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Abstract

Precise estimates of the sequential order of the fi-
nite products of topological spaces are provided in
terms of the listing of the nodalities of the com-
ponent spaces. The optimal listing is a transfi-
nite combinatorial function. In the special case of
Lašnev topologies of finite nodality an exact for-
mula is given.

1. Introduction

The sequential order σ(x) of a point x of a topological space
X is the least ordinal α such that whenever x belongs to the
sequential closure of a set, then it belongs to the α-iteration
of its sequential adherence [6]. The sequential order of X is
equal to supx∈X σ(x). Some authors define the sequential order
on replacing, in the definition above, “sequential closure” by
“closure” [7]; The latter definition is meaningful only in the
case of sequential topologies (that are the topologies in which
every sequentially closed set is closed), the case in which the two
definitions coincide. Recall that a topology is Fréchet whenever
it is sequential of order less than or equal to 1; a topology is
Lašnev if it is a closed continuous image of a metrizable topology.
In [7, 8] T. Nogura and A. Shibakov provided a series of results
on the sequential order of products of two sequential topologies.

∗ The authors are thankful to Professor S. Watson (York University,
Toronto) for useful discussions.
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Multisequences have been conceived for the study of sequen-
tial order. It was proved in [5] that for every α < σ(x), there
exists a free distransverse multisequence 1 of rank α that con-
verges to x; on the other, if a free transversally closed distrans-
verse multisequence of rank α converges to x, then α ≥ σ(x).

A multisequence approach is particularly insightful in the in-
vestigations of the sequential order of product topologies. It
enabled S. Dolecki and S. Sitou to obtain in [5] an exact formula
for the sequential order of the product of two Lašnev topolo-
gies in terms of the fascicularities and the sagittalities of the
component spaces.

In this paper we provide a pattern for the composition of
multisequences that leads to estimates for the sequential order
of the product of finitely many topologies. This pattern provides
lower bounds in the case of regular Fréchet topologies, and, up-
per bounds in the case of dychotomic topologies, but only if the
sequential order is finite. Lašnev topologies belong to both these
classes. We do not know if our listing formula holds for infinite
nodalities.

Similar bounds do not hold for infinite products; in fact, the
sequential fan is a Lašnev topological space, the sequential order
of the n-th power of which is n, while that of the countable power
is ω1 [4]. On the other hand, there exists a compact (hence non
dychotomic) sequential space such that all its countable powers
are of order 2 [4].

All the topologies considered in this paper are supposed to
be Hausdorff.

2. Multisequences

A (sequential) cascade T is a tree with a least element ∅ =
∅−T such that each non empty subset has a maximal element
and every non maximal element of T is the cofinite filter of the
infinite countable of its immediate successors. The elements of

1 Distransverse multisequences were originally called admissible.
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a cascade are called indices. It follows that every non maximal
t ∈ T , we can represent by {(t, n) ∈ ω} the set of the immediate
successors of t.

A multisequence on a set X is a mapping from a cascade T
to X. 2 Each cascade admits its natural topology: the finest
topology for which each sequence of the form (t, n) converges to
t. A subset B of a cascade is eventual (at ∅) whenever it is a
neighborhood of ∅ in the natural topology.

A multisequence g : S→X is a transmultisequence of f :
T →X if there exists a mapping h : from an eventual subcascade
S̃ of S to T such that g = f ◦ h and

h∅ = ∅,(2.1)

∀
s∈S̃

h(s, n) w (h(s),mn) with lim
n

mn =∞,(2.2)

h(max S̃) ⊂ maxT.(2.3)

A submultisequence g of f : T →X is a transmultisequence
such that

∀
s∈S̃

h(s, n) = (h(s),mn) with lim
n

mn =∞.
(2.4)

We say that a cascade W is almost included in a cascade T
(in symbols, W ⊂0 T ) if there exists an eventual subcascade
(that is, a subset with the induced natural topology) W̃ of W
which is a subcascade of T .

If g : S→X is a submultisequence of f : T →X, and
h : S̃→T such that g ◦ h coincides with f on S̃, then h(S)
is almost included in T . A submultisequence g is eventual if for
every s in (2.4) the sequence (mn)n takes all but finitely many
values.

2 In fact, the definition of multisequence that has been recently used is
that of a mapping from the set maxT (of maximal elements of a cascade
T ) to X, while multisequence in our present sense has been recently called
extended multisequence. We drop here extended for the sake of brevity.
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It follows from the definition that every totally ordered subset
of a sequential cascade is finite; thus each element of a sequential
cascade is representable as a finite sequence of natural numbers.
The level l(t) of an element of a cascade is the length of the finite
sequence t. The rank r(t) = r(t;T ) of an element t of a cascade
T is defined by

t ∈ max T =⇒ r(t) = 0

t /∈ max T =⇒ r(t) = sup
n∈N

(r(t, n) + 1).(2.5)

A multisequence of rank 2 is called bisequence. A cascade is said
to be monotone if for every t /∈ maxT , the
sequence r(t, n) is increasing. If a cascade is monotone, then

r(t) = lim
n

(r(t, n) + 1).(2.6)

A multisequence f : T→X, valued in a (Hausdorff) topolog-
ical space X, converges to a point x if for every t ∈ T \maxT ,
limn f(t, n) = f(t) and x = f(∅).

