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Abstract

We recall a characterization of hereditary indecom-
posability originally obtained by Krasinkiewicz
and Minc, and show how it may be used to give
unified constructions of various hereditarily inde-
composable continua. In particular we answer a
question asked by Maćkowiak and Tymchatyn by
showing that any continuum of arbitrary weight
is a weakly confluent image of a hereditarily inde-
composable continuum of the same weight.

We present two methods of constructing these
preimages: (a) by model-theoretic means, using
the compactness and completeness theorems from
first-order logic to derive these results for continua
of uncountable weight from their metric counter-
parts; and (b) by constructing essential mappings
from hereditarily indecomposable continua onto
Tychonoff cubes.

We finish by reviving an argument due to Kelley
about hyperspaces of hereditarily indecomposable
continua and show how it leads to a point-set argu-
ment that reduces Brouwer’s Fixed-point theorem
to its three-dimensional version.
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1. Preliminaries

1.1. Hereditary indecomposable spaces

A continuum is decomposable if it can be written as the union
of two proper subcontinua; it is indecomposable otherwise. A
hereditarily indecomposable continuum is one in which every sub-
continuum is indecomposable. It is easily seen that this is equiv-
alent to saying that whenever two continua in the space meet
one is contained in the other.

This latter statement makes sense for arbitrary compact Haus-
dorff spaces, connected or not; we therefore extend this defini-
tion and call a compact Hausdorff space hereditarily indecompos-
able if it satisfies the statement above: whenever two continua
in the space meet one is contained in the other. Thus, zero-
dimensional spaces are hereditarily indecomposable too.

We shall mainly use a characterization of hereditary indecom-
posability that can be gleaned from [9, Theorem 3] and which
was made explicit in [13, Theorem 2]. To formulate it we intro-
duce some terminology.

Let X be compact Hausdorff and let C and D be disjoint
closed subsets of X; as in [9] we say that (X,C,D) is crooked
between the neigbourhoods U of C and V of D if we can write
X = X0 ∪ X1 ∪ X2, where each Xi is closed and, moreover,
C ⊆ X0, X0∩X1 ⊆ V , X0∩X2 = ∅, X1∩X2 ⊆ U and D ⊆ X2.
We say X is crooked between C and D if (X,C,D) is crooked
between any pair of neighbourhoods of C and D; no generality
is lost if we consider pairs of disjoint neighbourhoods only, as
crookedness between small neighbourhoods implies crookedness
between larger neighbourhoods.

We can now state the characterization of hereditary indecom-
posability that we will use.

Theorem 1.1 (Krasinkiewicz and Minc). A compact Hausdorff
space is hereditarily indecomposable if and only if it is crooked
between every pair of disjoint closed (nonempty) subsets.
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This characterization can be translated into terms of closed
sets only; we simply put F = X \ V and G = X \ U , and
reformulate some of the premises and the conclusions. We get
the following formulation.

Theorem 1.2. A compact Hausdorff space X is hereditarily in-
decomposable if and only if whenever four closed sets C, D, F
and G in X are given such that C ∩ D = C ∩ G = F ∩ D = ∅
one can write X as the union of three closed sets X0, X1 and X2

such that C ⊆ X0, D ⊆ X2, X0 ∩X1 ∩ F = ∅, X0 ∩X2 = ∅,
and X1 ∩ X2 ∩ G = ∅.

To avoid having to write down many formulas we call a quad-
ruple (C,D,F,G) with C ∩ D = C ∩ F = D ∩ G = ∅ a pliand
foursome and we call a triple (X0,X1,X2) with C ⊆ X0, D ⊆
X2, X0 ∩ X1 ∩ F = ∅, X0 ∩ X2 = ∅, and X1 ∩ X2 ∩ G = ∅
a fold for (C,D,F,G). Thus, a compact Hausdorff space is
hereditarily indecomposable if and only if there is a fold for
every pliand foursome. As above, no generality is lost if we
consider foursomes with F ∪ G = X only; there does not seem
to be any need to add this assumption though.

This characterization can be improved by taking a base B

for the closed sets of the space X that is closed under finite
intersections. The space is hereditarily indecomposable if and
only if there is a fold for every pliand foursome whose terms
come from B.

To prove the nontrivial implication let (C,D,F,G) be a pliand
foursome and let (OC , OD, OF , OG) be a swelling of it, i.e., every
set OP is an open around P and OP ∩ OQ = ∅ if and only if
P ∩Q = ∅, where P and Q run through C, D, F and G (see [2,
7.1.4]). Now compactness and the fact that B is closed under
finite intersections guarantee that there are C ′, D′, F ′ and G′

in B such that P ⊆ P ′ ⊆ OP for P = C, D, F , G. Any fold for
(C ′,D′, F ′, G′) is a fold for (C,D,F,G).
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1.2. A crooked partition of the square

Let P be the closure of crooked white strip in I2, depicted in
Figure 1 below. The set I2 \ P is the union of the disjoint open
sets M0 and M1 in the picture. Clearly, clM0 ∩ clM1 = ∅.
Observe that {0} × I ⊆ M0 and {1} × I ⊆ M1. It follows that
P is a partition between {0} × I and {1} × I in I2.

0

1/7

2/7

5/7

6/7

1
5/14

9/14

M0 P M1

Fig. 1. The crooked partition

We shall use P to create folds for pliand foursomes. Here’s
how: given a pliand foursome (C,D,F,G) apply Urysohn’s
lemma to get a continuous function f : X → I such that f [C] =
{0}, f [G] ⊆ [0, 1/2], f [F ] ⊆ [1/2, 1] and f [D] = {1}. One can
then create a fold by creating a continuous function g : X → I
such that (g M f)[X] ⊆ P and setting Xj = (g M f)−1[Pj], where
P0 =

{
(x, y) : x 6 5/14

}
, P1 =

{
(x, y) : 5/14 6 x 6 9/14

}
and

P2 =
{
(x, y) : 9/14 6 x

}
. We shall call a function as f a Urysohn

function for the foursome (C,D,F,G).
We summarize the foregoing discussion in the following

lemmas.
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Lemma 1.3. Let X be a compact space of weight κ. Then there
is a family F of continuous functions, from X to I, of size κ such
that for every pliand foursome (C,D,F,G) there is an f in F

with f [C] = {0}, f [G] ⊆ [0, 1/2], f [F ] ⊆ [1/2, 1] and f [D] = {0}.

