an approximation to an underlying space. A partic-
ular advantage over previous work on computational homology
is that it allows for fractal data.
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The abstract setting for our analysis is as follows. We as-
sume that the underlying space, X, is a compact subset of a
metric space, (M,d) and that the finite set of points, S ⊂ M ,
approximates X in a metric sense, i.e., each point of X is within
distance ρ of some point in S, and vice versa. In other words, ρ
is the Hausdorff distance between X and S. A small value of ρ
implies S is a good approximation to X. This assumption holds,
for example, in the situation where X is a compact attractor for
a diffeomorphism f : M → M . In this case, for each point in the
basin of attraction, x ∈ B, the ω-limit set of x is contained in X
[21]. Thus, given ρ > 0, and a point x ∈ B, there is an integer
n, such that for j > n, d(f j(x),X) < ρ. If we take S to be
the finite number of iterates, S = {f j(x) for n < j < N}, then
each point of S is within ρ of X. Conversely, if the attractor has
an ergodic measure, then a typical orbit (in a measure-theoretic
sense) must fill out the entire attractor. Given ρ, we can there-
fore choose N large enough so that every point of X is within ρ
of S. In other contexts, ρ could represent a discretization error
or the magnitude of noise present in the data.

To give the compact space, X, and its finite approxima-
tion, S, comparable topological structure, we form their closed
ε-neighborhoods:

Xε = {x ∈ M | d(x,X) ≤ ε} and Sε = {x ∈ M | d(x, S) ≤ ε}.

Roughly speaking, since X and S are within ρ, their ε-neighbor-
hoods should have similar properties for ε > ρ. The homology
of Xε converges to the homology of X as ε → 0, in an inverse
limit sense. Therefore, if ρ is small enough, we hope to have
some confidence in extrapolating this limit from the structure
of Sε for ε > ρ. We formalize these ideas in Section 2 using
the machinery of inverse systems and some results from shape
theory.
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There is a second advantage to using ε-neighborhoods. The
standard simplicial homology groups are only defined for spaces
that have a finite triangulation. The attractors of chaotic dy-
namical systems frequently have fractal structure, and are not
homeomorphic to a finite polytope. However, an ε-neighborhood
of a compact metric space is an absolute neighborhood retract
(ANR) and is therefore homotopy equivalent to a finite poly-
tope [12, p.45]. This means simplicial homology groups are well-
defined and effectively computable for the ε-neighborhoods. The
appropriate homology theory for fractal sets is Čech homology,
which is defined in terms of an inverse system of nerves of covers
[9].

For notational purposes, we recall some definitions for simpli-
cial homology, following Munkres [16]. The basic building block
is an oriented k-simplex, σk —the convex hull of k + 1 geomet-
rically independent points, {x0, x1, . . . , xk}. The orientation is
defined by an arbitrary but fixed ordering of the vertices. For
example, a 0-simplex is just a point, a 1-simplex is a line seg-
ment, a 2-simplex a triangle, and a 3-simplex is a tetrahedron.
A simplicial complex, C, is a collection of oriented simplices with
the property that the non-empty intersection of two simplices in
C must itself be a simplex in C. The union of simplices from
C, when viewed as a subset of Rn, is called a polytope. If X is
homeomorphic to a polytope, we say X is triangulated by C.

We now define the group structures associated with a space,
X, triangulated by the simplicial complex, C. A k-chain is the
formal sum of a finite number of oriented k-simplices: ck =∑

i aiσ
k
i . The coefficients ai are typically integers, but in gen-

eral they can be elements of any abelian group, G. The resulting
chain group is denoted Ck(X;G), or simply Ck when the space
and the coefficient group are understood. The chain group is free
abelian and the oriented k-simplices form a basis. For k ≥ 1,
the boundary operator, ∂k : Ck → Ck−1, is a linear operator that
maps a k-simplex onto the oriented sum of (k − 1)-simplices in
its boundary (e.g., the boundary of a triangle is its three edges).
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The image of ∂k is a subgroup of Ck−1 and is denoted Bk−1. The
kernel of ∂k is the group of k-cycles, Zk. The fundamental prop-
erty of the boundary operator is that ∂k∂k+1 = 0. This implies
that Bk is a subgroup of Zk, so we can form their quotient group,
which is precisely the homology group, Hk = Zk/Bk. Its elements
are equivalence classes of non-bounding k-cycles, loosely referred
to here as k-dimensional holes. The fundamental theorem of
finitely generated abelian groups implies that Hk is isomorphic
to the direct sum of a free group and a finite number of finite
cyclic groups. The rank of the free group is called the kth Betti
number βk and the orders of the finite cyclic groups are the tor-
sion coefficients. If the coefficient group is the rational Q or real
R numbers then there is no torsion and the Betti numbers are
simply the dimensions of the homology groups. The kth Betti
number effectively counts the number of k-dimensional holes in
X, so is exactly the information we seek. When k = 0, the Betti
number counts the number of path-connected components of X.