We denote by adhSeq A the sequential adherence of A (the
union of the limits of sequences valued in A) and by clSeq A the
sequential closure (the least sequentially closed set that includes
A).

3. Freedom-classifiable Multisequences

From the point of view of convergence, two sequences are equiv-
alent if they generate the same filter. More generally, multise-
quences can be seen as special multifilters [3].

Let us call a filter sequential if it is generated by a sequence.
It is known that every sequential filter is the infimum of two
(possibly degenerate) sequential filters that do not mesh, one of
which is free (that is the intersection of its elements is empty),
and the other is principal [2]. Among the sequences that
generate a free sequential filter there is always a free sequence
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(all terms are distinct). In Hausdorff spaces, each converging
principal sequential filter is an ultrafilter, and thus is generated
by a stationary sequence (all terms are equal). Accordingly,
every converging sequence in a Hausdorff space admits either
a free or a stationary subsequence. These facts motivate the
forthcoming formalism.

By induction on the rank, we can prove that every converg-
ing multisequence in a Hausdorff space X admits a submul-
tisequence f : T → X such that for every (non maximal)
t ∈ T the sequence f(t, n) is either free or stationary; call such
t a free (resp., stationary) index of f . An index is freedom-
classifiable if it is either free or stationary. We shall call a mul-
tisequence freedom-classifiable if its every (non maximal) 3 index
is freedom-classifiable. We can now reformulate the observation
made above:

Proposition 3.1. Each converging multisequence in a Haus-
dorff space has a freedom-classifiable submultisequence.

If f is a multisequence, then one can define, the freedom func-
tion ϕf = ϕ by

ϕ(t) =





0 t stationary;

1 t free;

∗ otherwise.

(3.1)

If t is of rank 0, then it has no successors, so that it is both free
and stationary. This is why the freedom function is not defined
for maximal indices. We will also write ϕ(t) = ∗ when the value
exists but is unknown or irrelevant for our purposes.

3 Maximal indices are simultaneously free and stationary.
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4. Transversality

A convergent multisequence f valued in X is called transverse
at t (t is a transverse index of f) if for every sequence (tn),

tn A (t, n) =⇒ lim
n

f(tn) = f(t);(4.1)

antitransverse at t (t is a antitransverse index of f) if for every
sequence (tn),

tn A (t, n) =⇒ lim
n

f(tn) 6= f(t).(4.2)

A convergent multisequence f : T →X is distransverse at t (t is
a distransverse index of f) [5] if for every sequence (tn),

tn A (t, n), lim sup
n

(r(tn) + 1) < r(t) =⇒ lim
n

f(tn) 6= f(t).
(4.3)

The properties above do not depend on the immediate suc-
cessors of t. Therefore the points t of rank 0 or 1 have all these
properties at once. In particular, a convergent sequence (xn) is
both transverse and antitransverse.

An index is transversally classifiable if it is either transverse or
antitransverse. A multisequence is said to be transversally clas-
sifiable if its every index is transversally classifiable. A transver-
sality function ζf = ζ of a multisequence f is defined by

ζ(t) =





− t antitransverse;

+ t transverse;

∗ otherwise.

(4.4)

If the trasversality of t is irrelevant, then we also write ζ(t) = ∗.
We shall use the abbreviation

c(t) = ϕ(t)ζ(t).
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We say that a multisequence is classifiable if it is both freedom-
and transversally classifiable. Every element of a classifiable
multisequence is of one of the following four types: 0−, 0+, 1−, 1+,
that is, stationary/antitransverse, stationary/transverse, free
/antitransverse, free/transverse.

Proposition 4.1. For a classifiable multisequence, almost all
the immediate successors of an antitransverse index are free; for
a classifiable multisequence in a Fréchet space, almost all the
immediate successors of an antitransverse stationary index are
free and transverse.

Proof. If t is antitransverse (that is, of the type ∗−) for a
multisequence f , then no sequence of the form (f(t, np, kp))p

converges to f(t). Therefore if (t, n) were of the type 0∗, then,
by definition, f(t, n) = f(t, n, k) for almost all k, yielding a con-
tradiction. In the case of Fréchet topologies, no index of the
rank greater than 1 is free antitransverse (type 1−), as every
convergent free bisequence admits a transverse transsequence.

We shall also consider conditionally antitransverse multise-
quences, that is, such that (4.2) holds provided that (tn) is free.
There follows a definition of conditionally transversally classifi-
able multisequence.