We call a family F as in Lemma 1.3 a pliand family for X.

Lemma 1.4. Let X be a compact Hausdorff space and F a pliand
family of functions for X. If Y is a closed subspace of X with
the property that for every f ∈ F there is a continuous func-
tion g : X → I such that (g M f)[Y ] ⊆ P then Y is hereditarily
indecomposable.

Proof. Simply observe that every pliand foursome from Y is
also a pliand foursome in X and hence that the restrictions of
the elements of F to Y form a pliand family for Y .

1.3. Dimension and essential families

We adopt the contrapositive of the Theorem on Partitions
[2, 7.2.15] as our definition of the covering dimension dim. To
this end we define a (finite or infinite) family

{
(Ai, Bi) : i ∈ I

}

of pairs of disjoint closed sets to be essential if whenever we take
partitions Li between Ai and Bi for all i the intersection

⋂
i∈I Li

is nonempty.
If X is a compact Hausdorff (or even normal) space and n ∈ N

then we say that dimX > n if X has an essential family of pairs
of closed sets of cardinality n; the covering dimension of X is the
maximum n such that dimX > n, if such an n exists; we write
dimX = ∞ if dimX > n for all n. Note that dimX = ∞ means
that X must have arbitrarily large finite essential families; if
X possesses an infinite essential family then we say that X is
strongly infinite dimensional.

The following lemma will be used to verify that certain spaces
have a large enough covering dimension.
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Lemma 1.5. Let
{
(Ai, Bi) : i ∈ I

}
be an essential family in a

normal space X and assume I is split into two sets J and K.
Let, for i ∈ J , a partition Li between Ai and Bi be given and
put LJ =

⋂
i∈J Li. Then

{
(Ai ∩ LJ , Bi ∩ LJ) : i ∈ K

}
is an

essential family in LJ .

Proof. By normality we can extend, for every i ∈ K, any par-
tition in LJ between Ai ∩ LJ and Bi ∩ LJ to a partition in X
between Ai and Bi. Now apply the assumption that the full
family is essential.

1.4. Faces of cubes

Consider a Tychonoff cube Iκ. For every α ∈ κ we put Aα =
{x : xα = 0} and Bα = {x : xα = 1}; these are the αth opposite
faces of Iκ. The following theorem is a fundamental fact about
these faces.

Theorem 1.6. The family
{
(Aα, Bα) : α ∈ κ

}
is essential in Iκ.

For finite κ this follows from Brouwer’s Fixed-Point Theorem
[2, 7.3.19]. In case κ is infinite we put, for every finite subset a
of κ, Fa = π−1

a

[⋂
α∈a πa[Lα]

]
, where πa denotes the projection

onto the subcube Ia. By the finite case each Fa is nonempty and
clearly a ⊆ b implies Fa ⊇ Fb, so

⋂
a Fa 6= ∅. Now check that⋂

a Fa =
⋂

α Lα.
With this fact in mind we call a continuous map f : X → Iκ

essential if the family
{
(f−1[Aα], f

−1[Bα]) : α < κ
}

is essential.
A routine application of Urysohn’s lemma shows that X admits
an essential map onto Iκ iff X has an essential family of size κ.

1.5. Hyperspaces

The hyperspace of a space X is the family 2X of nonempty
closed subsets of X endowed with the Vietoris topology, which
has the family of sets of the form 〈U〉 = {F : F ⊆ U} and
〈X,U〉 = {F : F ∩ U 6= ∅}, where U is open, as a subbase.
It is well-known that 2X is compact Hausdorff if X is and that
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if X is compact metric, with metric d, then the corresponding
Hausdorff metric dH generates the Vietoris topology of 2X .

An important subspace of 2X is C(X), the space of all subcon-
tinua of X; it is a closed subset of 2X , hence it is also compact
if X is.

2. Bing’s Continua

We begin by constructing an infinite-dimensional hereditarily
indecomposable compact subset of the Hilbert cube I∞.

To this end we let πi denote the projection of I∞ onto the
i-th coordinate. Furthermore we fix a pliand family {fi : i ∈ N}
of continuous functions for I∞. For every i we let ui = π2i M fi

be the diagonal map of π2i and fi from I∞ to I2. The letter P
still refers to the partition of the square from Figure 1.

Theorem 2.1. Let X =
⋂∞

i=1 u−1
i [P ]. Then X is an infinite-di-

mensional hereditarily indecomposable compact space.

Proof. Lemma 1.4 implies immediately that X is hereditarily
indecomposable: for every fi the projection π2i is as required.

To see that X is infinite-dimensional we observe that u−1
i [P ] is

a partition between the even-numbered faces A2i and B2i of I∞
— indeed:

u−1
i [P ] ⊆ {x ∈ I∞ : 1/7 6 x2i 6 6/7}.

By Theorem 1.6 and Lemma 1.5 this implies that

{
(A2i+1 ∩ X,B2i+1 ∩ X) : i ∈ N}

is an essential family in X; so X is even strongly infinite-
dimensional.

Corollary 2.2 (Bing). For every n there is an n-dimensional
hereditarily indecomposable continuum.
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Proof. As observed in the previous proof the traces of the odd-
numbered faces of I∞ on X form an essential family in X. One
can therefore find a component S of X such that the traces
from that family on S also form an essential family. Now let
π : S → I2n be (the restriction of) the projection onto the first
2n coordinates. Consider the monotone-light factorization of π,
i.e., write π = λ ◦ µ, where µ : S → T is a monotone surjection
and λ : T → I2n is a light map, cf. [2, 6.2.22]. Since λ is light
we have dimT 6 2n, cf. [2, 7.4.20].