In Section 2 we give definitions for the inverse system of ε-
neighborhoods of X and the corresponding inverse systems of
homology groups. We would like to quantify the topological
structure by computing Betti numbers as functions of ε. There
is a problem with this however, since ε-neighborhoods can have
holes that do not exist in X. We resolve this problem by intro-
ducing the concept of a persistent Betti number, which counts
the number of holes in Xε that correspond to a hole in X. When
X has fractal structure, it is possible to see unbounded growth
in the persistent Betti numbers as ε → 0. We characterize this
growth by assuming an asymptotic power law. The final step
of this section is to obtain formal relationships between the ε-
neighborhoods of X and a finite point-set approximation.

In Section 3, we turn to the practical problem of how to
implement these ideas computationally. There are a number of
existing approaches for computing the Betti numbers of a given
simplicial complex. We give a brief overview of an incremental
algorithm due to Delfinado and Edelsbrunner [3] for computing
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the Betti numbers of a sequence of simplicial complexes in R2

or R3. We also show that, to a finite resolution, the persistent
Betti numbers are computable from dimensions of intersections
of ranges and null spaces of matrices, and outline an algorithm
to implement the inverse limit system approach.

We use a family of iterated function system attractors as sim-
ple test examples in Section 4. These fractals illustrate a prob-
lem with the use of the Hausdorff dimension to characterize
structure. Each of these examples has exactly the same simi-
larity (and therefore Hausdorff) dimension, and yet they have
dramatically different topological structure. Since we have not
yet implemented algorithms for computing the persistent Betti
numbers, we give data for the regular Betti numbers and show
that this can be misleading.

2. Mathematical Foundations

In this section, we use an inverse system framework from shape
theory to clarify the sense in which the ε-neighborhoods of S
relate to those of X. We introduce the notion of persistent Betti
number to quantify the topological structures of ε-neighborhoods
that persist in the limit as ε → 0.

2.1. The inverse system of ε-neighborhoods

To describe the limiting behavior of ε-neighborhoods, we use
an inverse system. Recall that an inverse system of topologi-
cal spaces consists of a collection of spaces, Xλ, indexed by a
directed set (Λ,�), and continuous maps, called bonding mor-
phisms,

pλµ : Xµ → Xλ, for each pair µ � λ.

The bonding morphisms must satisfy the following two condi-
tions (note that throughout this paper the composition of two
functions, f and g, is written as fg).

pλλ = 1Xλ
, the identity map on Xλ, and (1)

pλµpµν = pλν , for any choice of ν � µ � λ. (2)
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We write X = (Xλ, pλµ,Λ) or (Xλ, pλµ) when the index space
is clear from context. The inverse limit space, lim←- X, is the
subspace of ΠΛXλ consisting of all threads in X:

lim
←-

X = {(xλ) | xλ ∈ Xλ and pλµ(xµ) = xλ for µ � λ}.

The projections, pµ : lim←- X → Xµ, are the continuous maps
pµ((xλ)) = xµ.

The concept of inverse system also holds in the category of
groups. The definition is similar: simply replace the topological
spaces by groups, the continuous maps by homomorphisms and
the direct product by direct sum.

The inverse system of ε-neighborhoods has terms

Xε = {x | d(x,X) ≤ ε} for 0 < ε ≤ ε0,

with the order relation λ � ε if λ < ε as real numbers. Since
Xλ ⊂ Xε when λ < ε, the bonding morphisms are simply inclu-
sion maps pελ : Xλ → Xε, which clearly satisfy the two condi-
tions above. The inverse limit space is homeomorphic to X and
the projections pε : X → Xε are again inclusion maps.

Each ε-neighborhood has the homotopy type of a finite poly-
hedron, so the kth homology groups Hk(Xε) are well-defined
for ε > 0. The inclusion maps pελ : Xλ → Xε induce homo-
morphisms on the homology groups in the standard way [16].
We write pελ∗ : Hk(Xλ) → Hk(Xε) for these induced homo-
morphisms. The homology groups together with the inclusion-
induced homomorphisms yield inverse systems of groups, de-
noted by Hk(X). The inverse limit of Hk(X) is isomorphic to
the kth Čech homology group Ȟk(X); for details see [12, p.121].
When X has the homotopy type of a finite polyhedron, the Čech
homology groups are isomorphic to the finite simplicial homol-
ogy groups. If X has the infinitely detailed structure of a fractal,
some of its Čech homology groups may involve infinite products
of the coefficient group. Note that in Čech homology, the choice
of coefficient group is restricted to a field or compact topological
group, such as Q or R, [9].
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2.2. Persistent Betti numbers

We would like to quantify the structure of X by looking at the
Betti numbers βk(Xε) = rank Hk(Xε) as ε → 0. In general
though, it is not the case that βk(Xε) → βk(X) as ε → 0. As
an example, consider Antoine’s necklace [9]. This Cantor set,
A, is constructed by taking the intersection of a sequence of
nested and linked solid tori. The nth term in the sequence, An,
consists of 4n tori, hence β1(An) = 4n → ∞. However, since A
is a Cantor set, β1(A) = 0. The problem stems from ignoring
the role of the bonding morphisms. We now describe how to
incorporate this information.