A convergent multisequence f : T →X is called a multifan
if for each t of even level in T \ maxT , one has f(t, n) = f(t)
for each n ∈ N. A convergent multisequence f : T →X is said
to be an arrow if for every t in T \maxT of odd level, one has
f(t, n) = f(t) for each n ∈ N. In other words, f is an arrow if
for each n, the restriction of f to T�n := {s : (n, s) ∈ T} is a
multifan.

We say that a multifan or an arrow is correct if all its sta-
tionary points are antitransverse 4 and its all free points are
transverse.

4 Such multifans and arrows were called untraversable in [5].



112 Szymon Dolecki and Tsugunori Nogura

In other words, the types of successive indices of a correct
multifan are

0− 1+ 0− 1+ 0− 1+ . . . ,

and of a correct arrow are

1+ 0− 1+ 0− 1+ 0− . . .

A multisequence is transversally closed at t if for every se-
quence (tn),

tn w (t, n) =⇒ limf(tn) ⊂ {f(t)}.(4.5)

If a multisequence f : T →X fulfills (4.5) for every t, then in
particular f(T ) is a closed subset of X.

Proposition 4.2. A multisequence is antitransverse at t and
transversally closed at t if and only if

tn A (t, n) =⇒ adhSeq f(tn) = ∅.(4.6)

An element x of a topological space is Fréchet if x ∈ clA
implies the existence of a sequence on A that converges to x;
regular if it admits a base of closed sets.

In [5, Theorem 3.1] S. Dolecki and S. Sitou extended [9, The-
orem 3.8] of T. Nogura and Y. Tanaka from bisequences to mul-
tisequences to the effect that

Proposition 4.3. If a multisequence is antitransverse at a regu-
lar Fréchet point, then it admits at that point transversally closed
eventual submultisequence.

Fréchetness cannot be dropped in Proposition 4.3. Take a
compact sequential topology that is not Fréchet (for example,
a compact MAD topology). This space contains a convergent
antitransverse bisequence. This bisequence must not admit a
transversally closed subbisequence, because the topology is
sequentially compact.
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5. Level Classification

Let P be a finite class of properties of indices. A multisequence
f : T → X is said to be classifiable with respect to P if for
every index t, there is P ∈ P such that t ∈ P; it is said to be
level-classifiable if for every m ∈ ω, there is P ∈ P such that if
l(t) = m then t ∈ P.

Proposition 1. Every multisequence of finite rank which is clas-
sifiable with respect to P has a level-classifiable submultisequence
with respect to P.

Proof. We proceed by induction on the rank r(f). For r(f) = 0
the fact is obvious. Suppose that it holds for the rank less
than m and that r(f) = m + 1. By the inductive assumption
for each n ∈ ω the restriction fn of f to {s : (n, s) ∈ T}
is level-classifiable. As it has m + 1 levels, it can be char-
acterized by (P0,P1, . . . ,Pm), where Pi ∈ P is the property
of the indices of level i. Therefore every index n is classifiable
with respect to the finite class of properties consisting of all
(P−1,P0,P1, . . . ,Pm) with Pi ∈ P for −1 ≤ i ≤ m. It follows
that there is (P−1,P0,P1, . . . ,Pm) such that infinitely many n
have the property (P−1,P0,P1, . . . ,Pm). We select these n to
construct the submultisequence.

6. Sequential Order in Terms of the Ranks of Multise-
quences

The sequential order of x with respect to A is given by

σ(x;A) = min{α : x ∈ adhα
Seq A}.

The sequential order σ(f) of a convergent multisequence f is,
by definition, σ(f(∅); f(maxT )). An easy induction shows that
x = limf implies that σ(x,A) ≤ r(f) for every multisequence f
on A . It is easy to see that a converging everywhere free multi-
sequence in a Hausdorff space has an injective submultisequence.
It was shown in [5, Theorem 1.3] that
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Theorem 6.1. If x ∈ clSeq A, then there exists on A an injec-
tive (everywhere) free, distransverse, monotone multisequence of
rank σ(x;A) that converges to x.

[5, Example 1.2] shows that “distransverse” cannot be re-
placed by “antitransverse”. On the other hand, D. Fremlin
defined in [6] a sequentially regular embedding to be an injective
map from

⋃
n∈N Nn such that limn f(t, n) = f(t) and x = f(∅)

for every t and which fulfills (4.6). He proved what in our
terminology amounts to the fact that each injective (hence free)
multisequence that fulfills (4.6) has the sequential order equal
to the rank.

Theorem 6.2. The sequential order of x is greater than or equal
to the rank of each (everywhere) free, distransverse, transversally
closed multisequence that converges to x.

