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INFIMA OF RING TOPOLOGIES
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Abstract

We consider when the infima of two field topolo-
gies, considered as members of four different lat-
tices (the lattices of all topologies, of all group
topologies, of all ring topologies, and of all field
topologies) are the same and when they are dis-
tinct.

1. Introduction

The range of a sequence {xn} will be denoted by range{xn}.
The nonzero elements of an additive group G (e.g., the additive
group of a ring) will be denoted by G*. We denote the set
of integers, the set of positive integers and the set of rational
numbers by Z, Z>0 and Q, respectively. We denote the usual
topology on any subfield of the complex numbers by T∞.

By a group topology on an additive group we mean a topol-
ogy with respect to which addition is jointly continuous and
negation is continuous. By a ring topology we mean a group
topology on the additive group of a ring with respect to which
multiplication is jointly continuous; and by a field topology we
mean a ring topology on a field with respect to which inversion
is a continuous function on the set of nonzero elements of the
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field. We let Lt(K) (respectively, Lg(K), Lr(K), Lf (K)) denote
the set of all topologies (all group, ring, field topologies) on a
set (group, ring, field) K. Each of these four sets of topologies
is considered to be partially ordered by containment, and it is
well-known that each of these sets is a complete lattice with this
order (see, e.g., [10, pp.30–31]).

The least upper bound (greatest lower bound) of a subset E
of a totally ordered group or of the lattice all ring topologies on
a ring will be denoted by ∨E (∧E); we let a ∨ b = ∨{a, b} and
a ∧ b = ∧{a, b}.

We denote the trivial topology and the discrete topology on
any set by 0 and 1 , respectively.

Recall (see, e.g., [10, Definition 3.4.1]) that a family of topolo-
gies on a set is called independent if ∩Ui = ∅ for Ui ∈ Ti, where Ti

are distinct members of a finite subfamily of the family, implies
one of the sets Ui must be empty.

The neighborhood filter at the identity of a group topology
T will be denoted by B(T ). A group topology on a group G
is called minimal if it is a minimal element of the set of all
Hausdorff group topologies on G. Compact Hausdorff group
topologies are obvious examples of minimal group topologies.

A ring topology on a field is either Hausdorff or trivial (see,
e.g., [10, Theorem 1.3.1]). For certain subsets (near orders) A
of a field K, the sets {xA : x ∈ K*} form a neighborhood base
at zero for a Hausdorff ring topology on K; this topology is
denoted by TA (see, e.g., [10, Chapter 4]). In particular, the
topology having {xZ : x ∈ Q*} as a neighborhood base at zero
is denoted by TZ.

By a valuation on a field we mean either a nonarchimedean
valuation with values in a totally ordered abelian group (whose
operation we write as multiplication) or the usual absolute value,
denoted by | |∞, on a subfield of the complex numbers. For a
valuation v on a field K, the sets Ug(a) = {x ∈ K : v(x−a) < g}
are called spheres. The spheres about zero form a neighborhood
base at zero for a topology which we call the topology induced
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by the valuation. A nondiscrete topology induced by a valuation
on K is a field topology which is minimal among the set of all
Hausdorff ring topologies on K (see, e.g., [10, Theorem 3.3.1]).
Any family of nondiscrete topologies induced by valuations is
independent (see [16, Corollary 2.3]). The topology induced by
the valuation v is denoted by Tv. Thus T| |∞ = T∞.

A class of topologies called direct topologies was defined in
[18] and developed in [11], [12], [13], and [14]. These topologies
generalized important examples of ring topologies on Q defined
in [8] and [9]. Further important examples of direct topologies
appeared in [5] and [6].