We want to detect holes that have preimages under the bond-
ing morphisms. More formally, for λ < ε, we say that an equiv-
alence class of cycles [zε] ∈ Hk(Xε) persists in Hk(Xλ) if it is in
the image of the bonding homomorphism [zε] ∈ pελ∗(Hk(Xλ)).
The number of holes in Xε that persist in Xλ is therefore just
the rank of the image subgroup:

βλ
k (Xε) = rank(pελ∗(Hk(Xλ))). (3)

Since we want to know the topology of X, we are also interested
in the quantity

β0
k(Xε) = rank(pε∗(Hk(X))). (4)

We refer to βλ
k (Xε) for λ ≥ 0, as the persistent Betti numbers.

The persistent Betti number is an integer-valued function of
two real numbers, λ < ε. In order to understand the properties
of this function, we give some elementary bounds on βλ

k (Xε).
From the definition, it follows that the persistent Betti number
is less than the regular Betti number for both Xλ and Xε:

βλ
k (Xε) ≤ βk(Xε) and (5)

βλ
k (Xε) ≤ βk(Xλ) for λ ≥ 0. (6)
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The next two inequalities say that for a fixed ε-neighborhood,
βλ

k (Xε) is a monotonic non-decreasing function of λ; while for a
fixed λ, the persistent Betti number is a non-increasing function
of ε.

For ν < λ < ε, βν
k (Xε) ≤ βλ

k (Xε). (7)

For λ < ε < µ, βλ
k (Xµ) ≤ βλ

k (Xε). (8)

Roughly speaking, increasing the difference between λ and ε
decreases the number of persistent holes.

The above inequalities are a first step towards understand-
ing the continuity properties of βλ

k (Xε), but more work remains
to be done. Most importantly, we want conditions on X that
guarantee

β0
k(Xε) → βk(X) as ε → 0. (9)

If βk(X) is finite and (9) holds, then there must be an ε0 > 0
such that β0

k(Xε) = βk(X) for ε ∈ [0, ε0). In addition to this, our
computational work will be most effective for spaces where there
is a λ0 such that βλ

k (Xε) = β0
k(Xε) for λ ∈ [0, λ0]. We do not

expect these conditions to hold for an arbitrary compact space.
However, for special cases such as the iterated function system
attractors in Section 4, it may be possible to say something more
concrete about the continuity of persistent Betti numbers as λ
and ε tend to zero.

For fractal sets, it is possible to see unbounded growth in the
persistent Betti numbers as ε decreases to zero. If β0

k(Xε) → ∞
as ε → 0, we can quantify the rate of divergence by assuming
an asymptotic power law, β0

k(Xε) ∼ εγk . The exponent γk can
be computed as the following limit when it exists (and as the
limsup or liminf otherwise):

γk = lim
ε→0

log(β0
k(Xε))

log(1/ε)
. (10)
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For k = 0, the Betti number is just the number of path-
connected components and the persistent Betti number is the
same as the regular Betti number: βλ

0 (Xε) = β0(Xε). The expo-
nent γ0 is therefore the disconnectedness index of [19, 20]. For
self-similar Cantor sets, γ0 is equivalent to the similarity dimen-
sion. The examples in Section 4 suggest that an analogous result
may hold for connected self-similar fractals that contain holes.

2.3. Finite Approximations

We now turn to analyzing the finite set of points, S, that ap-
proximate the compact set X in the metric space (M,d). As
described in the introduction, we let ρ be the Hausdorff dis-
tance dH(X,S) = ρ. In this section, we show how to relate the
inverse systems of ε-neighborhoods, (Xε, pλε) and (Sε, qλε), and
derive bounds on the persistent Betti numbers of Xε.

