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A SUFFICIENT CONDITION THAT THE HIGSON
CORONA OF THE HALF OPEN INTERVAL [0,∞) IS

A DECOMPOSABLE CONTINUUM

KAZUO TOMOYASU

Abstract. The Higson compactification (cf. [5]) is a metric
dependent compactification. In this paper, we will give a
sufficient condition that the Higson corona of the half open
interval is a decomposable continuum.

1. Introduction

All spaces considered in this paper are assumed to be locally com-
pact and Hausdorff. By C∗(X) (resp. C(X)), we denote the ring
of all bounded real-valued (resp. real valued) continuous functions
on X. It is well-known that there is a one-to-one correspondence
between the compactifications of a space X and the closed subrings
of C∗(X) containing the constants and generating the topology of
X. Let f : X → Y be a continuous function between metric spaces
(X, d) and (Y, ρ). We say that the function f satisfies the (∗)d-
condition provided that

(∗)d lim
x→∞diamρ f

(
Bd(x, r)

)
= 0 for each r > 0,

that is, for each r > 0 and each ε > 0, there is a compact set
K = Kr,ε in X such that diamρ f

(
Bd(x, r)

)
< ε for each x ∈ X \K.
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Let C∗
d(X) = {f ∈ C∗(X) | f satisfies (∗)d}. Then C∗

d(X) is a
closed subring of C∗(X).

The Higson compactification X
d of a proper metric space (X, d)

is the compactification associated with the closed subring C∗
d(X)

of C∗(X) [5], where a metric d on a space X is said to be proper
provided that every bounded subset in X has the compact closure.
The remainder X

d \X is called the Higson corona and we denote
the Higson corona of X by νdX. For undefined notations and ter-
minologies, see [1] and [3].

In ([4], Theorem 1.6), we showed the following theorem: Let d
be a proper metric on J = [0,∞) satisfying the following condition
(†): d(x, y) + d(y, z) = d(x, z) for each x, y, z ∈ J with x < y < z.
Then the Higson corona νdJ is an indecomposable continuum. Of
course, the usual metric on [0,∞) satisfies the condition (†). This
condition says that the metric d is induced by a homeomorphism
between half-open intervals [0,∞).

In fact, if a proper metric d satisfies (†), then the map h :
[0,∞) → [0,∞) defined by h(x) = d(0, x) is a homeomorphism
satisfying d(x, y) = |h(x) − h(y)| for each x, y ∈ [0,∞). On the
contrary, for any given homeomorphism h : [0,∞) → [0,∞), define
d(x, y) = |h(x) − h(y)| for x, y ∈ [0,∞). Then we obtain a proper
metric d satisfying (†).

In the above argument, the Higson corona of the half-open in-
terval with a proper metric induced by a homeomorphism between
half-open intervals [0,∞) is an indecomposable continuum. Then
we are interested in the Higson corona of the half-open interval with
a proper metric induced by a subspace metric of the Euclidean plane
R2. In this paper, we give a sufficient condition that the Higson
corona of the half-open interval with a proper metric induced by a
subspace metric of R2 is a decomposable continuum.

2. Indecomposable continua and decomposable continua

Given our theorem, we may recall some basic properties concern-
ing the Higson compactification.

Proposition 2.1 ([2], Theorem 1.4). Let X be a proper metric
space with a proper metric d and let Y be a closed subset with
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the induced metric dY . Then cl
X

dY is homeomorphic to Y
dY

(cl
X

dY ∼= Y
dY ).

Proposition 2.2 (cf. [4], Lemma 1.5). Let (X, d) be a non-compact
proper metric space and let Nr be an r-dense 1 closed subspace of X,
where r > 0. Then the Higson corona νdX is equal to cl

X
dNr \Nr.

Now, a finite system {E1, . . . , En} of subsets of a proper metric
space (X, d) diverges if, for each R > 0 the intersection of the R-
neighborhoods of the sets Ei, i = 1, . . . , n, is a bounded subset of
X. Equivalently, a system {E1, . . . , En} diverges if and only if the
function F : X → J defined by F (x) =

∑n
i=1 d(x,Ei) satisfies the

condition limx→∞ F (x) = +∞. From Tăımanov theorem (cf. [3],
Theorem 3.5.5) we can state the following characterization which
was essentially proved by A.N. Dranishnikov, J. Keesling and V.V.
Uspenskij.