Consequently, converging, free, distransverse, transversally
closed multisequences can be used to provide lower bounds for
the sequential order. However the lower bounds obtained in
this way need not be exact; for example, in a sequentially com-
pact sequential space no multisequence of rank greater than 1 is
transversally closed. Therefore in this case the method of The-
orem 6.2 yields the lower bound for the sequential order 1. On
the other hand, there exists a Hausdorff, sequentially compact,
sequential topology of rank ω1 (for example, the ω1-iterated
MAD topology [10]). There exists as well a (Hausdorff) reg-
ular, sequentially compact, sequential topology of rank 2 (for
example, the compact MAD topology and its countable powers
[4])

7. Products of Multisequences

In this section we study properties (like being free, stationary,
transverse, and so on) of finite diagonal products of multise-
quences. In particular, we are interested in sufficient condi-
tions, in terms of component multisequences, for the diagonal
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product to be free, antitransverse and transversally closed. Let
X1,X2, . . . ,Xm be spaces and let fi : T →Xi be multisequences
for i = 1, . . . ,m. Let

⊗

1≤i≤m

fi(t) = (f1(t), . . . , fm(t)).

Theorem 7.1. If there exists i such that fi is free (resp., an-
titransverse, distransverse) at t, then

⊗
i fi is free (resp., anti-

transverse, distransverse) at t.
If for every i the multisequence fi is stationary (resp., trans-

verse) at t, then
⊗

i fi is stationary (resp., transverse) at t.

Theorem 7.2. If fi is transversally closed at t for every i, then⊗
i fi is transversally closed at t.

The rules established in the theorems above enable us to con-
struct free, antitransverse product multisequences out of mul-
tifans and arrows in component spaces. In the examples below
we illustrate an algorithm based on successive use of nodes (that
is, stationary antitransverse indices) from different component
multisequences. Notice that multifans and arrows are used to
construct multisequences in which some stationary indices are
split to several successive stationary indices. Although correct
multifans and arrows are classifiable, the so constructed multi-
sequences are no longer transversally classifiable.

Example 7.3. Consider three spaces X,Y and Z. The first one
consists of a free convergent sequence, each of the two others
consists of an antitransverse fan. Then we can build up an anti-
transverse multisequence of rank 3 by the following procedure.
In the table below, the first three rows correspond the compo-
nent multisequences and the last row corresponds to their diag-
onal product; the columns correspond to levels, the first on the
left to the level 0.
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1+ ∗ ∗ ∗
0− 1+ ∗ ∗
0∗ 0− 1+ ∗
1− 1− 1+ ∗

Observe that the rank of all the considered multisequences is 3.

Example 7.4. Consider now four spaces, in which we take re-
spectively, an arrow of rank 3, two fans, and a multifan of rank
4. Then we can build up an antitransverse multisequence of rank
6 by the following procedure:

1+ 0∗ 0∗ 0− 1+ ∗ ∗
0− 1+ 0∗ 0∗ 0− 1+ ∗
0∗ 0− 1+ ∗ ∗ ∗ ∗
0∗ 0∗ 0− 1+ ∗ ∗ ∗
1− 1− 1− 1− 1− 1+ ∗

We notice that the adopted algorithm passes from a fan to
another (in another space!) and that one of the multisequences
must be an arrow. Therefore, in order to analyze the procedure,
it is enough to look only at a starting 1+ in the first column, and
at the segments (0−, 1+) of the components. Moreover, because
the components are Fréchet spaces, 1+ automatically follows 0−,
so that it is enough to make sure that in every column (except
for the last two) there exists one 0−, and that there exists 1+

in the first column. For instance, in the case of Example 7.4,
one may use only the following table (on dropping the two last
columns entirely):

1+ 0−

0− 0−

0−

0− corresponds to a node, while 1+ in the first column corre-
sponds to an initializing free sequence.
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8. Nodality, Fascicularity and Sagittality

In the case of a product of two Lašnev spaces, two kinds of mul-
tisequences (multifans and arrows) in component spaces were
used to determine the sequential order of the product [5]. Mul-
tifans and arrows are also decisive for the sequential order of the
product of finitely many Lašnev spaces.

Let f : T →X be a multifan and let R be the subtree of
T obtained by removing all maximal indices of odd level. If
f : R→X is correct then we define its fascicularity 5 λ(f) as
the rank r(∅;R). Similarly, if f : T→X is a correct arrow and if
R is a subtree of T obtained by removing all maximal indices of
even level, then we define its sagittality µ(f) as the rank r(∅;R).
If R = ∅, then we convene that µ(f) = −1. The fascicularity
λ(x) of a point x is the least upper bound of λ(f) of all the
correct multifans f converging to x. The sagittality µ(x) is the
least upper bound of µ(g) of all the correct arrows g converging
to x. Remember that always µ(x) + 1 ≥ λ(x).