Since X ⊂ Sρ and S ⊂ Xρ, we have the following inclusion
maps for any ε > 0, iε : Sε → Xε+ρ and jε : Xε → Sε+ρ. With
appropriate bonding morphisms, this gives us a commuting di-
agram for any λ ≥ ρ and ε ≥ λ + 2ρ:

Xλ Xε

ε+ρε−ρλ+ρλ−ρS S S S
(11)

This diagram implies that if an element of Hk(Xε) has a preim-
age in Hk(Xλ), there must be an element of Hk(Sε−ρ) with a
preimage in Hk(Sλ+ρ). Similarly, if Sε+ρ has a hole that persists
in Sλ−ρ, there must be a corresponding hole in Xε that persists
in Xλ. In terms of Betti numbers, we have that for λ ≥ ρ and
ε ≥ λ + 2ρ,

βλ−ρ
k (Sε+ρ) ≤ βλ

k (Xε) ≤ βλ+ρ
k (Sε−ρ). (12)
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We can swap the roles of X and S in (11) to obtain analogous
bounds on βλ

k (Sε):

βλ−ρ
k (Xε+ρ) ≤ βλ

k (Sε) ≤ βλ+ρ
k (Xε−ρ). (13)

Since X maps into Sρ, we can only hope to get information
about X from holes in Sε that persist in Sρ. Setting λ = ρ in
(13), we have that for ε ≥ ρ,

β0
k(Xε+ρ) ≤ βρ

k(Sε). (14)

Thus, if β0
k(Xε) ∼ εγk as ε → 0 and ρ is small enough, we should

see at least that order of growth in βρ
k(Sε).

In one sense, ρ is the optimal resolution for coarse-graining
the data to estimate the topological structure of the underlying
space. This could imply that βk(Sρ) is the best approximation
to βk(X), which would render our multiresolution approach re-
dundant. For very simple spaces this may be the case. How-
ever, we are interested in more complicated settings. In general,
the inverse system of ε-neighborhoods and the persistent Betti
numbers offer two advantages. First, the cutoff resolution ρ is
typically not known in advance and must be determined from
the data; examining Sε at many ε-values helps us estimate ρ.
Second, computing the Betti numbers βk(Sρ) at a single resolu-
tion does not distinguish between holes due to the topology of
X and holes in Sρ induced by the geometry. The sequence of
persistent Betti numbers βρ

k(Sε) for ε > ρ give a more accurate
basis than βk(Sρ) from which to extrapolate topological infor-
mation about X (c.f., the example of Antoine’s necklace). Such
an extrapolation must always be given with respect to the cut-
off resolution ρ, however, since it is possible that the topological
properties of X change at resolutions below ρ.
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3. Computation

We now address the implementation of these ideas. There are
four parts to the overall process:

1. For a sequence of ε-values, generate simplicial complexes
that triangulate the ε-neighborhoods of the data.

2. Estimate the value of the cutoff resolution ρ.

3. Compute the persistent Betti numbers, βρ
k(ε), for ε > ρ.

4. If appropriate, compute the growth rate, γk.

This approach is implemented in [20] for the case k = 0, when
βρ

0(ε) = β0(ε) is just the number of connected components of
Sε. For this case, a simplicial complex is unnecessary — all the
information about ε-connected components of S is encoded in
the Euclidean minimal spanning tree of the data.

In the present context, steps 1 and 3 are the most computa-
tionally intensive. We describe algorithms for their implemen-
tation below. We use a criterion for Step 2 that we derive in
[20] for approximations to perfect spaces. Since a perfect space
has no isolated points, we estimate the cutoff resolution as the
largest value of ε for which Sε has at least one isolated point.
This underestimates the value for which Sρ ⊃ X, but the exam-
ples in Section 4 show it to be a reasonably good approximation.
Isolated points are straightforward to detect numerically [20] —
a point is ε-isolated if the distance from it to every other point
in the set is greater than ε. We write I(ε) for the number of
ε-isolated points. The computation of growth rates in Step 4 is
straightforward once the persistent Betti numbers are found.

3.1. Simplicial Complexes for ε-neighborhoods

Given an ε-neighborhood, Sε, the first problem is to generate
a simplicial complex, Cε, whose underlying space is at least ho-
motopy equivalent to Sε. Since we are interested in the inverse
system of ε-neighborhoods, we need simplicial complexes for a
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(a) (b) (c)

Fig. 1. (a) The Voronoi diagram of a set of ten points in the plane.
(b) The corresponding Delaunay triangulation. (c) An ε-neighborhood and
corresponding ε-complex.

sequence of numbers εi → 0. In order to have inclusion maps
that are well defined, we need Cεi to be either a subcomplex or
a subdivision of Cεj when εi < εj.

One approach to this problem, due to Edelsbrunner et al. [6],
is to use alpha shapes. This construction makes use of two fun-
damental graphs from computational geometry — the Voronoi
diagram and the Delaunay triangulation; see Figure 1 for an
example. For a finite set of points S ⊂ Rd, the Voronoi
diagram associates a closed cell with each point. The Voronoi
cell of p ∈ S is the set of all points in Rd that are closer to p
than to any other point in S, i.e.,

V (p) = {x | d(x, p) ≤ d(x, s), s ∈ S\{p}}.

