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INVERSE LIMITS ON CIRCLES USING WEAKLY
CONFLUENT BONDING MAPS

W. T. INGRAM

Abstract. In this paper we consider the circle-like continua
which are inverse limits on circles using weakly confluent
bonding maps. These include all proper circle-like continua
and some indecomposable chainable continua. In an attempt
to understand the nature of the chainable continua in this
class of continua, we include an investigation of a specific
parameterized family of mappings of [0, 1] which arise from
certain weakly confluent, inessential mappings of the circle.

0. Introduction

In 1954, Capel [2] showed that the inverse limit of an inverse se-
quence {Xi, fi} where, for each positive integer i, Xi = S1 (the unit
circle in the plane) and fi is a monotone surjection is homeomor-
phic to S1. In 1985, J. J. Charatonik showed that inverse limits on
circles with open bonding maps produce the solenoids as do inverse
limits on circles using confluent bonding maps [3]. The latter result
also follows from theorems of Krupski [8], W. Charatonik [4] and
Capel [2]. These observations prompted W. J. Charatonik to ask
in seminar at the University of Missouri – Rolla in the fall of 1999
which continua arise as an inverse limits on circles using weakly
confluent bonding maps. In Section 2 of this paper we provide a
solution to this problem. Attempting to refine this classification
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led the author to the investigation of the family of inverse limits
studied in Section 3 of this paper.

By a continuum we mean a compact, connected subset of a metric
space. By a mapping we mean a continuous function. A point x
is said to be an endpoint of a continuum M provided whenever H
and K are subcontinua of M containing x then H is a subset of
K or K is a subset of H. A continuum is said to be decomposable
if it is the union of two of its proper subcontinua and is called
indecomposable if it is not decomposable. If X1, X2, X3, · · · is a
sequence of topological spaces and f1, f2, f3, · · · is a sequence of
mappings such that, for each positive integer i, fi : Xi+1 → Xi,
then by the inverse limit of the inverse sequence {Xi, fi} we mean
the subset of

∏

i>0

Xi to which the point x belongs if and only if

fi(xi+1) = xi for i = 1, 2, 3, · · · . The inverse limit of the inverse
limit sequence {Xi, fi} is denoted lim←− {Xi, fi}. It is well known
that if each factor space, Xi is a continuum, the inverse limit is a
continuum. In case we have a single factor space, I, and a single
bonding map, f , we denote the inverse limit by lim←− {I, f}. We
denote the projection of the inverse limit into the nth factor space
by πn. If K is a subcontinuum of the inverse limit, we denote
πn[K] by Kn. If f : X → Y is a mapping and f [X] = Y , we write
f : X →→ Y . If f : X →→ Y is a mapping and K is a subcontinuum
of Y , we say the f is weakly confluent with respect to K provided
some component of f−1(K) is thrown by f onto K. A mapping
f : X →→ Y is weakly confluent provided it is weakly confluent with
respect to each subcontinuum of Y .

1. Weakly confluent maps of the circle to itself

Suppose f : S1 → S1 is a mapping. Denote by exp the covering
map of the reals, R, onto S1 given by exp(t) = eit. Following
Cook [5], there is a map f∗ : R → R such that exp ◦ f∗ = f ◦
exp. Indeed, there are infinitely many choices for f∗ but we merely
choose one. Note that f is inessential if and only if f∗(0) = f∗(2π).
Consequently, f is essential if and only if f∗ is a surjection. Denote
by M(f) the number f∗(b)−f∗(a)

2π where f∗(b) is the maximum value
of f∗|[0, 2π] and f∗(a) is the minimum value of f∗|[0, 2π]. The
number M(f) is independent of the choice of f∗ and is denoted by
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R(f) in [6] and by AS(f) in [9]. Intuitively, M(f) is the largest
“number” of times any arc lying on S1 is wrapped around S1. The
following lemma is the heart of our arguments for weak confluence
of maps of the circle.

Lemma. Suppose f : S1 →→ S1 and f∗ : R → R are mappings
such that exp ◦ f∗ = f ◦ exp. If K is a subcontinuum of S1 then
f is weakly confluent with respect to K if and only if exp|f∗[R] is
weakly confluent with respect to K.