For odd i < 2n let Ci = λ−1[Ai] and Di = λ−1[Bi] and observe
that µ−1[Ci] = S ∩ Ai and µ−1[Di] = S ∩ Bi. From these last
equalities it follows that the Ci and Di form an essential family
in T and so dimT > n.

Because n 6 dimT 6 2n we may conclude that T contains
an n-dimensional continuum Bn. Since µ is monotone and S is
hereditarily indecomposable, so is Bn.

3. Bing’s Partitions

We shall present a variation of the construction from the previ-
ous section to demonstrate the following well-known result.

Theorem 3.1 (Bing). Let X be a continuum and let F0 and F1

be disjoint closed sets in X. Then there are disjoint open neigh-
borhoods W0 and W1 of F0 and F1, respectively, such that X \
(W0 ∪ W1) is hereditarily indecomposable.

Proof. We use the partition P and the open sets M0 and M1

from Section 1.2 again. Let {fi : i ∈ N} be a pliand family
for X.

Choose open neighbourhoods W0,0 and W1,0 of F0 and F1

respectively with disjoint closures. Whenever i > 0 and the
open sets W0,i and W1,i with disjoint closures are found ap-
ply Urysohn’s lemma to get a continuous function gi such that
gi[W0,i] = {0} and gi[W1,i] = {1} and set

W0,i+1 = u−1
i [M0] and W1,i+1 = u−1

i [M1],
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where ui = gi M fi. Because the closures of M0 and M1 are
disjoint the closures of W0,i+1 and W1,i+1 are disjoint as well.
Furthermore, because ui[Wj,i] ⊆ {j}× I ⊆ Mj we have clWj,i ⊆
Wj,i+1 for j = 0, 1. In the end the sets W0 =

⋃∞
i=0 W0,i and

W1 =
⋃∞

i=0 W1,i are disjoint open neighborhoods of F0 and F1,
respectively.

A direct application of Lemma 1.4 shows that L = X \ (W0∪
W1) is hereditarily indecomposable: for every i the function gi

is a suitable partner for fi.

4. Continua of Arbitrary Weight

This section contains some results on nonmetric continua.

4.1. Bing’s continua

We begin by showing that nonmetric hereditarily indecompos-
able continua of any prescribed weight exist.

Theorem 4.1. For every infinite κ there is a hereditarily inde-
composable continuum of weight κ. This continuum admits an
essential map onto Iκ.

Proof. We use the proof of Theorem 2.1. Let {fα : α ∈ κ} be a
pliand family of continuous functions on the Tychonoff cube Iκ.
As before let X =

⋂
α∈κ u−1

α [P ], where uα = p2α M fα and pα is
the projection onto the αth coordinate. The odd-numbered faces
of Iκ induce an essential family on X; it is also essential on some
component of X. This component is the required continuum.

4.2. Bing’s partitions

There is no general analogue of Theorem 3.1; this follows from
the following (well-known) fact.

Proposition 4.2. Let L denote the long segment and let L be
any partition between {0}×L and {1}×L in the product I×L;
then L contains a copy of I.
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Proof. Let U and V be disjoint open sets around {0} × L and
{1} × L respectively such that L = (I × L) \ (U ∪ V ). Let x0 =
sup{x : (x, ω1) ∈ U} and x1 = inf{x : x > x0 and (x, ω1) ∈ U}.
It is clear that 0 < x0 6 x1 < 1 and that [x0, x1]×{ω1} ⊆ L, so
that we are done in case x0 < x1. If x0 = x1 then we can find
an increasing sequence 〈un〉n and a decreasing sequence 〈vn〉n
such that (un, ω1) ∈ U and (vn, ω1) ∈ V for all n. Because
the sets U and V are open and because ω1 has uncountable
cofinality we can find an α < ω1 such that {un} × [α, ω1] ⊆ U
and {vn} × [α, ω1] ⊆ V for all n.

{x0} × [α, ω1] ⊆ clU ∩ clV ⊆ L.

Now consider Iω1 and embed L into I[1,ω1); this induces an
embedding of I × L into Iω1 so that {0} × L is embedded in the
face A0 and {1} × L is embedded in the face B0. We see that
every partition between A0 and B0 contains a copy of I.

Remark 4.3. An easy modification of the proof of Theorem 3.1
will show that in compact F -spaces of weight ℵ1 there are heredi-
tarily indecomposable partitions between any two disjoint closed
sets. Under the Continuum Hypothesis this applies to many
Čech-Stone remainders such as βRn \ Rn and also β(ω × Iω1) \
(ω × Iω1).

4.3. Hereditarily indecomposable preimages

In [11, (19.3)] it is proven that every metric continuum is the
weakly confluent image of some hereditarily indecomposable met-
ric curve. A map is weakly confluent if every continuum in the
range is the image of a continuum in the domain.

We shall show that this results holds in the nonmetric situa-
tion as well.

Theorem 4.4. Every continuum is the continuous image of a
one-dimensional hereditarily indecomposable continuum (of the
same weight) by a weakly confluent map.
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For clarity of exposition we prove this theorem in stages; first
we show that every continuum is the continuous image of some
hereditarily indecomposable continuum of the same weight, then
we modify the construction to get a weakly confluent map and
finally we show how to make the domain one-dimensional.

Proof. [Creating a hereditarily indecomposable preimage] Let
X be a continuum of weight κ and assume that X is embedded
into the Tychonoff cube Iκ. Let K be the hereditarily indecom-
posable continuum from Theorem 4.1 and let f : K → Iκ be an
essential map.

For every finite subset a of κ we consider the map πa ◦ f :
K → Ia and the continuum πa[X], where πa is the projection of
Iκ onto Ia. Because πa◦f is essential we may apply Theorem 4.3
from [5] to find a subcontinuum Ya of K such that (πa ◦f)[Ya] =
πa[X]. Because K is compact the net 〈Ya : a ∈ [κ]<ω〉 has a
convergent subnet in C(K); its limit Y is a subcontinuum of K
that maps onto X.

