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Abstract

Let T be a tree, x ∈ T and ValT (x) be the valence
of x. For a continuous map f of T, h(f) is the
entropy of f . We study the class of transitive maps
f of T with f−1(x) = {x}. We prove that h(f) >

1
ValT (x)

log 3, and show that there exist a sequence

of transitive maps fn of T with f−1
n (x) = {x} and

h(fn) −→ 1
ValT (x)

log 3, n −→ ∞.

1. Introduction

Topological entropy of a transitive map of a tree has been stud-
ied by many authors [ABLM], [AKLS], [BC], [KH], [W] and [Y].
Particularly, in [ABLM] the authors obtain a lower bound of the
topology entropies of the transitive maps of a given tree with a
given point such that the preimage of this point under the maps
is itself. In this paper we aim at proving the lower bound men-
tioned before can NOT be reached, but it is the infimum.

Let f be a continuous map of a topological space X into itself.
We say f is transitive if for each pair of non-empty open subsets
(U, V ) of X there exists n ∈ N such that fn(U) ∩ V 6= ∅. By a
tree we mean a connected compact one-dimensional polyhedron,
which does not contain any subset homeomorphic to a circle
and which contains a subset homeomorphic to [0, 1]. A subtree
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of a tree T is a subset of T , which is a tree itself. If T is a
tree and x ∈ T , then the number of connected components of
T \ {x} is called the valence of x in T and will be denoted by
V alT (x). A point of T of valence 1 is called an end of T . The set
of the ends of T and the number of ends of T , will be denoted
by E (T ) and End (T ) respectively. The set of the vertices of
T is consisted of all the points of valences different from 2 and
finitely many points of valence 2, which depends on our need.
The set of the vertices of T will be denoted by V (T ) . The
closure of each connected component of T \ V (T ) is called an
edge of T . The set and the number of the edges of T , will be
denoted by Edge (T ) and EdgeN (T ) respectively. Note that a
point x ∈ Int (T ) = T \E(T ) will be said in the interior of T or
an interior point of T .

Let T be a tree and A ⊂ T . We will use [A] and cl(A) to
denote the smallest connected and closed subset containing A
and the closure of A respectively. If A = {a, b}, then we use [a, b]
to denote [A]. We define (a, b) = [a, b] \ {a, b} and we similarly
define (a, b] and [a, b).

We will use F (T, x) to denote the set of transitive maps of
a tree T such that the preimage of x ∈ T under this map is x
itself.

The following theorem is the Proposition 4.2 of [ABLM].

Theorem 1.1. Let f : T −→ T be a transitive map of a tree T
and x ∈ T with {x} = f−1(x). Then f has 3-horseshoe if x is
an end of T , and fk (k = ValT (T )) has 3-horseshoe if x is in
the interior of T .

We have the following immediate consequence.

Corollary 1.2. Let T be a tree, and x ∈ T. Then h(f) ≥
1

ValT (x)
log 3 for each f ∈ F (T, x).
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2. Entropy Estimate

In this section we shall prove that the topology entropy h(f)
can’t reach the lower bound 1

ValT (x)
log 3, for each f ∈ F (T, x),

where T is a tree and x ∈ T . That is, we will prove

Theorem 2.1. Let T be a tree, x be a point of T and f be a
transitive map of T such that f−1(x) = {x}. Then the topological
entropy h(f) > 1

ValT (x)
log 3.

To prove this theorem, we need the following lemmas

Lemma 2.2. Let T be a tree and f : T −→ T be transitive.
Then exactly one of the following alternatives holds.

(1) fn is transitive for each n ∈ N.

(2) There is n0 > 1 such that there are an interior fixed point y
of f and subtrees T1, . . . , Tn0 of T with ∪n0

i=1Ti = T , Ti∩Tj =
{y} for all i 6= j and f(Ti) = Ti+1(mod n0) for 1 ≤ i ≤ n0.
Moreover, fn0 |Ti is transitive for each 1 ≤ i ≤ n0.

The proof of Lemma 2.2 can be found in [AKLS]. And the fol-
lowing corollary is obvious.