Proposition 2.3 (cf. [2], Proposition 2.3). Let X be a non-compact
metric space with a proper metric d. Then the following conditions
are equivalent:

(1) A compactification αX of X is equivalent to X
d, and

(2) For disjoint closed subsets A, B ⊂ X, the system {A,B}
diverges if and only if clαXA ∩ clαXB = ∅

Definition 2.4. A topological space is said to be generalized con-
tinuum (resp. strongly generalized continuum) if it is a locally
compact connected separable space (resp. connected proper metric
space 2 ). A connected space is said to have the complementation
property if the complement of every compact subset has at most
one non-relatively compact component.

Lemma 2.5. Let X be a non-compact locally connected strongly
generalized continuum with a proper metric d having the comple-
mentation property. Then νdX is a non-metric continuum.

Proof: Recall that a compact subset K of a locally connected
generalized continuum X is contained in a compact subset C such

1A subset A of a metric space (X, d) is r-dense provided that for any x ∈ X,
Br(x, d) ∩A 6= ∅.

2Every proper metric space is always locally compact σ-compact.
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that X \ C has only finitely many components (cf. [6], page 237
9.26). Since X is σ-compact, there exists a compact cover {Kn}n<ω

of X such that Kn ⊂ intXKn+1 for each n < ω. Using the above
fact, for each Kn, there exists a compact subset Cn containing Kn

such that X \ Cn has only finitely many components. Since X
has the complementation property, X \ Cn has exactly one non-
relatively compact component Vn. Thus, cl

X
dVn is connected and

contains νdX. Then note that νdX =
⋂

n<ω cl
X

dVn and therefore
connected. ¤

Proposition 2.6. Let (X, d) be a locally connected strongly gen-
eralized continuum having the complementation property. If X =
Y ∪Z such that Y and Z are locally connected strongly generalized
continua having the complementation property. Then if there exist
non-compact closed subsets A ⊂ Y \ Z and B ⊂ Z \ Y such that
{A,Z} and {Y,B} diverge, then (cl

X
dY \ Y ) \ (cl

X
dZ \ Z) 6= ∅,

(cl
X

dZ \Z) \ (cl
X

dY \ Y ) 6= ∅, and thus the Higson corona νdX is
a non-metric decomposable continuum.

Proof: Note that

νdX = (cl
X

dY \ Y ) ∪ (cl
X

dZ \ Z)

Put Σ0 = cl
X

dY \Y and Σ1 = cl
X

dZ \Z. Note that Σ0 ⊃ cl
X

dA\A

and Σ1 ⊃ cl
X

dB \ B. From Proposition 2.3 Σ0 \ Σ1 6= ∅ and
Σ1 \ Σ0 6= ∅. From Proposition 2.1 we note that Σ0

∼= νdY
Y and

Σ1
∼= νdZ

Z, where dY and dZ are subspace metrics induced by d in
X and Y , respectively. From Lemma 2.5 νdY

Y and νdZ
Z are non-

metric continua. Then we have shown that νdX is a non-metric
decomposable continuum, and the proof is complete. ¤

Here, it is natural to ask a question whether such subsets A and
B exist as in the above Proposition 2.6. In the following Lemma 2.9,
we will give a sufficient condition guaranteeing that such subsets A
and B exist.

Definition 2.7. Let (Z, σ) be a connected metric space. A non-
compact closed system {X, Y } of Z satisfies the condition (]) pro-
vided that there exists a compact conneced cover {Kn}n<ω of Z
with Kn ⊂ intZKn+1 and Kn+1 \ intZKn is connected and X ∩
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Y ∩ (Kn+1 \ intZKn) 6= ∅ for each n < ω satisfies the following
conditions :

(]1) supn<ω diam(X ∩ Y ∩ (Kn+1 \ intZKn)) < +∞,
(]2) If x ∈ (Kn+1 \ intZKn)∩X (resp. y ∈ (Kn+1 \ intZKn)∩Y ),

then σ(x, Y ) = σ(x,X∩Y ∩(Kn+1\intZKn)) (resp. σ(y,X)
= σ(y, X ∩ Y ∩ (Kn+1 \ intZKn)).