To be able to improve this construction so as to make the map
weakly confluent we need the following result, which follows from
Theorem 3.5 of [4].

Lemma 4.5. Let n ∈ N and let X be a continuum in In × {0}.
Then there is a copy H of the half line [0,∞) in In × (0, 1] such
that H∪X = clH is a continuum with the property that for every
continuous surjection f : Z → clH, where Z is a continuum,
there is a subcontinuum Y of Z such that f �Y : Y → X is onto
and weakly confluent.

Using this lemma and a slightly more complicated proof we
can ensure that we get a weakly confluent map from a heredi-
tarily indecomposable continuum onto a given one.

Proof. [Creating a weakly confluent preimage] We now assume
that our continuum X is embedded in Iκ × {0}, which we con-
sider to be a subset of Iκ × I. We take the continuum K from
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Theorem 4.1 and let f : K → Iκ × I be an essential map. For
every finite subset a of κ we let πa denote the projection of Iκ×I
onto Ia × I.

An application of Lemma 4.5 yields for every finite set a a
subcontinuum Ya of K such that (πa ◦ f)[Ya] = πa[X] and the
restriction (πa ◦ f) � Ya is weakly confluent. As before we take a
convergent subnet {Yα : α ∈ A} of {Ya : a ∈ [κ]<ω} with limit Y ;
then f [Y ] = X and it remains to show that f � Y is weakly
confluent. To this end let C be a subcontinuum of X and choose
for every a a subcontinuum Da of Ya such that (πa ◦ f)[Da] =
πa[C]. The subnet {Dα : α ∈ A} of {Da : a ∈ [κ]<ω} has a
convergent subnet {Dβ : β ∈ B} with limit D; it should be clear
that D ⊆ Y and f [D] = C.

Finally we indicate how to get a one-dimensional hereditar-
ily indecomposable continuum Y1 and a weakly confluent map
from Y1 onto X. For this we need the following lemma.

Lemma 4.6. There are a one-dimensional subcontinuum U of Iκ

and a monotone surjection m : U → Iκ.

Proof. This is a straightforward generalization of the proof of
19.1 in [11]. Let C denote the standard Cantor set in I. For
α ∈ κ put Uα = {x ∈ Iκ : if β 6= α then xβ ∈ C} and set
U =

⋃
α∈κ Uα. Just as in [11] one verifies that U is a closed

and connected subset of Iκ; to see that U is one-dimensional one
only has to realize that every basic open cover lives on a finite
subset of κ and hence that it can be given an open refinement
of order 2. Finally, the map hκ : U → Iκ, where h : I → I is the
Cantor step function, is a monotone map.

Proof. [A one-dimensional preimage] By the previous lemma
we can find a one-dimensional continuum X1 of the same weight
as X and a monotone surjection m : X1 → X. Next find a
hereditarily indecomposable continuum Y and a weakly conflu-
ent surjection f : Y → X1. As in the proof of Corollary 2.2
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we take the monotone-light factorization of f , i.e., a space Y1, a
monotone map µ : Y → Y1 and a light map λ : Y1 → X1 so that
f = λ ◦ µ. Because µ is monotone the space Y1 is hereditarily
indecomposable, because λ is light it is one-dimensional and be-
cause f is weakly confluent so is λ and because m is monotone
the map m ◦ λ is weakly confluent.

4.4. Hereditarily infinite-dimensional spaces

There are many constructions of hereditarily infinite-dimensional
continua, i.e., continua with only infinite-dimensional (nontriv-
ial) subcontinua. One such construction, due to Levin [10], ad-
mits a striking generalization to higher cardinals.

Theorem 4.7. For every cardinal κ there is a hereditarily in-
decomposable space of weight κ such that every subcontinuum of
it has an essential family of cardinality κ.

Proof. Consider the continuum K constructed in Theorem 4.1
and its essential family E =

{
(Aβ, Bβ) : β 6 κ

}
. Partition κ

into κ many sets Tα of size κ and let {Cα : α < κ} be a base
for K.

For each α let Wα be the union of all components of clCα on
which Eα =

{
(Aβ, Bβ) : β ∈ Tα

}
is not essential. Observe that

Wα is open in clCα and that the family Eα is not essential on
any compact subset of Wα.

Next let Uα = Wα ∩ Cα for each α and put U =
⋃

α<κ Uα.
The set U is open in K and the family E is not essential on
any compact subset of U : if C is such a set cover it by finitely
many Uα and use the disjointness of the sets Tα to make a set
of partitions whose intersection misses C.

It follows that every partition between Aκ and Bκ must meet
K \U and hence that K \U contains a non-trivial continuum H.
Let C be any subcontinuum of H, let p ∈ C and fix α such
that p ∈ Cα and C * clCα. Consider the component Z of p
in clCα; because K is hereditarily indecomposable we have
Z ⊆ C. But then Z ∩ Wα = ∅ and so Eα is essential on Z
and hence on C.
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5. Model-theoretic Considerations

In this section we call attention to the curious fact that many re-
sults about compact spaces of uncountable weight can be derived
by model-theoretic means; in fact, the Compactness Theorem
and the Löwenheim-Skolem Theorem enable one to deduce the
uncountable versions directly from the theorems in the metric
case.

5.1. Wallman spaces

The basis for the model-theoretic approach is Wallman’s gener-
alization [14] of Stone’s representation theorem for Boolean al-
gebras to distributive lattices. If L is a distributive lattice (with
0 and 1) then there is is a compact T1-space wL with a base for
its closed sets that is a homomorphic image of L. The homomor-
phism is an isomorphism if and only if L is disjunctive, which
means: if a 
 b then there is c ∈ L such that c 6 a and c∧b = 0.
Every compact T1-space X can be obtained in this way: X is the
Wallman space of its own family of closed sets. From this it is
clear that wL is not automatically Hausdorff; in fact wL is Haus-
dorff if and only if L is normal, which is expressed as follows:

(5.1) ( ∀x)(∀y)(∃u)(∃v)
[
(x ∧ y = 0)

→
(
(x ∧ u = 0) ∧ (y ∧ v = 0) ∧ (u ∨ v = 1)

)]
.