Corollary 2.3. Let T be a tree, and E (T ) contain a fixed point
of f , then f s is transitive for each s ≥ 1 .

Lemma 2.4. Let T be a tree and f be a map of T such that f s

is transitive for each s ∈ N. Suppose H is a subtree of T with
H ∩ End (T ) = ∅, and J is an open subtree of T . Then there is
n ∈ N such that H ⊂ fn(J).

The proof of Lemma 2.4 is similar to that of Proposition 44 of
[BC].

Lemma 2.5. Let T be a tree , x ∈ E (T ) and f ∈ F (f, x), then
h(f) > log 3.
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Proof. We identify each edge containing x with the unit interval
[0, 1] (with x = 0), and use the usual ordering < to describe the
relative position of points of this edge. Points not on this edge
(if any) will be unimportant.

Set y0 = min{f(y) : y ∈ T \[0, 1], f(y) ∈ [0, 1]}, y1 = min{y ∈
[0, 1] : f(y) = 1} and y2 = min{y0, y1}. We need from transitiv-
ity only that if y ∈ [0, 1] then none of the sets [0, y] and T \ [0, y)
is f -invariant (plus we use the assumption f−1(0) = {0}), and
we will mean that when we say ”by transitivity”. Let Al (resp.
Ar) be the set of those points of [0, y2] that lead movement to
the left (resp. right). That is, y ∈ Al if y ∈ [0, y2], f(y) ≤ y
and f(z) ≥ f(y) for all z ∈ [y, 1]; similarly y ∈ Ar if y ∈ [0, y2],
f(y) ≥ y and f(z) ≤ f(y) for all z ∈ [0, y]. Clearly, Al and Ar

are closed. By transitivity, Al ∩ Ar = {0}. Also by transitivity
and by the definitions of Al and Ar, one can easily show the
following properties:

(1) Al ∩ (0, y] 6= ∅ for each y ≤ y2,
(2) Ar ∩ (0, y] 6= ∅ for each y ≤ y2,
(3) (f(y), y) ∩ Al 6= ∅ for each y ∈ Al, and
(4) (y, f(y)) ∩ Ar 6= ∅ for each y ∈ Ar such that f(y) ≤ y2.
Since Al and Ar are closed and by properties (1) and (2)

above, there are points w < t with w ∈ Ar, f(w) ≤ y2, t ∈ Al

and no points of Al ∪ Ar in (w, t). By properties (3) and (4)
above, there are points v ∈ (f(t), t)∩Al and u ∈ (w, f(w))∩Ar.
Hence , we get

f([v,w]) ⊃ [f(v), f(w)] ⊃ [v, u],

f([w, t]) ⊃ [f(t), f(w)] ⊃ [v, u],

and
f([t, u]) ⊃ [f(t), f(u)] ⊃ [v, u].

Notice that f(w) > u, f(t) < v. Therefore, there are three
pairwise disjoint intervals I1,I2 and I3 ⊂ [v, u] such that f(Ii) =
[v, u], i = 1, 2, 3. Thus, there exists an open interval J ⊂ [v, u] \
(I1 ∪ I2 ∪ I3). By Lemma 2.4 , there exists k ∈ N such that
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fk(J) ⊃ [v, u]. It’s obvious that there are 3k pairwise disjoint
closed intervals Ji ⊂ I1∪ I2∪ I3, i = 1, . . . , 3k such that fk(Ji) =
[v, u]. Hence the intervals among {J} ∪ {Ji}3k

i=1 are pairwise
disjoint, in other words, fk has (3k +1)-horseshoe. This implies

k h(f) = h(fk) ≥ log(3k + 1) > k log 3.

That is, h(f) > log 3. This ends the proof of Lemma 2.5. 2

Proof of Theorem 2.1: Set h = V alT (x). By the assump-
tion f−1(x) = {x} and the transitivity of f , we have f(Ti) =
Ti+1(mod h), where {Ti}h−1

i=0 is the set of the closures of the com-
ponents of T \ {x}. Moreover, Ti is fh-invariant and fh|Ti is
transitive, 0 ≤ i ≤ h − 1. By Lemma 2.3, we have that
h h(f) = h(fh) ≥ h(fh|Ti) > log 3. Consequently, h(f) >
1
h

log 3 = 1
ValT (x)

log 3.