Proof: Suppose K is an arc lying in S1 and exp|f∗[R] is weakly
confluent with respect to K. Then, there is an arc α lying in f∗[R]
such that exp[α] = K. Since f∗ is weakly confluent, there is an arc
β lying in R such that f∗[β] = α. If H is exp[β], then H is an arc
lying in S1 such that f [H] = K.

On the other hand, if K is a subcontinuum of S1 and H is a
subcontinuum of S1 such that f [H] = K, there is an arc β lying in
R such that exp[β] = H. But, exp ◦ f∗ throws β onto K so f∗[β]
is a subarc of f∗[R] such that exp[f∗[β]] = K. ¤
Theorem 1. (Feuerbacher) If f : S1 → S1 is essential, then f is
weakly confluent.

Proof: Since f is essential, f∗ is surjective. Thus, if K is a sub-
continuum of S1, there is an arc α such that exp[α] = K. By the
lemma, f is weakly confluent with respect to K. It follows that f
is weakly confluent. ¤

In his dissertation at the University of Houston in 1974 which
he published in Fundamenta Mathematicae in 1980, Gary Feuer-
bacher proved Theorem 1 [6 , Lemma 6, p. 6]. The proof we
presented above is different from that of Feuerbacher. As a con-
sequence of Theorem 1, the problem of characterizing the weakly
confluent maps of the circle to itself reduces to determining which
inessential maps of the circle are weakly confluent. In the following
theorem we see that an inessential map of S1 onto itself is weakly
confluent if and only if some arc lying in S1 is wrapped around
S1 twice. The results in Theorem 2 and its corollary have been
known at least ten years [9, 13.69, p. 309], however, the author
has not seen that proof and since this paper is for the most part
about weakly confluent maps of the circle which are inessential, we
include its proof for the sake of completeness.
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Theorem 2. Suppose f : S1 →→ S1 is inessential. Then, f is
weakly confluent if and only if M(f) ≥ 2.

Proof: Suppose f : S1 →→ S1 and M(f) ≥ 2. Since M(f) ≥ 2,
and f is inessential, f∗[R] is an arc whose length is at least 4π. So,
if K is a subarc of S1 there is an arc α lying in f∗[R] such that
f∗[α] = K. So exp|f∗[R] is weakly confluent with respect to K. By
the Lemma, f is weakly confluent with respect to K and, so, f is
weakly confluent.

On the other hand, suppose M(f) < 2 and a and b are numbers in
[0, 2π] such that f∗(b)−f∗(a)

2π = M(f). Choose numbers c and d such
that f∗(b) < c < d < f∗(a)+4π and let K be the arc exp[d−2π, c].
There are two intervals which intersect f∗[R] and are mapped by
exp onto K. These are [d−2π, c] and [d−4π, c−2π]. However, since
f∗(b) < c and d− 4π < f∗(a), no subinterval of f∗[R] is thrown by
exp onto K, so by the Lemma, f is not weakly confluent. ¤
Corollary. (Brooks) Suppose f : S1 →→ S1 is a mapping. Then, f
is weakly confluent if and only if f is essential or M(f) ≥ 2.

Two intervals are said to be non-overlapping if they are mutually
exclusive or they share only a common endpoint. If f is a mapping
of an interval I onto an interval J and n is a positive integer, we say
that f satisfies the n-pass condition provided there are n mutually
non-overlapping subintervals of I each of which is thrown by f
onto J . An inverse limit on intervals produces an indecomposable
inverse limit if each bonding map satisfies the two-pass condition
[7, Theorem 6.3].

Theorem 3. If f : S1 →→ S1 is an inessential, weakly confluent
map, f∗ : R → R is a map such that exp ◦ f∗ = f ◦ exp and
[u, v] is an interval of length at least 4π, then f∗|[u, v] satisfies the
three-pass condition.

Proof: Suppose f : S1 →→ S1 is an inessential, weakly confluent
map and f∗ : R → R is a map of the reals such that exp ◦ f∗ =
f ◦ exp. Since f is inessential, f∗[R] is an interval. Since f∗ is
weakly confluent and the length of [u, v] is at least 4π, there is
an interval [c, d] lying in [u, u + 2π] such that f [c, d] = f∗[R] with
{f∗(c), f∗(d)} being the endpoints of f∗[R]. It is easy to see that
[c, d], [d, c+2π] and [c+2π, d+2π] all lie in [u, v] and each is thrown
by f∗ onto f∗[R]. ¤



WEAKLY CONFLUENT BONDING MAPS ON CIRCLES 205

2. Inverse limits

We now consider inverse limits on circles using weakly confluent
bonding maps. Since each essential map of the circle is weakly
confluent, this class of continua includes all the circle-like continua
which are not chainable (the proper circle-like continua). Thus, we
are led to consider inverse limits on circles using inessential, weakly
confluent bonding maps.