In a similar fashion we can express that wL is connected or
hereditarily indecomposable. The following formula expressed
the connectivity of wL:

(5.2)(∀x)(∀y)
[(

(x∧ y = 0) ∧ (x∨ y = 1)
)
→

(
(x = 0) ∨ (x = 1)

)]
.

This suffices because every base for the closed sets of a compact
space that is a lattice contains every clopen set of that space.
We can read this formula as expressing a property of 1, to wit
“1 is connected”; we therefore abbreviate it as conn(1) and we
shall write conn(a) to denote Formula 5.2 with 1 replaced by a
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and use it to express that a is connected (or better: the set
represented by a is connected).

To ensure that wL is hereditarily indecomposable it suffices to
have a fold for every pliand foursome from L and this is exactly
what the following formula expresses.

(5.3) (∀x)(∀y)(∀u)(∀v)(∃z1, z2, z3)[(
(x ∧ y = 0) ∧ (x ∧ u = 0) ∧ (y ∧ v = 0)

)

→
(
(x ∧ (z2 ∨ z3) = 0) ∧ (y ∧ (z1 ∨ z2) = 0)

∧ (z1 ∧ z3 = 0) ∧ (z1 ∧ z2 ∧ v = 0)

∧ (z2 ∧ z3 ∧ u = 0) ∧ (z1 ∨ z2 ∨ z3 = 1)
)]

.

5.2. Existence of hereditarily indecomposable continua

The existence of the pseudoarc P implies that there are one-
dimensional hereditarily indecomposable continua of arbitrarily
large weight. Indeed, the family of closed sets of P is a dis-
tributive and disjunctive lattice that satisfies formulas 5.1, 5.2
and 5.3; it also satisfies

(5.4)(∀x0)(∀y0)(∀x1)(∀y1)(∃u0, v0, u1, v1)[(
(x0 ∧ y0 = 0) ∧ (x1 ∧ y1 = 0)

)
→

(
(x0 ∧ u0 = 0)

∧ (y0 ∧ v0 = 0) ∧ (x1 ∧ u1 = 0) ∧ (y1 ∧ v1 = 0)
∧ (u0 ∨ v0 = 1) ∧ (u1 ∨ v1 = 1) ∧ (u0 ∧ v0 ∧ u1 ∧ v1 = 0)

)]
.

This formula expresses dimwL 6 1 in terms of closed sets,
see Section 1.3. Therefore this combination of formulas is con-
sistent and so, by the (upward) Löwenheim-Skolem theorem, it
has models of every cardinality. Thus, given a cardinal κ there
is a distributive and disjunctive lattice L of cardinality κ that
satisfies 5.1, 5.2, 5.3 and 5.4. The space wL is compact Haus-
dorff, connected, hereditarily indecomposable, one-dimensional
and of weight κ or less, but with at least κ closed sets. Thus, if
κ > 2λ then the weight of wL is at least λ.

To get a space of weight exactly κ we make sure that wL has
at least 2κ many closed sets. To this end we introduce two sets
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of κ many constants {aα : α < κ} and {bα : α < κ} and two sets
of κ many formulas: for every α the formula aα ∧ bα = 0 and
for any pair of disjoint finite subsets p and q of κ the formula∧

α∈p aα ∧
∧

α∈q bα 6= 0. Thus we have expanded the language
of lattices by a number of constants and we have added a set of
formulas to the formulas that we used above. This larger set Tκ

of formulas is still consistent.
Take a finite subset T of Tκ and fix a finite subset t of κ such

that whenever aα∧ bα = 0 or
∧

α∈p aα∧
∧

α∈q bα 6= 0 belong to T
we have α ∈ t and p ∪ q ⊆ t. Now take a map f from P onto
the cube It and interpret aα by f−1[Aα] and bα by f−1[Bα]; in
this way we have ensured that every formula from T holds in
the family of closed subsets of P. Therefore T is a consistent
set of formulas and so, because it was arbitrary and by the
compactness theorem, the full set Tκ is consistent.

Because Tκ has cardinality κ it has a model L of cardinality κ.
Now wL is as required: its weight is at most κ because L is a
base of cardinality κ. On the other hand: for every subset S
of κ, we have, by compactness, a nonempty closed set

FS =
⋂

α∈S

aα ∩
⋂

α/∈S

bα

such that FS ∩ FT = ∅ whenever S 6= T .

Remark 5.1. The reader may enjoy modifying the above ar-
gument so as to ensure that

{
(aα, bα) : α < κ

}
is an essential

family in wL. To this end write down, for every finite subset a
of κ, a formula φa that expresses that

{
(aα, bα) : α ∈ a

}
is es-

sential. Theorem 2.1 more than ensures that the set of formulas
consisting of 5.1, 5.2, 5.3 and the φa is consistent.

5.3. Hereditarily indecomposable preimages

We can also give a model-theoretic proof of Theorem 4.4. For
this we need to know how to ensure that wL maps onto the
given continuum and how to get this surjection to be weakly
confluent.
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Making a continuous surjection. The following lemma tells us
how to make continuous surjections.

Lemma 5.2. Let X be compact Hausdorff and L some normal,
distributive and disjunctive lattice. If X has a base B for the
closed sets that is a lattice and embeddable into L then wL ad-
mits a continuous surjection onto X.

Proof. We only sketch the argument. Let φ : B → L be an
embedding and define f : wL → X by “f(p) is the unique point
in

⋂{
C ∈ B : p ∈ φ(C)

}
”. It is straightforward to check that

f is onto and that f−1[C] = φ(C) for all C.

This tells us that to get a (one-dimensional) hereditarily inde-
composable continuum that maps onto the given continuum X
we need to construct a distributive, disjunctive and normal lat-
tice L that satisfies formulas 5.2 and 5.3 (and 5.4), and an em-
bedding φ of some base B for the closed sets of X into L.