3. The Lower Bound is Infimum

In this section we shall prove that the lower bound obtained in
Theorem 2.1 is infimum. That is,

Theorem 3.1. Let T be a tree, x ∈ T , and ε > 0. Then there
exists f ∈ F (T, x) such that h(f) < 1

ValT (x)
log 3 + ε. Conse-

quently, 1
ValT (x)

log 3 = inf{h(f)|f ∈ F (T, x)}.

To prove Theorem 3.1, we need the following lemmas.

Lemma 3.2. [KH P.123] Let T be a tree, f be a continuous
map of T and d be a metric on T such that there exists a positive
real number L with d(f(a), f(b)) ≤ L d(a, b) for each a, b ∈ T .
Then h(f) ≤ max{0, log L}.

For each edge e of a tree T , e is homeomorphic to some in-
terval Ie under some homeomorphism ϕe : e → Ie. DT is called
an atlas of T , if DT is a map which maps each edge e of T to
some homeomorphism ϕe from e to Ie = [0, te](te > 0).
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Let T be a tree and S be a subset of T . S is called measur-
able, if for each edge e, ϕe(S ∩ e) is Lebesgue measurable as a
subset of Ie. For each edge e, we can define a measure me such
that me(A) = µIe(DT (e)(A)) = µIe(ϕe(A)) for each measurable
subset A of e, where µIe is the Lebesgue measure of Ie. For a
measurable subset S ⊂ T , let

mDT
(S) =

∑

e∈Edge(T )

me(S ∩ e).

Clearly, mDT
is a measure of T completely determined by DT .

For any two points a and b of T , let

dDT
(a, b) = mDT

([a, b]).

Clearly, dDT
is a metric of T which is completely determine by

DT . And it is compatible to the original topology on T (inherited
from R2).

Definition 3.3. Let T and T ′ be two trees and f be a map
from T to T ′. DT and DT ′ are atlases on T and T ′ respec-
tively. We call f a PL-map(or, piecewise linear map) if for
each e ∈ Edge (T ), J = f(e) is an interval of T ′, and f |e is
a non-degenerate linear function from e to J , i.e. there exists
c > 0 such that dDT ′ (f(a), f(b)) = c dDT

(a, b),and we call c the
scale of f on e.

Here is a property of a PL-map:

Lemma 3.4. Let T and T ′ be two trees, and f be a PL-map
from T to T ′. Then there is L′ > 0, such that mDT ′ (f(S)) ≥
L′ mDT

(S) for each subtree S of T .

Proof. Let S be a subtree of T . By the definition of mDT
,

mDT
(S) =

∑
e∈Edge (T ) mDT

(S ∩ e). Then we have

mDT ′ (f(S)) = mDT ′ (f(∪e∈Edge (T )(S ∩ e)))

= mDT ′ (∪e∈Edge(T )f(S ∩ e))

≥ ce mDT
(S ∩ e),
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for each edge e of T , where ce is the scale of f on e. It is easy
to see that there exists e0 ∈ Edge (T ) such that mDT

(S ∩ e0) ≥
1

EdgeN(T )
mDT

(S). Therefore,

mDT ′ (f(S)) ≥ ce0 mDT
(S ∩ e0)

≥ min{ce|e ∈ Edge (T )}
EdgeN (T )

mDT
(S)

= L′ mDT
(S),

by letting

L′ =
min{ce|e ∈ Edge (T )}

EdgeN (T )
.

This ends the proof of Lemma 3.4. 2

We call L′ an L′-constant of f , and write L′(f) = L′. We
have some properties showing relations between atlas, measure,
metric and PL-map. Note that if DT is an atlas of T , and
c, c′ > 0, then cDT will denote the atlas with (cDT )(e) = cDT (e)
for each e ∈ Edge(T ).

Remark 3.5.