Two cells can intersect only at a common boundary; their in-
teriors are disjoint; and the union of all Voronoi cells is the
whole of Rd. The Delaunay triangulation is the geometric dual
of the Voronoi diagram. When the points of S are in general
position (i.e., no d + 2 points lie on a d-sphere) the Delaunay
triangulation is a simplicial complex whose underlying space
is the convex hull of S. To make an analogy with the Čech
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construction, the Voronoi diagram is a cover of Rd and (for
points in general position) the Delaunay triangulation is the
nerve of this cover.

The resolution parameter, ε, is introduced to this setting by
taking the intersection of the Voronoi cells with Sε, the closed
ε-neighborhood. This gives a closed cover of Sε and the nerve
of this cover is a subset of the Delaunay triangulation, Tε. The
underlying space of an ε-complex is an “alpha shape” (our ε
is the same as Edelsbrunner’s α). Note that the ε-complex is
homotopy equivalent to Sε [5]. In [6], there are rules for deter-
mining the subset, Tε, directly from the simplices in the Delau-
nay triangulation, without constructing the Voronoi cells or Sε.
Since the complexes Tε are subsets of a finite simplicial complex,
this implies that there are only a finite number of homologically
distinct ε-neighborhoods.

Software that constructs these complexes for subsets of R2 or
R3 is publicly available from NCSA [23]. We use these programs
to generate the figures and compute Betti numbers for the ex-
amples of Section 4. If S ⊂ R2, the ε-complexes are built with
a time cost that is subquadratic in the number of points of S.

For the type of data we are interested in, there is a large de-
gree of redundancy in the Delaunay triangulations (i.e. an un-
necessarily large number of simplices) for the resolutions ε ≥ ρ.
This is likely to be the case whenever we construct Cεi as a
subcomplex of Cεj for εi < εj. An alternative approach is to
use subdivisions, so that coarse resolutions have fewer simplices
than fine resolutions. A subdivision approach might be more
efficient in terms of space (i.e., storing the lists of simplices) and
computation (of persistent Betti numbers for example) than the
ε-subcomplexes described above. We are still working to de-
termine the most efficient implementation for our applications.



TOWARDS COMPUTING HOMOLOGY FROM FINITE ... 517

3.2. Computing Persistent Betti Numbers

Before discussing persistent Betti numbers, we give the standard
formula for computing the regular Betti numbers [16]:

βk = rank Hk = rankZk − rankBk.

Recall that Zk is the kernel of the boundary operator, ∂k, and
Bk is the image of ∂k+1. Since ∂k is a linear operator and the
oriented k-simplices form a basis for the chain group Ck, it is pos-
sible to represent ∂k as a matrix, Dk, with entries in {−1, 0, 1}.
Then the dimension of the null space of Dk is the rank of Zk

and the dimension of the range of Dk+1 is the rank of Bk. The
computation of Betti numbers is thus reduced to elementary
numerical linear algebra. Although this algorithm is simple, for
large simplicial complexes such as those for the examples in Sec-
tion 4, the computations take a significant amount of computer
time and are susceptible to roundoff errors. There are a number
of faster algorithms for computing Betti numbers from a given
complex; we describe some of these after deriving a formula for
the persistent Betti number.

Recall from Section 2.3 that we want to compute ρ-persistent
Betti numbers for ε-neighborhoods of the finite approximation,
Sε:

βρ
k(ε) = rank qερ∗(Hk(Sρ)).

We start by simplifying notation a little and write q∗ for the
homomorphism of homology groups, q∗ : H(ρ) → H(ε). From
elementary theorems about homomorphisms of groups, we know
that

q∗(H(ρ)) ' H(ρ)/ ker q∗.

The kernel of q∗ consists of equivalence classes of cycles in H(ρ)
that map to boundaries in B(ε). Let q] : C(ρ) → C(ε) be
the map on the chain complexes induced by the inclusion map
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on the ε-neighborhoods. The homomorphism q] commutes with
the boundary operator [16], so q](B(ρ)) ⊂ B(ε) and q](Z(ρ)) ⊂
Z(ε). It follows that

q∗(H(ρ)) ' Z(ρ)/[Z(ρ) ∩ q−1
] (B(ε))].

The persistent Betti number is therefore

βρ
k(ε) = rank[Z(ρ)]− rank[Z(ρ) ∩ q−1

] (B(ε))]. (15)

For computation, we can again use linear algebra. The first
term is the dimension of the null space of Dk(ρ) as before.
For the second term we need to find the intersection of two
spaces: nullDk(ρ) and q−1

] [rangeDk+1(ε)]. Finding the inter-
section of two linear subspaces requires some information about
their bases, and is therefore a more difficult problem than com-
puting dimensions. There are standard algorithms for this [8],
but we have not yet implemented them. This is because the im-
plementation depends on how we construct the sequence of sim-
plicial (or cubical) complexes for the ε-neighborhoods and this
is work in progress. Instead, for the examples of Section 4 we
use pre-existing software for computing the regular Betti num-
bers from subsets of the Delaunay triangulation described in
Section 3.1. These examples illustrate why the regular Betti
numbers are insufficient for extrapolation.