Multisequences of different rank can have the same image.
This is already the case of a stationary sequence (rank 1) and the
corresponding multisequence of rank 0. A multifan is composed
of fans, that is, of the multisequences of rank 2 of the form

x = xn ←k xn,k,

where for each n the sequence (xn,k)k is free. We are interested
in antitransverse fans, that is, of the type (0−, 1+, ∗). Arrows are
sequences of multifans. Arrows of rank 1 are the free sequences,
of order 3 are the form

x←n xn = xn,k ←p xn,k,p,

hence of the type (1+, 0−, 1+, ∗). In the case of products of more
than 2 spaces the fans constituting multifans and arrows will be
used as images of multisequences of rank higher than 2.

5 The terms fascicularity and sagittality are derived from respective
Latin terms for bundle and arrow.
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Recall that a node of a multisequence is its stationary anti-
transverse index. It follows from the definition that maximal
indices of a multisequence are nodes. The set of the nodes of
a multisequence is inversely well founded, so that the following
definition makes sense. The nodality ν(f) of a multisequence
f is the rank of the set of its nodes. The nodality ν(x) of an
element x of a space X is the supremum of the nodalities of the
correct multifans and the correct arrows that converge to x. An
element x is active (or that the nodality is active at x) provided
that that supremum is attained by the nodalities of arrows. The
nodality ν(X) of a space X is the supremum of the nodalities
of the points of X; the active nodality ν(X) of a space X is the
supremum of the nodalities of the active points of X; If f is a
multifan, then ν(f) = λ0(f)+ λ1(f)

2
, where λ(f) = λ0(f)+λ1(f)

is the decomposition of the ordinal to its transfinite and its finite
parts. Alike, if f is an arrow, then ν(f) = µ0(f) + µ1−1

2
, where

µ(f) = µ0(f) + µ1 is the decomposition.

9. Products of Regular Fréchet Spaces: Lower Bounds
for Sequential Order

By Proposition 4.3, correct multifans and arrows in regular Fréchet
spaces admit transversally closed submultisequences. Therefore
the ranks of finite diagonal compositions of such multisequences
constitute lower bounds for the sequential order, provided they
are free and distransverse everywhere. We restrict our attention
to free and antitransverse multisequences (easier to handle than
distransverse multisequences).

It follows from Theorem 7.1 that a product multisequence is
(everywhere) free and antitransverse if for every index t, there
exist a component which is antitransverse at t and another com-
ponent that is free at t. In Fréchet spaces antitransverse indices
of classifiable multisequences must be stationary. Therefore in
order to obtain a free and antitransverse multisequence as a di-
agonal product of classifiable multisequences

⊗
i fi : T→

∏
i Xi,
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every index t ∈ T must be a node of one of the component mul-
tisequence fi. As a successor of a node in a classifiable multise-
quence is not a node, a construction of a free and antitransverse
product multisequence consists in choosing nodes in a different
component at every new step. This leads to the notion of listing.

The listing of a set of ordinals {ν1, ν2, . . . , νk} is an injection
g from an ordinal γ to

⋃k
i=1(νi × {i}), with the property that

no two successive values of g belong to the same νi × {i} and
such that its restriction to g−1(νi × {i}) is increasing for every
i. The supremum of the ordinals γ such that there exists a
listing g : γ→

⋃k
i=1(νi × {i}) is called the listing number and

is denoted by κ(ν1, ν2, . . . , νk). A listing for which the listing
number is attained is referred to as a maximal listing.

Theorem 9.1. Let Xi for 1 < i ≤ p be regular Fréchet spaces.
If one among xi ∈ Xi is active, then

σ(x1, x2, . . . , xp) ≥ κ(ν(x1), ν(x2), . . . , ν(xp)).

Proof. Suppose that gi : Si → Xi are multisequences that con-
verge to xi respectively, so that all but one, say g1, are multifans,
and g1 is an arrow.

Let νi be the nodality of gi. As the considered spaces are
regular and Fréchet, all the correct multifans and arrows admit
transversally closed submultisequences, so that we can assume
without loss of generality that gi are already transversally closed.

Let us induce on the rank of the listing number

κ = κ(ν1, ν2, . . . , νp).

If κ = 1, then there is i0 6= 1 and a listing h : 1 = {0}→
(ν1 × {1}) ∪ (ν2 × {2}) ∪ . . . ∪ (νp × {p}) such that h(0) ∈
νi0 × {i0}. This means that the nodality of gi0 is (at least) 1.
Then

⊗
1≤i≤p

gi is of the type 1−, 1+, ∗, proving that the sequential

order of (x1, x2, . . . , xp) is at least 2.
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Assume that κ > 1, and that the inductive hypothesis holds
for the listing numbers less than κ. Let h : κ → (ν1 × {1}) ∪
(ν2×{2})∪. . .∪(νp×{p}) be a listing. Then there is an increasing
sequence of ordinals (κn)n so that κ = supn∈ω(κn + 1), and for
every n there exists i(n) 6= i0 for which h(κn) ∈ νi(n) × {i(n)}.
This is possible, for otherwise there would be α < κ so that
h(β) ∈ νi0 × {i0} for each β > α. Then there exists i1 6= i0 such
that i(n) = i1 for infinitely many n.