(i) mcDT
= cmDT

, dcDT
= cdDT

, and

(ii) if f is a PL-map from T (related to DT ) to T ′(related to DT ′),
then f is also a PL-map from T (related to cDT ) to T ′(related to
c′DT ′).

Moreover, (1) LcDT ,c′DT ′ (f) = c′

c
LDT ,DT

(f), L′
cDT ,c′DT ′ (f) =

c′

c
L′

DT ,DT ′ (f), where LDT ,DT ′ (f), L′
DT ,DT ′ (f) denote the Lipschitz

constant and L’-constant (related to DT and DT ′) respectively.

(2) if c = c′, then LcDT ,c′DT ′ (f) = LDT ,DT ′ (f) and L′
cDT ,c′DT ′ (f) =

L′
DT ,DT ′ (f).
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Fig. 1.

Proof of Theorem 3.1: Let h = ValT (x). Then T \ {x} has
exactly h connected components, whose closures will be denoted
by Ti, i = 0, ..., h−1. We choose an interior point yi in the edge
of Ti, which contains x. And we add yi as a new vertice of T
and Ti. Then Ti can be represented as Pi ∪T ′

i , where Pi = [x, yi]
which is an edge of Ti. For any given ε > 0, which is small
enough, we want to construct a continuous map f ∈ F (T, x)
which has the topological entropy less than 1

ValT (x)
log 3 + ε.
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To do this, first we choose a homeomorphism ϕPi : Pi −→
[0, 1] with ϕPi(x) = 0 for each 0 ≤ i ≤ h − 1, and then we
construct maps fi from Ti to Ti+1(mod h) (see Figure 1) with the
following properties:

(a) For 0 ≤ i ≤ h − 2, let fi map Pi onto Pi+1 with fi =
ϕ−1

Pi+1
◦ ϕPi satisfying that

(1) fi|T ′
i
: T ′

i −→ T ′
i+1 is a surjective PL-map, and

(2) there is a constant Li ≤ 3
1
h ...(∗), such that

dDTi+1
(fi(x), fi(y)) ≤ Li dDTi

(x, y) for any x, y ∈ Ti, 0 ≤
i ≤ h − 2.

By Lemma 3.4, there exists L′
i > 0 such that mDTi+1

(fi(S)) ≤
L′

i mDTi
(S) for any subtree S of T ′

i .

(b) For convenience, we identify Pi(0 ≤ i ≤ h − 1) with [0, 1],
i.e. for each a, b ∈ [0, 1] denote the point (DTi(Pi))

−1(a)
simply by a, and denote [(DTi(Pi))

−1(a), (DTi(Pi))
−1(b)] ⊂

Pi simply by [a, b] ⊂ [0, 1]. Note that, this will be also used
in the rest part of this paper.

Let fh−1 map Th−1 onto T0 satisfying

(1) fh−1(u
l
0) = fh−1(u

r
0) = 1, fh−1(vj) = vj, j ≥ −1,

fh−1(uj) = vj−1 + ε
2j , j ≥ 1, and fh−1(wj) = vj + ε

2j , j ≥ 0,

where

vj = 1
2j+1 , uj = vj + 1

3
1

2j+1 , wj = vj + 2
3

1
2j+1 , j ≥ 0,

ul
0 = u0 − δ, and ur

0 = u0 + δ (δ will be determined later).

(2) Moreover, fh−1 is linear on intervals
{[v0, u

l
0], [u

r
0, w0], [w0, v−1]} ∪ {[vj, uj], [uj, wj], [wj, vj−1]}∞j=1

respectively (see Figure 2).
For each j ≥ 1, let ul

j < ur
j be those of [vj, vj−1] such that

f(ul
i) = f(ur

i ) = vi. And
for each j ≥ 0, let wl

j < wr
j be those of [vj, vj−1] such that

f(wl
j) = f(wr

j ) = vj.



606 Yong Su and Xiangdong Ye

Fig. 2.

(3) For each j ≥ 0, let

Ij = [vj, u
l
j], Jj = [ul

j, u
r
j ], Kj = [ur

j, w
l
j], Lj = [wl

j, w
r
j ],

and Mj = [wr
j , vj−1]. Then we can choose a PL-map fh−1|J0

from J0 onto T ′
0 such that LDJ0

,DT ′
0

(fh−1|J0) ≤ 3
1
h for some

atlases DJ0 (we take J0 as a new edge of T ) and DT ′
0
. . . (**).