The algorithm for computing Betti numbers of the
ε-subcomplexes of the Delaunay triangulation is due to Delfi-
nado and Edelsbrunner [3]. Their algorithm is an incremental
one that uses central results from homology theory such as the
Meyer-Vietoris sequence and Poincaré duality. For subsets of
R2 and R3 only, the running time is O(nα(n)), where n is the
number of simplices in the triangulation and α(n) is the ex-
tremely slow growing inverse of Ackermann’s function [2]. Since
the algorithm is incremental, given the Delaunay triangulation
as input, it automatically computes Betti numbers of all the
subcomplexes, Tε, in a single run.
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S f [S]

f

f f 21

3[S]

[S] [S]

Fig. 2. Template for the iterated function system that generates the
Sierpinski triangle relatives.

The Delfinado/Edelsbrunner implementation goes a long way
towards carrying out our desired program. However, it is not
clear how to incorporate persistent Betti number computations
easily. It is possible that an incremental algorithm for finding
the persistent Betti numbers exists. However, finding the per-
sistent Betti numbers requires some explicit information about
the cycles and boundaries, and the Delfinado/Edelsbrunner al-
gorithm does not generate or record this information.

Finally, we note that the development of fast algorithms for
computational homology is an active area of research and refer
the interested reader to some recent papers [4, 7, 11].

4. Examples

The fractals we use here are attracting fixed sets of iterated
function systems (the IFS framework and a proof of the existence
of such fixed sets was first published in Hutchinson [10]). The
Sierpinski triangle relatives are generated by a family of iterated
function systems, illustrated by the template in Figure 2:

S = f [S] = f1[S] ∪ f2[S] ∪ f3[S].
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In each case, the functions fi are similarity transformations
of the unit square with contraction ratio 1

2
, i.e. |fi(x)− fi(y)| =

1
2
|x − y|. The functions that generate the Sierpinski triangle,

shown in Figure 3, are simple contractions composed with a
translation; the generators of the other examples involve addi-
tional rotation or reflection symmetries of the square. There
are 232 different fractals in this family [18]. Their topology
ranges from simply connected (Figure 7) to connected (Fig-
ure 3) to totally disconnected (Figure 5) to a class of examples
with infinitely many connected components of non-zero diameter
(Figure 9). This range of topological structure makes them ideal
test cases for our techniques.

It is easy to generate a finite number of points on the at-
tractor of an iterated function system. One way (Barnsley’s
“chaos game” [1]) is to chose an initial point x0 in the domain
of the IFS and then record its trajectory under the iteration
xn+1 = fin(xn), setting in = 1, 2 or 3 with probability p1, p2 and
p3 respectively. If x0 is in the attractor then its entire orbit is
in the attractor; if not, the iterates converge to it. Thus, the
orbit can be viewed as a random sampling of the attractor by
a finite number of points. When p1 = p2 = p3 = 1

3
, the data

cover the fractal uniformly; if the probabilities are not equal, the
distribution of points is nonuniform and their density approx-
imates a multifractal measure. See [20] for a discussion of the
way in which the cutoff resolution, ρ, depends on the number of
points and the choice of p1, p2 and p3. In the examples below,
we choose an initial point in each attractor, and generate 104

points with p1 = p2 = p3 = 1
3
.

For each of the following fractals, we present data for the
number of components, β0(ε), the number of holes, β1(ε), and
the number of isolated points, I(ε). Where appropriate, we cal-
culate the growth rates, γ0 and γ1; the results are compiled in
Table I.
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TABLE I
Computed values of γ0 and γ1. The results are the slope of
a linear least-squares fit to the data and error bounds are
estimated by varying the scaling range. The exact values
for the non-zero exponents are the same as the similarity
dimension, log 3/ log 2 ≈ 1.585.