Let a continuum X and a lattice-base B for its closed sets
be given. As before we start with the formulas that ensure that
wL will be a hereditarily indecomposable continuum. To these
formulas we add the diagram of B; this consists of B itself, as
a set of constants, and the ‘multiplication tables’ for ∧ and ∨,
i.e., A ∧ B = C whenever A ∩B = C and A ∨ B = C whenever
A ∪ B = C.

Now, if L is to satisfy the diagram of B it must contain
elements xA for every A ∈ B so that xA∧B = xA ∧ xB and
xA∨B = xA ∨ xB hold whenever appropriate; but this simply
says that there is an embedding of B into L.

We are left with the task of showing that the set T of formulas
that express distributivity, disjunctiveness, normality as well as
formulas 5.2 and 5.3 (and 5.4), together with the diagram of B

is consistent. Let T be a finite subset of T and, if necessary,
add the first six formulas to it. Let B′ be a countable, normal
and disjunctive sublattice of B that contains the finitely many
constants that occur in T . The Wallman space of B′, call it Y ,
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is a metric continuum and therefore the continuous image of
a hereditarily indecomposable (one-dimensional) continuum K.
The lattice of closed sets of K satisfies all the formulas from T :
interpret A by its preimage in K.

It follows that T is consistent and that it therefore has a
model L of the same cardinality as T, which is the same as the
cardinality of B. The lattice L satisfies all formulas from T;
its Wallman space is a (one-dimensional) hereditarily indecom-
posable continuum that maps onto X. If B is chosen to be of
minimal size then wL is of the same weight as X.

This proof is much like the model-theoretic proof of the main
theorem of [1, Section 2] which says that every continuum of
weight ℵ1 is a continuous image of the Čech-Stone remainder of
the real line.

Making a weakly confluent map. We now improve the forego-
ing construction so as to make the continuous surjection weakly
confluent.

The following theorem — which is a souped-up version of the
Mardešić factorization theorem — implies that it suffices to get
some hereditarily indecomposable continuum Y that admits a
weakly confluent map f onto our continuum X.

Theorem 5.3. Let f : Y → X be a continuous surjection be-
tween compact Hausdorff spaces. Then f can be factored as h◦g,

where Y
g→ Z

h→ X and Z has the same weight as X and shares
many properties with Y .

Proof. Let B be a lattice-base for the closed sets of X (of min-
imal size) and identify it with its copy {f−1[B] : B ∈ B} in 2Y .
By the Löwenheim-Skolem theorem [6, Corollary 3.1.5] there is
a lattice D, of the same cardinality as B, such that B ⊆ D ⊆ 2Y

and D is an elementary substructure of 2Y . The space Z = wD

is as required.

Some comments on this theorem and its proof are in or-
der, because they do not seem to say very much. However,
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‘elementary substructure’ is an extremely powerful concept. In
our context it means that the smaller structure is closed off un-
der every possible finitary lattice-theoretic operation of interest.

For example, if Y is hereditarily indecomposable then 2Y is
closed under the operation, implicit in formula 5.3, which as-
signs a fold to every pliand foursome. But then D must be
closed under this operation as well and hence Z is hereditarily
indecomposable.

Likewise dimZ = dimY , because if there is an essential fam-
ily in 2Y of size n then there must be one in D (use a constant
operation that assigns an essential family of size n to everything)
and, conversely, if there is an essential family of size n in D then
it is essential in 2Y as well: D is closed under the operation
of assigning sequences of partitions with empty intersection to
inessential families.

We leave to the reader the verification that if f is weakly
confluent then so is the map h in the factorization.

Now let X be a continuum. Our aim is of course to find a
lattice L that contains the diagram of 2X — to get our contin-
uous surjection f — and for every C ∈ C(X) a continuum C ′

in wL such that f [C ′] = C.
As before we add the diagram of 2X to the formulas that guar-

antee that wL will be a hereditarily indecomposable continuum.
In addition we take a set of constants {C ′ : C ∈ C(X)} and
stipulate that C ′ will be a continuum that gets mapped onto C.

To make sure that every C ′ is connected we put conn(C ′) into
our set of formulas, for every C. Next, f [C ′] ⊆ C translates, via
the embedding into L, into C ′ 6 C (or better C ′ = C ′∧C). Now,
if it happens that f [C ′] ( C then there is a closed set D in X
(in fact it is f [C ′] but that is immaterial) such that C ′ 6 D and
C 
 D. In order to avoid this we also add, for every C ∈ C(X)
and every D ∈ 2X , the formula

(C ′ 6 D) → (C 6 D)

to our set of formulas.
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Again, the theorem in the metric case implies that this set
of formulas is consistent — given a finite subset T of it make
a metric continuum XT as before, by expanding {B ∈ 2X :
B occurs in T} to a countable normal sublattice B of 2X ; then
find a metric continuum YT of the desired type that admits a
weakly confluent map f onto XT ; finally choose for every C ∈
C(X) that occurs in T a continuum in YT that maps onto C and
assign it to C ′; this then makes the family of closed sets of YT a
model of T .

As before we obtain a lattice L whose Wallman space is one-
dimensional and hereditarily indecomposable, and which, in ad-
dition, admits a weakly confluent map onto X.

6. From Three to Infinity

In this section we shall show that Brouwer’s Fixed-point Theo-
rem in dimension three implies all of its higher-dimension ver-
sions, using only point-set arguments and a smattering of Linear
Algebra. The point-set arguments can be culled from Kelley’s
proof, from [8], of his theorem that the hyperspace of a (at
least) two-dimensional hereditarily indecomposable continuum
is infinite-dimensional. To convince the reader that point-set ar-
guments really suffice and to make Kelley’s result better known
we shall give the argument in full. In this section all continua
under consideration are metrizable; we invariably use ρ to de-
note a compatible metric and ρH to denote the corresponding
Hausdorff metric.

6.1. More on hyperspaces

Most of our arguments will take place in the hyperspace C(X)
of all subcontinua of a two-dimensional hereditarily indecompos-
able continuum X.