(]3) supn<ω diam(X∩(Kn+1\ intZKn)) = +∞ and supn<ω diam
(Y ∩ (Kn+1 \ intZKn)) = +∞, and

(]4) X∩(Kn+1\intZKn) and Y ∩(Kn+1\intZKn) are connected.

Example 2.8. Put Z = [0,∞) × R and σ is a subspace metric of
R2. Let X and Y be defined as below:

X = {(x, y) : x ≥ 0 and 0 ≤ y ≤ x}
Y = {(x, y) : x ≥ 0 and − x ≤ y ≤ 0}

Put Kn = {(x, y) : x ≤ n} for each n < ω. Then we can easily
verify that a non-compact closed system {X, Y } of Z satisfies the
condition (]).

Lemma 2.9. Let (Z, σ) be a proper metric space and {X,Y } a non-
compact closed system of Z satisfying the condition (]). Then there
exist sequences {xk}k<ω and {yk}k<ω with xk ∈ X \ Y and yk ∈
Y \X for each k < ω such that {{xk}k<ω, Y } and {X, {yk}k<ω}
diverge.

Proof: Let {Kn}n<ω be as in Definition 2.7. Put

Ln = Kn+1 \ intZKn,

an = diam(X ∩ Ln),

bn = diam(Y ∩ Ln),

cn = diam(X ∩ Y ∩ Ln),

An = (X ∩ Ln) \ Y,

Bn = (Y ∩ Ln) \X, and
Cn = X ∩ Y ∩ Ln

for each n < ω. From the condition (]1) c = supn<ω cn is bounded.
From conditions (]1) and (]3) we can take a natural number n0 and
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choose a point x0 ∈ An0 with σ(x0, Y ) > 0. By a similar argument,
there exists an n1 > n0 such that an1 > max{σ(x0, Y ), 3 + 2c(=
1 + 2(c + 1))}. Then we show the following fact:

Fact. There exists an x1 ∈ An1 such that σ(x1, Y ) > 1.
Assume the contrary that for each x ∈ An1 with σ(x, Y ) ≤

1. Note that An1 ⊂ B1+ε(Y, σ) for some ε > 0 with ε < 1/3.
Now, an1 = diam(X ∩ Ln1) = diam(An1 ∪ Cn1) ≤ diamAn1 +
σ(An1 , Cn1)+diamCn1 . At first, we will verify that σ(An1 , Cn1) = 0.
Assume the contrary that σ(An1 , Cn1) > 0. Put δ = σ(An1 , Cn1)/2.
Choose arbitrarily points x ∈ An1 and y ∈ Cn1 . From the con-
dition (]4) An1 ∪ Cn1 is compact connected. Then there exist a
sequence {uk}k≤m ⊂ An1 ∪ Cn1 such that x = u0, u1, . . . , um = y
and σ(ui, uj) < δ for each i, j ∈ {0, . . . , m} (See [3], page 359,
6.1.D). Thus, we can choose points uk and uk+1 such that uk ∈
An1 and uk+1 ∈ Cn1 . Note that σ(uk, uk+1) ≥ σ(An1 , Cn1) > δ
and then we obtain a contradiction. Secondly, we will verify that
diamAn1 < 3 + c. In fact, there exists αn1 , βn1 ∈ An1 such that
σ(αn1 , βn1) > diamAn1 − ε. From the condition (]2) there exist
points y(αn1), y(βn1) ∈ Cn1 such that diamAn1 < σ(αn1 , βn1)+ε ≤
σ(αn1 , y(αn1)) + σ(y(αn1), y(βn1)) + σ(y(βn1), βn1) + ε. From this
estimation, note that diamAn1 < 3 + c. By the above arguments,
we can verify that an1 < 3 + 2c. This is a contradiction.