Data Set γ0 γ1

Sierpinski triangle fig. 3 0 1.59± 0.02
Cantor set fig. 5 1.40± 0.05 0
Simply connected set fig. 7 0 0
Disconnected set fig. 9 1.42± 0.05 0

The Sierpinski Triangle

The generating functions for the Sierpinski triangle are:

f1(x, y) = 1
2
(x, y)

f2(x, y) = 1
2
(x + 1, y)

f3(x, y) = 1
2
(x, y + 1). (16)

A finite point-set approximation to the triangle, an ε-neighbor-
hood and the corresponding subset of the Delaunay triangula-
tion are shown in Figure 3. The underlying set is perfect and
connected with infinitely many holes, so we should see β0(ε) = 1
and β1(ε) → ∞ as ε → 0. The exact self-similarity of the Sier-
pinski triangle allows us to deduce that for

ε0/2
n+1 < εn < ε0/2

n,

β1(εn) =
n∑

k=0

3k = 1
2
(3n+1 − 1).
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(a) (b)

Fig. 3. (a) 104 points on the Sierpinski triangle. (b) An ε-neighborhood
(grey outline) and corresponding subset of the Delaunay triangulation (solid
grey).
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Fig. 4. Number of components, β0(ε), and number of holes, β1(ε), for 104

points uniformly distributed over the Sierpinski triangle. The dashed line
in the graph of β0(ε) is the number of isolated points, I(ε). All axes are
logarithmic. The horizontal axis range is 10−4 < ε < 1.
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In the Euclidean metric, ε0 is the radius of the largest circle
that is inscribed by the triangle with vertices at (1

2
, 0), (0, 1

2
)

and (1
2
, 1

2
), so ε0 = 1

2
−
√

2
4

≈ 0.146. The growth rate, γ1 =
log 3/ log 2 ≈ 1.585, is the same as the similarity dimension.

These expectations are reflected by the computations of β0(ε),
β1(ε) and I(ε), graphed in Figure 4, for a 104 point approxima-
tion to the triangle. We see that for ε above a threshold value,
the computed values of β0(ε) and β1(ε) are in agreement with
the theory. The point at which β0(ε) and β1(ε) “blur” is ap-
proximately ε = 0.003, close to the value at which the number
of isolated points, I(ε), becomes positive. This ε value is, of
course, the cutoff resolution ρ discussed in section 3. At finer
resolutions — i.e., ε < ρ — we see a sharp transition in the
graph of β0 from one to the number of points in the set, as each
point becomes isolated. The graph of β1 shows that the holes
are destroyed as ε decreases. This is because the edges that form
the loops are eventually deleted from the triangulation. We es-
timate the slope of the staircase by a linear, least squares fit and
find γ1 ≈ 1.59. This is very close to the value derived above.

A Cantor Set Relative
Figure 5 shows the attractor for the iterated function system

generated by

f1(x, y) = 1
2
(−y + 1, x)

f2(x, y) = 1
2
(y + 1, x)

f3(x, y) = 1
2
(y,−x + 2). (17)

This fractal is a Cantor set, and therefore perfect and
totally disconnected, so we should see β0(ε) → ∞ as ε → 0
and β0

1(ε) = 0. In [19] we derived the following form for β0(ε):

ε0/2
n+1 < εn < ε0/2

n

β0(εn) =

{
3n + 2 · 3(n−1)/2 if n is odd

3n + 3n/2 if n is even.
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(a) (b)

Fig. 5. (a) 104 points on the Cantor set relative. (b) An ε-neighborhood
and corresponding subset of the Delaunay triangulation.
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Fig. 6. Number of components, β0(ε), and number of holes, β1(ε), for 104

points uniformly distributed over the Cantor set relative. The dashed line
in the graph of β0(ε) is the number of isolated points, I(ε). All axes are
logarithmic. The horizontal axis range is 10−4 < ε < 1.
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Here, ε0 is the smallest value of ε for which Sε is connected.
Using (10), we calculate the value of γ0 to be log 3/ log 2.

We can see in Figure 6 that the numerical computations of
β0(ε) agree very well with the theoretical values above, when ε
is greater than the cutoff resolution ρ ≈ 0.005. Using a least
squares fit, we estimate the slope of the staircase to be γ0 ≈
1.40. This is significantly lower than the true limiting value
given above because of second-order effects at the relatively large
values of ε for which the β0(ε) data are valid.

The graph of β1(ε) has regularly spaced spikes. The reason
for this is seen in Figure 5(b), where the ε-neighborhood has
two connected components. Data points in the two components
are separated by a distance of at least 2ε0. The value of ε in
Figure 5(b) is just greater than ε0/2 — the value at which the
ε-neighborhood breaks into five components. Holes appear in
the triangulation at the value of ε displayed because of the few
remaining edges that bridge the “gap”. These edges are deleted
at slightly smaller values of ε and the holes disappear. Graphing
the persistent Betti number, βρ

1(ε), would remove these spikes.