Order arcs. It is well-known that C(X) is arcwise connected
whenever X is a metric continuum; in fact if A ∈ C(X) then
there is a linearly ordered family C of continua containing A
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and X and that is homeomorphic to I. For hereditarily inde-
composable continua we can give a completely elementary proof
of this fact.

Lemma 6.1. Let X be a hereditarily indecomposable continuum
and for x ∈ X put Cx = {C ∈ C(X) : x ∈ C}. Then Cx is a
chain, whose subspace and order topologies coincide and make it
homeomorphic to I.

Proof. That Cx is a chain follows from hereditary indecompos-
ability of X. It is clear that Cx is complete: if F ⊆ Cx then
cl

⋃
F is the supremum of F in Cx. To see that Cx has no jumps

take C and D in C with C ( D and fix an open set U such that
C ⊆ U and D * clU . Now the component E of clU that con-
tains C meets the boundary of U , so C ( E, and is contained
in clU , so E ( D.

The set Cx is closed in C(X): its complement,
{
C : C ⊆

X \ {x}
}
, is a basic open set. Likewise the sets {C : C ⊆ A}

and {C : A ⊆ C} are closed in C(X); this shows that the order
topology on Cx is contained in the subspace topology. Because
both topologies are compact Hausdorff they coincide; because
this topology is metric we find that Cx is isomorphic and home-
omorphic to I.

Whitney levels. A Whitney map for 2X is a continuous function
µ : 2X → R such that µ

(
{x}

)
= 0 for all x and µ(C) < µ(D)

whenever C ( D. If X is compact metric then there are Whit-
ney maps for 2X , see [12, 4.33].

We fix a hereditarily indecomposable continuum X and a
Whitney map µ : C(X) → R (we shall work inside C(X) only).
The fibers µ−1(r) (0 6 r 6 µ(X)) divide C(X) into layers, re-
ferred to as Whitney levels. We list some properties of Whitney
levels.

Lemma 6.2. Every Whitney level is closed.
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Lemma 6.3. Every Whitney level is a pairwise disjoint family
of continua.

Proof. Apply hereditary indecomposability.

Lemma 6.4. Every Whitney level covers X.

Proof. The function µ is continuous and, for every x, the set Cx

is an arc that connects {x} and X; it follows that µ[Cx] =[
0, µ(X)

]
.

One can easily show that ρH(A,B) < δ implies
∣∣diam(A) −

diam(B)
∣∣ < 2δ, so that diam is a continuous function on 2X .

It follows that, for every r, the diameter function assumes a
minimum on the Whitney level µ−1(r). On the other hand,
for every positive number ε the set {A : diam(A) < ε} is an
open neighbourhood of the closed set

{
{x} : x ∈ X

}
; it follows,

by compactness, that there is a positive number s such that
µ−1(r) ⊆ {A : diam(A) < ε} whenever r < s.

We now have all the ingredients we need to be able to present
Kelley’s argument.

6.2. Kelley’s argument

For the remainder of this section we fix a hereditarily indcom-
posable continuum X that is at least two-dimensional and we
fix an essential family

{
(A0, B0), (A1, B1)

}
witnessing this.

To begin fix ε > 0 such that ρ(x, y) > ε whenever x ∈ Ai

and y ∈ Bi, where i = 0, 1. We may assume, without of loss
of generality, that ε = 1 (if necessary scale ρ by the factor 1

ε
).

The following lemma will be used toward the end of Kelley’s
argument.

Lemma 6.5. Let N be a finite disjoint collection of closed sets
with diameter at most 1/2 in X. Then there is a continuum in X
of diameter at least 1 that misses all elements from N.
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Proof. Striving for a contradiction, assume that for N such as
in the formulation of the lemma, every continuum in X \

⋃
N

has diameter less than 1. Since N is finite, there clearly is a
finite disjoint collection N0 of closed subsets of X of mesh less
than 1 such that

⋃
N is contained in the interior W of

⋃
N0.

Since by assumption each component of X \W has diameter less
than 1, the set X \ W can also be covered by a finite disjoint
collection N1 of closed sets with diameter less than 1. For i = 0
and 1 let Si be a closed set in X separating the disjoint closed
sets

Ci = Ai ∪
⋃

{N ∈ Ni : N ∩ Bi = ∅} and

Di = Bi ∪
⋃

{N ∈ Ni : N ∩ Bi = ∅}.

Then, clearly, S0 ∩ S1 = ∅, which in turn contradicts our as-
sumption that the pairs (A0, B0) and (A1, B1) form an essential
family.

Let us now take a Whitney map µ : C(X) → R and fix s > 0
such that the Whitney level µ−1(r) is contained in
{A : diam(A) < 1/2}, whenever r < s. We shall show that
µ−1(r) is infinite-dimensional whenever r < s. Fix such an r
and put η = min{diam(A) : µ(A) = r}. The following proposi-
tion implies that the Whitney level µ−1(r) is infinite dimensional
— we shall explain this later in Remark 6.8.

Proposition 6.6. Every finite closed cover of µ−1(r) of mesh
less than η/(4n) has an element that meets at least n other ele-
ments of the cover.

Proof. Put ε = η/(4n) and assume that F is a finite closed
cover of µ−1(r) with mesh less than ε such that each element
of F meets at most n−1 other elements of F. We shall associate
to each element A ∈ F a compact subset ϕ(A) of

⋃
A such that

(1) ϕ(A) meets every element of A,

(2) diamϕ(A) 6 2ε,
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(3) ϕ(A) ∩ ϕ(B) = ∅ whenever A and B are distinct elements
of F.

Assume that ϕ is already defined on a subfamily G of F, and
take A in F\G; we show how to extend ϕ to G∪{A} (this then
means that we can define ϕ on all of F in finitely many steps).