For 1 ≤ i ≤ p, let fi(∅) = xi = gi(∅) for every i, and

f1(n) = x
(i)
n = g1(n) for each n. Then by inductive assumption,

σ(x(1)
n , x(2)

n , . . . , x(p)
n ) ≥ κ(ν(x(1)

n ), ν(x(2)
n ), . . . , ν(x(p)

n )) = κn.

Therefore there exist a cascade T and multifunctions Fi : T →
Xi so that they coincide on {∅} ∪ ω with the convergent se-
quences defined above, and such that

⊗
1≤i≤p Fi is a free anti-

transverse transversally closed of the rank κ.

Because of Theorem 7.2 and Proposition 4.3,

Corollary 9.2. If Xi are regular Fréchet topological spaces for
1 < i ≤ p, then

σ(
∏

1≤i≤p

Xi) ≥ κ(ν(X1), ν(X2), . . . , ν(Xp))

provided that one of the nodalities is active.

10. Products of Dychotomic Fréchet Topologies: Search
for Upper Bounds on Sequential Order

A topology is dychotomic if every converging multisequencewhich
either free at ∅ or of the type (0∗, 1∗) at ∅, has a submultise-
quence classifiable at ∅. The upper Kuratowski limit Lsn An of
a sequence (An) of a topological space is defined by

Lsn An =
⋂

m<ω

cl(
⋃

n≥m

An).
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Theorem 10.1. Lašnev spaces are dychotomic.

Proof. Let f be a converging multisequence of rank ≥ 2 valued
in a Lašnev space X. Denote x = f(∅), xn = f(n) and xn,k =
f(n, k). For free indices the fact follows from [5, Proposition 4.3].
So suppose that ∅ is stationary but its immediate successors
are not. Therefore xn,k →k xn = x. Let h : W → X be a
continuous closed map from a metrizable space W onto X. By
the active boundary theorem [1, Theorem 1.1], for every n there
is a compact subset Kn = Lsk h−(xn,k) of the boundary of h−(x)
such that for every O ∈ N (Kn), there exists k(n) such that
h−(xn,k) ⊂ O for k ≥ k(n).

Consider now Lsn Kn. This is a subset of h−(x), because the
latter set is closed. If there is w ∈ Lsn Kn, then there exists
a subset B of ω × ω such that there are infinitely many n for
which there are infinitely many k with (n, k) ∈ B, and for every
(n, k) ∈ B there is wn,k ∈ h−(xn,k) and wn ∈ h−(x) so that the
following bisequence converges to w :

wn,k →k wn →n w.

Because W is metrizable, there is h : ω → ω such that for every
sequence (kn)n with kn ≥ h(n), the sequence (wn,kn)n converges
to w. By the continuity of h, for every sequence (kn)n with kn ≥
h(n), the sequence (xn,kn)n converges to x.

If Lsn Kn = ∅, then {Kn : n ∈ ω} is discrete and thus for
every m, the set Fm =

⋃
n≥m Kn is closed; by countable para-

compactness, there is a sequence of open sets (Om) such that
Km ⊂ Om for every m, and

⋂
m<ω clOm = ∅. It follows that

there exists a map g : ω → ω such that for every sequence (kn)n

with kn ≥ g(n), the family {On : n ∈ ω} is discrete. There-
fore there exists a submultisequence f0 of f such that for every
tn w (n, kn), every subset of {f0(n, kn) : k ∈ ω} is closed, so
that its limit is empty.

Theorem 10.2. If f1, f2, . . . , fp are multisequences from T of
finite rank to dychotomic Fréchet spaces such that

⊗
i fi is
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everywhere free and antitransverse, then there is a subcascade
S of T such that for the restrictions of fi to S,

r(
⊗

i

fi) ≤ κ(ν(f1), ν(f2), . . . , ν(fp)).(10.1)

Proof. Without loss of generality we can assume that all the
multisequences are isotone level freedom-classifiable and con-
ditionally level transversally classifiable. Therefore for every
m ≤ k = r(

⊗
i fi) − 2, there exist i and j such that cfi(t) = 0∗

and cfj (t) = 1∗ for every t of level m. Among all such i,
there exists at least one i(m) such that cfi(m)

(t) = 0− for each
t of level m (what implies that cfi(m)

(s) = 1+ for every im-
mediate successor s of such t). Therefore i(m + 1) 6= i(m).
It follows that the constructed function i : {0, 1, . . . , k} →
(ν(f1) × {1}) ∪ (ν(f2) × {2}) ∪ . . . ∪ (ν(fp) × {p}) is a listing,
and thus (10.1) holds.