Definition: A sequence of subsets {Mi n}i,n∈Z>0 of a ring S will
be called a direct system in S if

(D1) 0 ∈ Mi n for all i and n and Mi n = {0} if i < n;
(D2) −Mi n = Mi n for all i and n;
(D3) Mi n+1 + Mi n+1 ⊂ Mi n for all i and n;
(D4) [

∑k−1
i=1 (Mi 1 + Mi 1 + Mi 1)]

⋂
(Mk 1 + Mk 1 + Mk 1) = {0}

for all k > 1;
(D5) for all i and n,

∑
j∨k=i xjyk ∈ Mi n whenever xj ∈ Mj n+1

and yk ∈ Mk n+1; and
(D6) for all a ∈ S and n > 0, there exists k ≥ 0 such that,

for all i, aMi n+k ⊂ Mi n and Mi n+ka ⊂ Mi n.

For each positive integer n, Un = ∪∞
k=1

∑k
i=1 Mi n. The

sequence {Un} will be called the neighborhood base associated
with the direct system. A ring topology with a neighborhood
base at zero which is the neighborhood base associated with a
direct system will be called a direct topology.

The following construction of direct topologies is used in some
of the examples and in the final theorem.

Let (K, | |) be a field with a nontrivial absolute value, and
let R be a ring with quotient K such that R is discrete in the
topology induced by the absolute value. Let γ be a positive real
number less than or equal to 1; let {αi n}, i, n ∈ Z>0, i ≥ n, be
real numbers greater than or equal to ∧|R*|; and let Pi, i ∈ Z>0,
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be positive real numbers satisfying P1 ≥ 1/γ and

αi n ≥ αi n+1(2
i−1∑

j=n+1

αj n+1Pj + αi n+1Pi);

γPi+1

2·23i ≥
i∑

j=1

αj 1Pj.

Let {pi} be a sequence in R such that γPi ≤ |pi| ≤ Pi, for all
i. Then the sets Un, n ≥ 1, defined below form a neighborhood
base at zero for a ring topology on K (see [12, Theorem 12]):

Un = {
k∑

i=n

ai

bi
pi : ai, bi ∈ R, k ≥ n,

∣∣∣∣
ai

bi

∣∣∣∣ ≤ αi n, 0 < |bi| ≤ 23i−n}.

For a given field K, with a fixed choice of | | and R, the set of
all topologies of this form on K will be denoted by mut1(K).
For K = Q, we choose the usual absolute value and let R = Z.
The reader is referred to [12, Theorem 13] for the definition of
a second similar class of topologies referred to in Example 6 as
mut2(K). If J is an infinite subset of positive integers and J(i)
denotes the ith element of J listed as an increasing sequence,
then a topology finer than the topology with base {Un} may be
defined by taking the sets U ′

n consisting of sums in Un such that
ai = 0 for i /∈ J . This is referred to as the condensation of the
topology to J ([12, pp.199-200]); this definition of condensation
generalizes readily to all direct topologies). A second topology
finer than the one defined by {Un} is obtained by replacing the
parameters defining Un by

α′
i n = αJ(i) n, p′i = pJ(i).

We refer to this as the Mutylin condensation of the original
topology to J (see [12, p.211]).
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2. Infima

In [1] (or see [10, Theorem 3.2.1]) the authors show that for each
Hausdorff ring topology T on a field K, the quotient topology
for the division function

(K,T ) × (K*,T |K*) −→ K

(x, y) 7−→ x/y

is a Hausdorff field topology coarser than or equal to T . Mutylin
[9] showed that if B is a neighborhood base at zero for T , then

{ U

1 + U\{−1} : U ∈ B},

is a neighborhood base at zero for a Hausdorff field topology
weaker than T . (Weber [15] showed Mutylin’s result generalized
readily to topological rings.) Actually these two constructions
yield the same field topology: both may be verified to be the
finest field topology coarser than or equal to T (see, e.g., [10,
Theorem 3.2.1]). We will call this topology DT .

For a field K and S,T ∈ Lf (K), the supremum of S and
T is the same whether calculated in the lattice Lf (K), Lr(K),
Lg(K) or Lt(K). Analogous statements for ring topologies on a
ring and group topologies on a group are true. A neighborhood
base at a point x with respect to the supremum of a family T of
topologies on any set can be described explicitly: all sets of the
form ∩T ∈T0UT , where UT belongs to a T -neighborhood base at
x and T0 ranges over all finite subsets of T.