The set H of all elements of G that meet A has, by assump-
tion, cardinality less than n; because A∩B 6= ∅ iff

⋃
A∩

⋃
B 6=

∅ it suffices sure that ϕ(A) does not meet ϕ(B) for any B in H.
For each B in H let B(B) be the closed ε-ball about ϕ(B)

and fix an A ∈ A. We shall show that {B(B) : B ∈ H} does not
cover A. Indeed, otherwise, because A is connected, we could
arrange this family into a sequence B1, . . . , Bp, p < n, with
Bi ∩

⋃
j<i Bj 6= ∅ for each i 6 p. But then we could find an

upper bound for diamA, thus:

diamA 6 (n − 1) · max
i6p

diamBi 6 (n − 1) · (4ε) < η.

This would contradict our choice of η as he minimum diameter
of the elements of µ−1(r).

Take a ∈ A\
⋃{

B(B) : B ∈ H
}

and let B be the closed ε-ball
about a. We set ϕ(A) = B ∩

⋃
A.

If E ∈ A then %(a,E) 6 %H(A,E) < ε and so B meets E;
clearly diamB 6 2ε, so ϕ(A) has the first two required proper-
ties. Finally, if B ∈ H then ϕ(A) ∩ ϕ(B) ⊆ B ∩ ϕ(B) = ∅.

The collection
N = {ϕ(A) : A ∈ F}

is finite, disjoint and has mesh less than 1/2. To reach our final
contradiction consider any continuum C in X \

⋃
N, take E ∈

µ−1(r) that intersects C and fix A ∈ F with E ∈ A.
Now, E meets ϕ(A) and C does not so E * C; but then C ⊆

E, because X is hereditarily indecomposable. This, however,
means that

diamC 6 diamE 6 1/2.

This contradicts Lemma 6.5.



HEREDITARY INDECOMPOSABILITY 203

Remark 6.7. Although our argument took place in the hyper-
space C(X) it could have been presented as a decomposition
result as well. We have already seen that µ−1(r) is a decom-
position of X; because µ−1(r) is a closed subset of C(X) one
can quite readily show that the decomposition map is actually
closed and open. The latter condition implies that the Haus-
dorff metric defines a compatible metric on the decomposition
space. We find that X admits an open continuous map onto an
infinite-dimensional continuum.

6.3. From three to infinity

We now make good on our promise by showing that Brouwer’s
fixed-point theorem for I3 implies the full version.

As remarked before, Brouwer’s Fixed-Point theorem for In

implies that the pairs of faces of the cube In form an essen-
tial family. Thus, from the version for I3 we find that the pairs
(A0, B0), (A1, B1) and (A2, B2) form an essential family. By The-
orem 3.1 let L be any hereditarily indecomposable partition be-
tween A2 and B2. By Lemma 1.5 the traces of the pairs (A0, B0),
and (A1, B1) form an essential family on L, whence dimL > 2.
There is a component X of S on which these traces also form an
essential family. We find that Brouwer’s theorem for I3 implies
the existence of an at least two-dimensional hereditarily inde-
composable continuum X. We shall now prove, from this fact,
that for every m the cube Im has the fixed-point property.

Working toward a contradiction we take the first m such that
Im has a fixed-point free map f . Using f one can make fixed-
point free maps on every Ik with k > m and, as is well-known,
for every k > m a retraction of Ik onto its boundary.

We use the Whitney level µ−1(r) and the number η from
Proposition 6.6. To begin we set n = 32m+1 − 1 and ε = η/(4n).
The compact space µ−1(r) has many finite open covers of mesh
less than ε, each of which has a nerve, a polyhedron, associated
with it, see [3, 1.10]. The canonical map onto this nerve is
an ε-map, i.e., each fiber has diameter less than ε. We choose
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a polyhedron P of minimal dimension, say k, such that there is
an ε-map f : µ−1(r) → P .

We use Proposition 6.6 to show that k > m. Indeed, assume
k < m and apply Theorem 1.10.4 from [3] to see that P may be
realized inside I2k+1 (here is where the Linear Algebra is needed).
For every l we can create a closed cover Fl of I2k+1 and hence
of P by cutting along the hyperplanes xi = j/l, where i < 2k+1
and j = 0, . . . , l. Observe that every element of Fl meets at
most 32k+1 − 1 other elements of Fl. If l is taken large enough
then the preimage under f of Fl is a finite closed cover of µ−1(r)
of mesh less than ε such that every element meets fewer than n
other elements of the cover. This contradicts Proposition 6.6.

We find that k > m. To reach our final contradiction we
consider the successive barycentric subdivisions of P . In each
of these subdivisions we find retractions of the k-simplices onto
their boundaries and combine these into a map r : P → Q, where
Q is the union of the at most (k − 1)-dimensional simplices in
the subdivision. For a fine enough subdivision the composition
r ◦ f is an ε-map from µ−1(r) onto a (k − 1)-dimensional poly-
hedron Q. This contradicts the minimality of k.

Remark 6.8. The arguments given above imply in particular
that µ−1(r) cannot be embedded into In for any n. The Embed-
ding Theorem ([3, 1.11.4]) now implies that µ−1(r) is infinite-
dimensional.

This provides another route to Brouwer’s Fixed-point theo-
rem. The first step is to observe that µ−1(r) has arbitrarily large
finite essential families of pairs of closed sets. The third step is
to derive the fixed-point theorem for In from the fact that the
faces of In form an essential family, see [3, 1.8.B]. The inter-
mediate step is provided in the following proposition, which is
related to a theorem of Holsztyński from [7].

Proposition 6.9. If some normal space X has an essential fam-
ily consisting of n pairs then the pairs of opposite faces of In also
form an essential family.
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Proof. Let
{
(Ci,Di) : i < n

}
be an essential family in the

normal space X. Apply Urysohn’s lemma to get continuous
functions fi : X → I such that fi[Ci] = {0} and fi[Di] = {1} for
all i and take the diagonal map f = 4i<n fi. If Li is a partition
between the faces Ai and Bi of In for each i, then f−1[Li] is a
partition between Ci and Di and so

⋂
i<n f−1[Li] 6= ∅; but then⋂

i<n Li 6= ∅ as well.
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