Because the finite sequential order of a space is attained at
some point, we conclude that

Corollary 10.3. If X1,X2, . . . ,Xp are dychotomic Fréchet
spaces of finite nodality, then

σ(
∏

1≤i≤p

Xi) ≤ κ(ν(X1), ν(X2), . . . , ν(Xp)),

provided that one of the nodalities is active.

Corollary 10.4. If X1,X2, . . . ,Xp are Lašnev spaces of finite
nodality, then

σ(
∏

1≤i≤p

Xi) = κ(ν(X1), ν(X2), . . . , ν(Xp)),

provided that one of the nodalities is active.

Whether the above holds for arbitrary (infinite) nodalities
remains an open question.
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11. Listings and Decomposition of Ordinals

An ordinal number π is said to be decomposable if there exist
α, β < π such that α + β = π. We write α� β if α + β = β.

Lemma 11.1. An ordinal π is non decomposable if and only if
α + π = π for every ordinal α < π.

Proof. Suppose that π is decomposable: there exist α, β < π
such that α + β = π. If the condition of Lemma 11.1 held, then
π +π = (α+β)+π = α+(β +π) = α+π = π: a contradiction.
Conversely, if π is non decomposable, then α + β < π for every
α, β < π. Hence π ≥ supβ<π(α + β) = α + supβ<π = α + π ≥ π,
that is, the condition of Lemma 11.1 holds.

Notice that if α0 > α1 > . . . > αl are non decomposable or-
dinals, then α0 > α1m1 + . . .+αlml for every choice m1, . . . ,ml

of natural numbers. It is known that for every ordinal β, there
exist a unique finite sequence β0 > β1 > . . . > βk of non decom-
posable ordinals and a unique finite sequence n0, n1, . . . , nk of
natural numbers such that

β = β0n0 + β1n1 + . . . + βknk.(11.1)

The non decomposable ordinals of the decomposition (11.1)
are called components of β.

Every non decomposable ordinal is limit, for if π = α+1, then
α + π = α + α + 1 > α. Let us say that π is an ordinary non
decomposable ordinal if there exists the greatest non decompos-
able ordinal less than π, and a limit non decomposable ordinal
otherwise. For example, ωm is ordinary non decomposable for
every m, while supm∈ω ωm is limit non decomposable.

Lemma 11.2. Let π be a countable non decomposable ordinal
and let ν1, ν2, . . . , νp be nonzero finite multiples of π. Then there
is m0 ∈ ω such that πm0 is the (optimal) listing number of
{ν1, ν2, . . . , νp}, and there is an optimal listing h such that

|{i : ∀α<π h(πm + α) ∈ νi × {i}}| = 2(11.2)

for every 0 ≤ m < m0.
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Proof. Suppose that h : κ → (ν1 × {1}) ∪ (ν2 × {2}) ∪ . . . ∪
(νp × {p}) is an optimal listing. Of course, π ≤ κ ≤ ν1 + ν2 +
. . . + νp = πl for some l ≥ 2.

The claim holds for π = ω. Indeed, if ω(m + 1) ≤ κ, then
by the definition of listing, the set {i : |{n : h(ωm + n) ∈
(νi × {i})}| =∞} contains at least two elements, say i0 and i1.
Thus there exists an increasing sequence (nk) such that h(ωm+
n2k) ∈ νi0 × {i0} and h(ωm + n2k+1) ∈ νi1 × {i1} for every k.
On redefining hm(ωm + k) = h(ωm + nk) for every k ∈ ω, we
obtain another optimal listing; on doing this for every m such
that 0 ≤ ωm < κ, we construct a listing such that (11.2) holds
for every m. It follows that if m is the greatest natural number
for which ωm < κ, then ω(m + 1) = κ.

Suppose that the claim holds for all non decomposable or-
dinals less than ξ. If ξ is ordinary non decomposable and π is
the greatest non decomposable ordinal less than ξ, then ξ =
supm∈ω πm. Let f : κ→ (ν1×{1})∪ (ν2×{2})∪ . . .∪ (νp×{p})
be an optimal listing; then by the inductive assumption, for ev-
ery m there exists another optimal listing h that fulfills (11.2).
There certainly exist i0 and i1 and a sequence (mk) such that
h(πmk +α) ∈ (νi0×{i0})∪ (νi1 ×{i1}) for each k ∈ ω and every
0 ≤ α < π, so that ĥ(πk + α) = h(πmk + α) is a sought optimal
listing.

If ξ = supm∈ω ξm is limit non decomposable, and then the
same argument holds on replacing πm by ξm.

Theorem 11.3. Let 0 < n1 ≤ n2 ≤ . . . ≤ nk be finite and
k ≥ 2. Then

l = κ(n1, n2, . . . , nk) =
k−1∑

i=1

ni + (nk ∧
k−1∑

i=1

ni + 1).