Theorem 4. If {Xi, fi} is an inverse limit system where, for each
positive integer i, Xi = S1 and fi is an inessential, weakly confluent
map, then lim←− {Xi, fi} is homeomorphic to lim←− {[0, 1], gi} where,
for each i, gi satisfies the three-pass condition.

Proof: Let M = lim←− {S
1, fi} where, for each i, fi is inessential

and weakly confluent. Since each fi is inessential, for each i, there is
a map φi : S1 → R such that fi = exp◦φi. For each positive integer
i, let f∗i = exp◦φi. Since fi is inessential and exp◦f∗i = fi◦exp, we
have f∗i [R] is an interval of length at least 4π and f∗i |f∗i+1[R] throws
f∗i+1[R] onto f∗i [R]. By the Subsequence Theorem [7, Corollary
1.7.1], M is homeomorphic to lim←− {f

∗
i [R], f∗i |f∗i+1[R]}. Rescaling

this inverse limit on intervals yields the desired inverse limit on
[0, 1]. ¤

Theorem 5 provides an answer to Charatonik’s question.

Theorem 5. If the continuum M is homeomorphic to an inverse
limit on circles using weakly confluent bonding maps then M is a
proper circle-like continuum or M is homeomorphic to an inverse
limit on intervals with each bonding map satisfying the three-pass
condition.

Burgess showed [1, Theorem 7, page 657] that if M is a chainable
continuum then in order that M be circle-like it is necessary and
sufficient that M be indecomposable or 2-indecomposable. It fol-
lows from Theorem 5 that any chainable continuum which arises as
an inverse limit on circles using weakly confluent, inessential bond-
ing maps must be indecomposable. It would be interesting to know
if each indecomposable chainable continuum is homeomorphic to an
inverse limit on circles using inessential, weakly confluent bonding
maps.
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3. A parameterized family

In an attempt to obtain a better understanding of the rich vari-
ety of these chainable continua, the author decided to investigate
a specific parameterized family of maps which arise from weakly
confluent, inessential maps of the circle. When one employs the au-
thor’s scheme for representing maps by which one “fattens up” the
range and then draws the domain inside according to the pattern
of the map, one obtains pictures like those of Figure 1. Specifically,
in Figure 1, two maps of an entire family of maps of the circle are
represented. The map changes with the choice of where one places
the point (1, 0) on the domain circle and two possible choices are
shown in Figure 1. We shall see that one of these two maps pro-
duces the classic B-J-K continuum [7] while the other produces a
chainable continuum with no endpoints. Moreover, we shall also
see that if n is a positive integer, there are members of this family
with only n end points. If f is a member of the family of maps of
the circle indicated in Figure 1, f∗[R] is an interval of length 4π
and f∗|f∗[R] throws f∗[R] onto itself. When we consider the maps
of [0, 1] produced by rescaling the maps f∗|f∗[R], we obtain maps
such as those shown in Figure 2 with the map shown below being
more “typical.” The two maps shown in Figure 2 are in fact the
maps produced by those from Figure 1. In general, the parameter-
ized family of maps of [0, 1] that results from the family of circle
maps is given by

ft(x) =





4x + t 0 ≤ x ≤ 1−t
4

−4x + (2− t) 1−t
4 ≤ x ≤ 2−t

4

4x− (2− t) 2−t
4 ≤ x ≤ 3−t

4

−4x + (4− t) 3−t
4 ≤ x ≤ 4−t

4

4x− (4− t) 4−t
4 ≤ x ≤ 1

where the parameter t lies in [0, 1].
We now focus our attention on inverse limits of inverse systems

using a single bonding map chosen from this family of maps. If
0 ≤ t ≤ 1, we denote by Mt the inverse limit of the inverse sequence
{[0, 1], ft}. We shall see that for each non-negative integer n, there
is a parameter value t such that Mt has only n endpoints.
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Theorem 6. If 0 or 1 is periodic of period p for ft then Mt is an
indecomposable continuum with only p endpoints.