Then continuing in this fashion, we can obtain a sequence {xk}k<ω

satisfying the following conditions:

(1) nk < nk+1 and xk ∈ Ank
,

(2) ank+1
> max{σ(xk, Y ), 1 + 2(c + k)}, and

(3) σ(xk, Y ) > k

for each k < ω. Then, finally, we will prove the follwing claim:
Claim. {{xk}k<ω, Y } diverges.
In fact, fix a natural number k < ω and take an element x ∈

Z − Bk(Knk
, σ). Note that there exist l < ω and yx ∈ Y such

that σ(x, {xk}k<ω) + σ(x, Y ) = σ(x, xl) + σ(x, yx) ≥ σ(xl, yx) ≥
σ(xl, Y ) > l. Here, without loss of generality, we may assume
that xl 6∈ Bk(Knk

, σ). Then note that l > k. This implies that
σ(x, {xk}k<ω) + σ(x, Y ) > k.

Mimicking the proof above, we can obtain a sequence {yk}k<ω ⊂
Y satisfying the following conditions:

(4) mk < mk+1 and yk ∈ Bmk
,
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(5) bmk+1
> max{σ(yk, Y ), 1 + 2(k + c)}, and

(6) σ(yk, X) > k

for each k < ω. In particular, {X, {yk}k<ω} diverges. ¤

Now, we will write Jf as {(x, f(x)) : x ∈ J} for f ∈ C(J). In
the rest of this section, Jf is equippted with a subspace metric
of σ defined by σ((x, y), (x′, y′)) =

√
(x− x′)2 + (y − y′)2 for each

(x, y), (x′, y′) ∈ J × R.

Theorem 2.10. If f ∈ C∗(J), then the Higson corona νσJf is an
indecomposable continuum.

Proof: Put X = J × [infx∈J f(x), supx∈J f(x)]. From Lemma 2.5
νdX is an non-metric continuum. From Proposition 2.1 and 2.2
νσJf

∼= νσX ∼= νσJ0, where 0 is the constant function taking value
0. From Theorem 1.6 in [4] νσJ0 is an indecomposable continuum.
Thus, from these arguments above we conclude that νσJf is an
indecomposable continuum and then the proof is complete. ¤
Theorem 2.11. Let X, Y , and Z be non-compact locally connected
closed strongly generalized continuum of J × R having the comple-
mentation property with Z = X ∪ Y and a system {X, Y } satisfy
the condition (]), and let Jf be as in the above with Jf ⊂ Z. If
Jf ∩X and Jf ∩ Y are r-dense in X and Y , respectively, for some
r > 0, then νσJf is a decomposable continuum.

Proof: From Propositions 2.1 and 2.2 νσJf
∼= clZσJf \ Jf

∼= νσZ.
By Lemma 2.5 and the last argument νσJf is a non-metric contin-
uum. Here, clZσJf \ Jf = clZσ(Jf ∩ X) \ (Jf ∩ X) ∪ clZσ(Jf ∩
Y ) \ (Jf ∩ Y ). Put Σ0 = clZσ(Jf ∩ X) \ (Jf ∩ X) and Σ1 =
clZσ(Jf∩Y )\(Jf∩Y ). By Proposition 2.2 Σ0

∼= νσX and Σ1
∼= νσY .

Using Lemma 2.5, Σ0 and Σ1 are non-metric continua. From Propo-
sitions 2.1 and 2.2 Σ0

∼= clZσX \X and Σ1
∼= clZσY \Y . By Propo-

sition 2.6 and Lemma 2.9 we note that Σ0 \Σ1 6= ∅ and Σ1 \Σ0 6= ∅.
Then νσJf is a decomposable continuum. Thus, the proof is com-
plete. ¤

Example 2.12. Let X and Y be as in the above Example 2.8. Put
Z = X∪Y and f(x) = x sinx for each x ∈ J . By Theorem 2.11 the
Higson corona of Jf with a subspace metric of R2 is a decomposable
continuum.
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