(11.3)
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Proof. If g : γ→
⋃k

i=1(ni × {i}) is a listing, then on one hand,

|g(γ)| ≤
∑k

i=1 ni, and on the other, after every element a of
(nk×{k})∩g(γ) which is not the last element of g(γ), there must
be at least one element of

⋃
i 6=k(ni × {i}) that follows a, hence

|γ| ≤ 2
∑k−1

i=1 ni +1 Therefore, l ≤
∑k−1

i=1 ni +(nk ∧
∑k−1

i=1 ni +1).
We shall prove by induction that the opposite inequality also

holds. For k = 2, then l = 2n1 if n1 = n2, and l = 2n1 + 1
otherwise. Suppose that the formula is proved for some k ≥ 2,
and consider n1 ≤ n2 ≤ . . . ≤ nk ≤ nk+1. Let g : γ→

⋃k+1
i=1 (ni×

{i}) be a listing. As after every element a of (nk+1 ×{k + 1}) ∩
g(γ) which is not the last element of g(γ), there exists at least
one element of

⋃
ik(ni × {i}) that follows a, the cardinality of

(nk+1×{k+1})∩g(γ) is not greater than
∑k

i=1 ni+1. Therefore,

it is enough to assume that nk+1 ≤
∑k

i=1 ni + 1 and to prove

that l ≥
∑k+1

i=1 ni.
For a maximal listing g∗ : γ∗→

⋃
1≤i≤k(ni × {i}), let ρk =⋃

1≤i≤k(ni×{i})\g∗(γ∗). Define a listing g from γ to
⋃

1≤i≤k+1(ni×
{i}) by g(1) ∈ (nk+1 × {k + 1}), and if g(1), g(2), . . . , g(j) have
been already defined, and g(j) ∈ nk+1 × {k + 1}, then if g(j) is
the last element of nk+1×{k +1} and nk+1 =

∑k
i=1 ni +1, then

the listing stops; otherwise either g(j +1) ∈ ρk if still there exist
non listed elements of ρk, or g(j+1) is the first element of g∗(γ∗)
that has not yet been listed; if g(1), g(2), . . . , g(j) have been al-
ready defined, and g(j) ∈ g∗(γ∗), then g(j +1) is either the first
non listed element of nk+1 × {k + 1} if any, or the element of
g∗(γ∗) that follows g(j) otherwise.

Since nk+1 ≤
∑k

i=1 ni + 1, this procedure exhausts the el-
ements of nk+1 × {k + 1}, and since |ρk| ≤ nk+1, it exhausts
the elements of

⋃
1≤i≤k(ni × {i}). We can conclude that in the

case where nk+1 ≤
∑k

i=1 ni + 1, the cardinality of a listing is∑k+1
i=1 ni, hence the constructed listing is maximal in view of the

preliminary observation.
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Consider ν1, ν2, . . . , νp, such that νi = νi
0n

i
0 + νi

1n
i
1 + . . . +

νi
k(i)n

i
k(i) is the decomposition for each 1 ≤ i ≤ p. Let

A0 ∪A1 ∪ . . . ∪Aq = {νi
jn

i
j : j ≤ j(i), 1 ≤ i ≤ p}

be such that every Aj consists of natural multiples of a non
decomposable ordinal πj, and π0 � π1� . . .� πq.

Theorem 11.4. If κ = π0m0 + π1m1 + . . . + πqmq is the listing
number of {ν1, ν2, . . . , νp}, then there exists an optimal listing
h : κ → (ν1 × {1}) ∪ (ν2 × {2}) ∪ . . . ∪ (νp × {p}) such that the
restriction of h to πjmj is the optimal listing of Aj if the Ai have
been exhausted for i < j, and of Aj ∪ {πjω} otherwise.

Proof. The function h ranges first A0 if it has more than one
element, then ranges A0 and A1, and so on, because otherwise
κ would have components of the type α + β, where α + β = β,
contrary to the optimality.

12. The Case of 2 Components

From Theorems 9.1, 10.2, 11.3 and 11.4, we recover the following
estimate of [5]: if f is a correct multifan and g is a correct arrow
in Lašnev spaces, then

σ(f ⊗ g) = 1 + min{λ(f), µ(g)}.

Indeed, it is enough to show that in the case of k = 2, the listing
(11.3) becomes min{λ(f), µ(g)}. For k = 2, (11.3) becomes

l = ν1 + min{ν2, 1 + ν1}.(12.1)

Hence if λ > µ, then ν1 = µ−1
2

and ν2 = λ
2
. Thus l = min{λ+µ−1

2
, µ}.

Since λ ≥ 1 + µ, we have λ+µ−1
2

≥ 1+µ+µ−1
2

= µ, so that
l = µ = min{λ, µ}. If now µ > λ, then µ ≥ λ + 1, hence ν2 =
µ−1

2
≥ λ

2
= ν1. Therefore (12.1) becomes l = min{λ+µ−1

2
, 1 + λ}.

But λ+µ−1
2
≥ λ+λ+1−1

2
= λ, so that l = λ = min{λ, µ}.
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