The situation is quite different for infima: For an arbitrary
set X, S ∩ T is the infimum of two topologies in Lt(X). For
an additive group G, the sets U + V , where U varies over an
S-neighborhood base at zero and V varies over a T -neighborhood
base at zero, are easily seen to form a neighborhood base at zero
for the infimum of S and T in Lg(G); we denote this topology
by S + T . The notation given above for the finest ring topol-
ogy weaker than both of the ring topologies S and T is S ∧ T .
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The infimum in Lf (K) of two topologies S and T is easily veri-
fied to be D(S ∧ T ). Clearly

D(S ∧ T ) ≤ S ∧ T ≤ S + T ≤ S ∩ T .

The purpose of this paper is to consider when these inequal-
ities are strict.

Theorem 1. If S and T are first countable Hausdorff group
topologies on an additively written abelian group G, then S∩T =
S + T if and only if S and T are comparable (i.e., S ≤ T or
T ≤ S).

Proof. Suppose S 6≤ T and T 6≤ S. Then there exist symmetric
sets U0 ∈ B(S) and V0 ∈ B(T ) such that V 6⊂ U0 and U 6⊂ V0

for any U ∈ B(S) and V ∈ B(T ). Thus, there exists a sequence

{xn} of elements in U0 such that xn
S→0, and xn /∈ V0 for any

n. If the range of xn has any T -cluster points, we replace the
sequence {xn} by a subsequence which is T -convergent to, say,
x; limT xn will denote the set (∅ or {x}) of all T -limits of {xn}.
Analogously, choose a sequence {yn} of elements in V0 such that

yn
T→0, yn /∈ U0 for any n, and limS yn = {y} or {yn} has no

S-cluster points.
We show that

E = range{xn + yn} ∪ lim
T

xn ∪ lim
S

yn

is not (S + T )-closed: Since xn + yn
S+T→ 0, 0 is in the (S + T )-

closure of E. But, when they exist, x, y 6= 0; and xn + yn = 0
would imply yn = −xn ∈ U0, a contradiction. So 0 /∈ E.

However, range{xn + yn} ∪ limT xn is T -closed, so E is
T -closed. Similarly E is S-closed. I.e.,

G\E ∈ (S ∩ T )\(S + T ). 2

The hypothesis of the theorem is not a necessary condition:
if S is a minimal Hausdorff group topology and T 6≥ S is
Hausdorff, then S + T is not T0, but all cofinite sets are in
S ∩ T , so S + T < S ∩ T .
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Theorem 2. If A is a ring and S,T ∈ Lr(A), then these
conditions are equivalent:

(1) S ∧ T = S + T ;
(2) S + T is a ring topology;
(3) given U ∈ B(S) and V ∈ B(T ), there exists U1 ∈ B(S)

and V1 ∈ B(T ) such that U1V1 ⊂ U+V and V1U1 ⊂ U+V .
The routine verification is omitted.

Lemma 3.1 Group topologies S and T on a group (G, ·) are
independent if and only if UV = G for all U ∈ B(S) and V ∈
B(T ). In particular, if G is abelian and its group operation is
addition, then S and T are independent if and only if S+T = 0.

Proof. The second statement follows from the first, and the easy
proof in [16, Theorem 1.6] of the first statement does not use
the assumed commutativity: If UV = G for all U ∈ B(S) and
V ∈ B(T ) and if A and B are nonempty S-open and T -open
sets, respectively, with a ∈ A and b ∈ B, then a−1b ∈ G =
(a−1A)(B−1b), so that there exists a′ ∈ A and b′ ∈ B such that
a−1b = a−1a′(b′)−1b. Hence, b′ = a′ ∈ A ∩ B. Conversely, if S
and T are independent, g ∈ G, U ∈ B(S) and V ∈ B(T ), then
there exists x ∈ U−1g∩V . That is x = u−1g = v for some u ∈ U
and v ∈ V . Then g = uv ∈ UV . 2

Theorem 3. If S and T are ring topologies on a field K such
that

(1) T is minimal among Hausdorff ring topologies on K,
(2) S 6≥ T , and
(3) S and T are not independent;

then 0 = S ∧ T < S + T .