A Simply Connected Relative
A simply connected relative of the Sierpinski triangle, shown

in Figure 7, is generated by:

f1(x, y) = 1
2
(−x + 1,−y + 1)

f2(x, y) = 1
2
(−y + 2, x)

f3(x, y) = 1
2
(x, y + 1). (18)

We expect to see a single connected component and no persistent
holes. However, holes do appear in the ε-neighborhoods, as seen
in Figure 8, due to the geometry of the fractal. Again, these
spikes in the graph of β1(ε) would disappear in a graph of the
persistent Betti number.
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(a) (b)

Fig. 7. (a) 104 points on a simply connected set. (b) An ε-neighborhood
and corresponding subset of the Delaunay triangulation.
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Fig. 8. Number of components, β0(ε), and number of holes, β1(ε), for 104

points uniformly distributed over a simply connected fractal. The dashed
line in the graph of β0(ε) is the number of isolated points, I(ε). All axes
are logarithmic. The horizontal axis range is 10−4 < ε < 1.
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A Relative with Infinitely Many Connected
Components

A fourth triangle relative, shown in Figure 9, is generated by
the following similarities:

f1(x, y) = 1
2
(x, y)

f2(x, y) = 1
2
(y + 1,−x + 1)

f3(x, y) = 1
2
(x, y + 1). (19)

The attractor for this system has infinitely many connected
components, yet is not totally disconnected because the com-
ponents have positive diameters. Thus, we expect β0(ε) → ∞
and β0

1(ε) = 0. Again, self-similarity means that for:

ε0/2
n+1 < εn < ε0/2

n,

β0(εn) = 1
2
(3n+1 + 1),

giving a growth rate of γ0 = log 3/ log 2. We estimate the slope
of the graph of β0(ε) as before and find γ0 ≈ 1.42. This is lower
than the limiting value because of the small range of ε for which
the computed values of β0(ε) reflect those of the underlying frac-
tal.

This example is another good illustration of why the com-
putation of persistent Betti numbers is important. Topolog-
ically, the set is composed of disconnected line segments, so
there can be no non-bounding cycles in the first Čech homol-
ogy group. However, the geometry of the set creates holes in
the ε-neighborhoods, as seen in Figure 9(b). In the previous
example, it is clear that the holes do not persist as ε decreases
because β1(ε) = 0 between the spikes. In Figure 10 we see
an apparent growth in β1(ε). The difference is that smaller
holes appear before the larger ones disappear, resulting in an
accumulation.
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(a) (b)

Fig. 9. (a) 104 points on a disconnected set. (b) An ε-neighborhood and
corresponding subset of the Delaunay triangulation.
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Fig. 10. Number of components, β0(ε), number of holes, β1(ε), for 104

points uniformly distributed over the disconnected relative. The dashed
line in the graph of β0(ε) is the number of isolated points, I(ε). All axes
are logarithmic. The horizontal axis range is 10−4 < ε < 1.



TOWARDS COMPUTING HOMOLOGY FROM FINITE ... 529

Notice that this set has the same values of γ0 and γ1 as the
Cantor set relative. This implies that we still do not have enough
information to completely distinguish their different topological
structure. The problem was solved in [20] by examining the
diameters of the connected components. For a Cantor set, the
diameters go to zero, while for the example in Figure 9, the
largest diameter converges to one.

5. Concluding Remarks

This paper demonstrates that it is possible to extract informa-
tion about the topological structure of a compact space from a
finite approximation to it. The examples given here are subsets
of the plane where it is easy to see the structure of the data. In
higher-dimensional spaces, it is extremely difficult to visualize
the underlying topology of a cloud of points, so computational
techniques are necessary. In terms of analyzing data, our goal
is to use the persistent Betti numbers of ε-neighborhoods to
extrapolate the topology of the space the data approximate. In
Section 4, we computed only the regular Betti numbers, βk(ε), of
each ε-neighborhood. The examples given highlight the need for
an efficient implementation for computing the persistent Betti
numbers from data.

The persistent Betti numbers of a compact space, β0
k(Xε), re-

flect the topology of the limit space X, while the regular Betti
numbers, βk(ε), characterize the topology of the ε-neighborhood.
In applications, both sets of numbers may prove useful, since
the Betti numbers of the ε-neighborhoods give geometric infor-
mation about how their limit space is embedded. Questions
about the behavior of βλ

k (Xε) as a function of λ and ε remain,
specifically with regards to continuity properties as ε, λ → 0 for
different classes of spaces.

Our work also gives a new perspective on fractal dimensions.
In [20] we conjecture that for Cantor sets of zero Lebesgue mea-
sure, the disconnectedness index, γ0, takes the same value as the
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box-counting dimension. This is definitely the case for Cantor
subsets of R2, as implied by results in [22] (in fact γ0 is equiv-
alent to the fat fractal exponent). It is possible that a similar
relationship holds for γk when k ≥ 1.

The computational implementation is far from complete. Al-
though we show the ρ-persistent Betti numbers of data to be
computable via linear algebra techniques, faster algorithms are
necessary for the large data sets typically encountered in the
study of dynamical systems. We anticipate that efficient compu-
tational tools will assist in the numerical investigation of chaotic
systems by giving a deeper understanding of the structure of at-
tractors and other invariant sets.
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