Proof: Suppose 0 is periodic of period p. For convenience of no-
tation we denote ft by f and Mt by M . Let E denote the set to
which the point x of M belongs if and only if xi = 0 for infinitely
many integers i. It is clear that the cardinality of E is p. Moreover,
each point of E is an endpoint of M . To see this suppose x is a
member of E and H and K are subcontinua of M containing x.
Then, for infinitely many integers i, Hi is a subset of Ki or, for
infinitely many integers i, Ki is a subset of Hi since xi = 0 for
infinitely many i. However, if i > j and Hi is a subset of Ki then
Hj is a subset of Kj since f i−j [Hi] = Hj and f i−j [Ki] = Kj . Thus,
for every i, Hi is a subset of Ki or, for every i, Ki is a subset of Hi.
Consequently, H is a subset of K or K is a subset of H, so x is an
endpoint of M .

If x is not in E, we shall now show that x is not an endpoint of M
by showing that there exist two arcs α and β lying in M such that
α ∩ β = {x}. Let O = {1} ∪ {0, f(0), . . . , fp−1(0)}. There exists a
positive integer N such that if i ≥ N then xi is not in O. There
exist two arcs αN and βN lying in [0, 1] such that αN ∩βN = {xN}
and αN ∪βN does not intersect O. There exist arcs αN+1 and βN+1

lying in [0, 1] such that αN+1 ∩ βN+1 = {xN+1} and such that f
throws αN+1 and βN+1 onto αN and βN , respectively. Continuing
this process we build inverse systems {αi, f |αi} and {βi, f |βi} (for
i ≤ N , take αi and βi to be the fN−i images of αN and βN ,
respectively) whose inverse limits are the arcs α and β. ¤

Theorem 7. For t = 1
2 , Mt has no endpoints.

Proof: As in the proof of Theorem 5 we denote ft by f and Mt

by M . Let x be a point of M . If x = (1
2 , 1

2 , 1
2 , · · · ) then, as in the

second half of the proof of Theorem 5, we can produce arcs α and
β such that α ∩ β = {x}, so x is not an endpoint of M . If x is not
(1
2 , 1

2 , 1
2 , · · · ), since f(0) = 1

2 and 1
2 is fixed by f , there is a positive

integer N such that if i ≥ N then xi is not in {0, 1
2 , 1}. Now, again

as in the second half of the proof of Theorem 5, we can produce
arcs α and β such that α ∩ β = {x}, so x is not an endpoint of M .
¤
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We end this paper with some computations to show that, for each
positive integer p, there is a member of the family {ft} which has
0 in a periodic orbit of period p. Since ft(2−t

4 ) = 0 and ft(4−t
4 ) = 0

and f(0) = t, we get 0 to be in a periodic orbit of period 2 when
t = 2−t

4 and when t = 4−t
4 . Thus, when t = 2

5 and when t = 4
5 we

have 0 in a periodic orbit of period 2.
To obtain periodic orbits for 0 of higher orders, we introduce

some notation. Let us denote by ft,2 the inverse of ft|[1−t
4 , 2−t

4 ] and
by ft,3 the inverse of ft|2−t

4 , 3−t
4 ]. Solving the equation t = ft,2(2−t

4 )
yields t = 6

19 . Thus, for t = 6
19 , f2

t (t) = 0, so 0 is periodic of period
3. We could also get 0 in a periodic orbit of period 3 by choosing t
to be the solution to the equation t = ft,3(2−t

4 ). This yields t = 10
21 .

In order to obtain a periodic orbit of period p for 0, one could
solve t = (ft,3)p−2(2−t

4 ) for t. For each p, there is a solution to
this equation since the sequence (ft,3)n(2−t

4 ) increases to the fixed
point for ft in [2−t

4 , 3−t
4 ]. Of course, the map ft,2 could have been

employed in place of ft,3 to produce a different parameter value for
producing a periodic orbit of 0 of period p. Yet another choice in
producing a periodic point of period p would be to mix up the choice
between ft,2 and ft,3 (e.g., to get 0 in an orbit of period 4, solve
t = ft,2 ◦ ft,3(2−t

4 ) which yields t = 22
75). It might be interesting to

know whether the set of parameter values which produce periodic
orbits of 0 is dense in some interval.
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