Proof. (1) and (2) imply the stated equality, and Lemma 3.1
states that (3) is equivalent to the statement S + T 6= 0. 2
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Example 1: In the field Q,

TZ ∧ T∞ = 0 < TZ + T∞ < TZ ∩ T∞.

Example 2: For T ∈ mut1(K),

T ∧ T| | = 0 < T + T| | < T ∩ T| |.

Example 3: Let T be a nondiscrete direct field topology, and
let T o and T e denote the condensations of T to the set of odd,
respectively, even, positive integers (with both condensations
with respect to the same direct system). Then, by [12, Theorem
11], T o and T e are field topologies, and, from the definition of
the neighborhoods defining a direct topology,

T = D(T o ∧ T e) = T o ∧ T e = T o + T e < T o ∩ T e.

For T ∈ mut1(Q), let So and Se be the Mutylin condensa-
tions of T , to the sets of odd and even positive integers, respec-
tively, with defining neighborhood bases at zero {Uo

n} and {U e
n}.

Then

Uo
n + U e

n = {
∑ ai

bi
pi :

∣∣∣∣
ai

bi

∣∣∣∣ ≤ αi n, 0 < |bi| ≤ 23α},

where α is the integer i
2
− n or i+1

2
− n. One readily verifies (by

the same methods as in [7, pp.161–162]—or see [10, p.27]) that

Uo
n+1U

e
n+1 ⊂ Uo

n + U e
n.

Also,
P4n/233n ∈ Un\(Uo

2 + U e
2).

Therefore
T < So ∧ Se = So + Se.

Example 4: Let D be a Dedekind domain with quotient field
K; let V and W be D-submodules of K; and let lin(K,D) be
the collection of all D-linear ring topologies on K (see [3, p.476]
for definitions and terminology). Then

TV + TW = TV ∧ TW ,
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and TV +TW obviously is D-linear, so the infimum of TV and TW

computed in the lattice lin(K,D), viz., TV +W , is also TV + TW .
Hence, the only natural misinterpretation of the symbol “inf”

in [3] that would be erroneous is TV ∩ TW .

Theorem 4. (cf. [17, 2.2–2.4]) If {T ,T1,T2} is an independent
set of group topologies, then

(T1 ∨ T ) + (T2 ∨ T ) = T .

If {T ,T1,T2} is an independent set of ring topologies, then
also

(T1 ∨ T ) ∧ (T2 ∨ T ) = T .

If {T ,T1,T2} is an independent set of field topologies, then
also

D[(T1 ∨ T ) ∧ (T2 ∨ T )] = T .

Proof. Choose a set of the form

W = (U1 ∩U)+(U2 ∩U); Ui ∈ B(Ti), i = 1, 2; U ∈ B(T ).

The collection of all such sets is a base for (T1 ∨ T ) + (T2 ∨ T ).
Pick V ∈ B(T ) such that V − V ⊂ U . Choose z ∈ V and

x ∈ U1 ∩ (z − V ) ∩ (z − U2).

Then
z = x + (z − x) ∈ W ;

i.e., V ⊂ W , so

(T1 ∨ T ) + (T2 ∨ T ) ≤ T .