This can be done by using Definition 3.3 and Remark 3.5
(ii).

(4) It is easy to see that we can obtain a PL-map fh−1|T ′
h−1

onto φ−1
T0

[1 − δ′, 1] (by choosing δ′), such that L(fn−1|T ′
0
) ≤

3
1
h . . . (***).
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Let f = ∪h−1
i=0 fi. Then f is a continuous map of T with

f−1(x) = {x}.
Therefore, to prove Theorem 3.1 it’s enough to show that we

can choose ε, δ, and δ′ such that f is a transitive map of T and
its entropy is ”very” close to 1

ValT (x)
log 3.

Let F = fh|T0 = fh−1 ◦ fh−2 ◦ ... ◦ f0. By (*),(**) and (***) ,
we know that the Lipschitz constant L(F ) ≤ 3+6ε

1−6δ
, where

lim
ε−→0+,δ−→0+

3 + 6ε

1 − 6δ
= 3.

By Lemma 3.1, h(F ) ≤ log( 3+6ε
1−6δ

). Hence,

h(f) =
1

h
h(f |hT0

)

=
1

ValT (x)
h(F ) −→ 1

ValT (x)
log 3(ε −→ 0+, δ −→ 0+).

By Lemma 3.2 there exists L′
i > 0 such that mDT

(fi(S)) ≥
L′

i mDT
(S), 0 ≤ i ≤ h−1, for any subtree S of T ′

i , 0 ≤ i ≤ h−1.
Thus, there exists L′

J0
> 0 such that m(f(S)) ≥ L′

J0
m(S) for

each subtree S of T ′
0. Let L′ =

∏h−1
i=0 L′

i. Now, we need to choose
δ′ > 0 and n′ ∈ N such that

(1) δ′(3 + 6ε)n′
< 1

6
,

(2) L′ 3n′
> 1, and

(3) L′
J0

L′ 3n′
> 1.

This can be done by letting

(i) n′ >
max( 1

L′ , 1
L′

J0
L′ )

log(3+6ε)
, and

(ii) δ′ < 1
12

1
(3+6ε)n′

In order to preserve the constants Li, L
′
i, LJ0 and L′

J0
, we

need to change the atlas DT of T on the subforest (∪0≤j≤h−1T
′
j)∪

fh−1(J0) and decrease δ (by Remark 3.5 (ii)).
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Now, it is easy to see that

(I) For each closed subtree T ′ of T0 \{x}, and each subtree S of
T0 containing some point from V = {vi, u

l
i, u

r
i , w

l
i, w

r
i }∞i=0 ∪

{1}, there exists n ∈ N such that F (S) ⊃ T ′.

(II) We claim that, for each subtree S of T0, there exists
N ∈ N ∪ {0} such that F N(S) ∩ V 6= ∅. Assume the con-
trary, i.e., F (S) ⊂ U \ V , for each n ∈ N ∪ {0}, where
U ∈ {Ii, Ji,Ki,Mi, Li}∞i=0 ∪ {T ′

0}. Then
(1) If U ∈ {Ji, Li}∞i=1∪{L0} then mDT0

(F (S)) ≥ 3
2

mDT0
(S),

(2) if U = J0, then F n′
(S) ⊂ M0 (by (****)) and

mDT0
(F n′

(S)) ≥ L′
J0

3n′
mDT0

(S).
(3) if U ∈ {Ii,Ki,Mi}∞i=0 ∪ {I0,K0}, then mDT0

(F (S)) ≥
3mDT0

(S),

(4) if U = T ′
0, mDT0

(F n′
(S)) ≥ L′ 3n′

mDT0
(S).

For mDT0
(S) > 0, L′ > 1, we have

lim sup
n−→+∞

mDT0
(F n(S)) = +∞,

a contradiction. This proves the claim.

By (I) and (II) we get that F is transitive. It follows that f is
transitive, too.
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