On the other hand, obviously

T [ ≤ D[(T1 ∨ T ) ∧ (T2 ∨ T )] ≤ (T1 ∨ T ) ∧ (T2 ∨ T )]

≤ (T1 ∨ T ) + (T2 ∨ T ). 2
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Example 5: ([17, 2.3–2.4]) Let E be a set of inequivalent
valuations on a field K, and, for A ⊂ E, let TA be the supremum
of the valuation topologies Tv, v ∈ A. If A, B and C are disjoint
subsets of E, then TA, TB and TC are independent. Since TA ∨
TC = TA∪C , TB ∨ TC = TB∪C and TC is a field topology,

D(TA∪C ∧ TB∪C) = TA∪C ∧ TB∪C = TA∪C + TB∪C = TC .

Theorem 5. Suppose S, T and U are ring topologies on a field
K satisyfing the following conditions:

(1) U is induced by a valuation.
(2) All zero neighborhoods of S ∨ T are U-unbounded.

[In the presence of condition (1), condition (2) above and (2 ′)
below are equivalent:

(2 ′) S ∨ T 6≥ U .]
(3) T and U are not independent.
(4) S and U are independent.

Then (S ∨ T ) ∧ (S ∨ U) < (S ∨ T ) + (S ∨ U).

Proof. Let S, T and U , with or without subscripts or primes,
denote open neighborhoods of zero in S, T and U , respectively.
Let Ug(0) be a sphere of radius g with respect to a valuation v
inducing U .

Hypothesis (3) implies there exists c ∈ K, and U and T such
that

(c + U) ∩ T = ∅.
Choose symmetric U1 such that U1 + U1 ⊂ U . Then, for any
a ∈ c + U1,

a /∈ (S ∩ T ) + (S ∩ U1).

Suppose the product (S ′∩T ′) · (S ′∩U ′) is given, and Ur(0) ⊂
U ′ ∩ U1. Using (2), choose x ∈ S ′ ∩ T ′ such that v( c

x
) < r′,

where r′ = r if v is nonarchimedian and r′ = r/2 otherwise. Let
t = (r/v(x)) ∧ r′ and choose y ∈ K such that

y ∈ S ′ ∩
(

c

x
+ Ut(0)

)

(using (4)). Then
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y ∈ c

x
+ Ut(0) ⊂ Ur(0) ⊂ U ′.

Therefore, y ∈ S ′ ∩ U ′ and xy ∈ (S ′ ∩ T ′) · (S ′ ∩ U ′). However,

v(xy − c) = v(x)v(y − c

x
) < r,

so
xy ∈ c + Ur(0) ⊂ c + U1.

The desired conclusion now follows from Theorem 2. 2

Example 6: Let q be a prime integer, and let Lq*(Q) denote
the set of all Hausdorff ring topologies on Q which are coarser
than or equal to TA, where A is the near order {m/qn : m,n ∈
Z}.

For U = T∞ on Q, the hypotheses of Theorem 5 are satis-
fied whenever S ∈ Lq* ∪ mut2(Q) and T ∈ {TZ} ∪ mut1(Q),
provided the same parameters {pi} are used to define S and T
when S ∈ mut2(Q) and T ∈ mut1(Q).

Although our results indicate that S ∩ T and S ∧ T are gen-
erally distinct, there are examples in the literature ([4, p.165],
[18, pp.40–43 and pp.66–69]), and [11, Theorem 8] of families
{Si} of group and ring topologies such that

∩iSi = ∧
i
Si.

We gave explicit descriptions for the neighborhoods of zero
for the topologies S ∨ T , S ∩ T and S + T ; and the neighbor-
hoods of zero in D(S ∧ T ) are described explicitly in terms of
the neighborhoods of zero in S ∧ T . When S ∧ T and S + T
coincide, we have a description of the neighborhoods of zero of
the former. It would be useful to have a description for the
(S ∧ T )-neighborhoods of zero in the general case.

Theorem 6. Let (K, | |) be a field with a nontrivial absolute
value. Suppose K contains a discrete subring whose quotient is
K. Then Lr(K) is not a distributive lattice.
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Proof. Choose T ∈ mut1(K) and a condensation TA > T . The
result follows from [2, pp.69–70] and this diagram:

/
TA

|
T
\

1

0

\
|
T| |
|
/

2
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