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Abstract

For a completely regular Hausdorff space X, de-
note by C(X) the topological algebra, with the
compact-open topology, of all complex valued con-
tinuous functions on X. There are spaces X for
which neither C(X) nor any extension of C(X),
is simultaneously bornological and complete. To
overcome this difficulty, this paper defines the con-
cept of countable completeness and proves that ev-
ery C(X) admits a minimal extension that is both
bornological and countably complete.

1. Introduction

In [5], W. W. Comfort asked the question: If X is a k-space
must the Hewitt realcompactification υX of X be a k-space?
This general topology question was promptly and elegantly an-
swered in the negative by N. Noble [18] and Comfort [6]. Inter-
est in this question has been rekindled by M. Fragoulopoulou
and N. C. Phillips in the context of automatic continuity of
∗-homomorphisms on lmc ∗-algebras [8] and commutative Pro-
C∗-algebras [21]. The connection between the topology problem
of [5] and the functional analysis problems of [8] and [21] is dis-
played in Theorems A and B below.
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and its Applications, Oxford, Ohio, July 26-29, 2000 under the title: Four
Degrees of Completeness.
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Throughout this paper,X will denote a completely regular Haus-
dorff space and C(X), the topological ∗-algebra of complex val-
ued continuous functions on X with the compact-open topology.
For definitions not stated in sections 3 and 4 below, see [7], [10],
[14] or [22].

Theorem A. For any completely regular Hausdorff space X,
the following are equivalent:

(a) X is realcompact.
(b) C(X) is bornological (Nachbin [17] and Shirota [26]).
(c) C(X) is iseomorphic as a topological vector space to a

direct limit of Banach spaces (Warner [30; Th. 5] or [32]).
(d) Every positive linear functional on C(X) is continuous

(Hewitt [11; Th. 21]).
(e) Every multiplicative linear functional on C(X) is contin-

uous (Michael [15; 6.1]).
(f) Every order bounded linear functional on C(X) is contin-

uous (Hewitt [11; Th. 23]).
(g) Every ∗-homomorphism from C(X) to a C∗-algebra is

continuous.
Proof. The proof that statements (a) through (f) are equivalent
may be found in the references noted. Since each multiplica-
tive linear functional on C(X) is a ∗-homomorphism (Kaplansky
[12]), it follows that (g) implies (e).

(a) implies (g). For a ∗-homomorphism φ of C(X) into a C∗-
algebra, the image φ[C(X)] = B is a commutative C∗-algebra
with unit; whence, by the Gelfand Theorem ([7;1.4.1]), B is iso-
metrically isomorphic with C(Y ) for some compact Hausdorff
space Y . The composition φ1 of this isometry with φ is a homo-
morphism of C(X) onto C(Y ). By 10.8 and 10.3(b) of [10], φ1

induces a homeomorphism from Y onto a compact subspace K
ofX. It is now clear that φ is continuous since it is a composition
of the restriction map f −→ f |K with with an iseomorphism. 2

Definition 1.1. A function f on a space X is k-continuous
if f |K is continuous on K for each compactum in X. KC(X)
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will denote the ∗-algebra of all k-continuous, complex valued
functions on X. For a space X, krX will denote the set X
with the KC(X)-weak topology. Finally, X is a kr-space if it is
completely regular Hausdorff and KC(X) = C(X).

Theorem B. For any completely regular Hausdorff space X,
C(X) is complete with respect to the compact-open topology if
and only if X is a kr-space (Pták [23]).

2. The Question

From the point of view of functional analysis, the best possible
scenario is for C(X) to have the automatic continuity property
(i.e.,X is realcompact) and to be complete (i.e.,X is a kr-space).
This is the case when X is locally compact and realcompact.

Definition 2.1. A topological algebra (B, E) is an extension of
the topological algebra (A,T ) with extendor θ provided θ is an
injective homomorphism from A to B that is also an open map
from (A,T ) to θ[A] with the relative E topology.

Question 2.2. For a completely regular space X, does C(X)
with the compact-open topology, admit an extension C(Y ) that
is both complete and bornological?

Answer: No. In [16], Mrówka displays an example that gives
an emphatically negative answer to this question.

Mrówka’s Example 2.3. This space is a locally compact,
non-realcompact space X which is the union of two closed
realcompact subspaces. By [3], this space is a µ-space for which
both K ∩X and K \X are compact for every compact K ⊂ υX.
(Note: υX is the Hewitt realcompactification of X [10; 8.4]).
Thus X is both open and closed in kr(υX). This means that
if the operators υ and kr are alternately applied to X, one ob-
tains an increasing transfinite sequence of distinct spaces. If one
forms C(T ) for each of these spaces T (= υX, krυX, · · · ), then
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one gets a strictly increasing transfinite sequence of commuta-
tive ∗-algebras. The algebras in this sequence are alternately
bornological or complete but no single algebra has both proper-
ties.

The Mrówka Example shows, in general, that it is not possi-
ble to achieve both completeness and the automatic continuity
properties listed in Theorem A. To avoid this pathology, func-
tional analysts typically assume that the algebra C(X) satis-
fies a strong countability condition, such as, requiring that the
compact-open topology be separable, or sequentially complete
[21; 1.4.5] or that it be first countable [8; 3.4]. This suggests
that by adding an appropriate countability condition, a positive
answer to the above question is achievable. It is the purpose
of the next section to introduce a countability condition that is
weaker (in the present context) than both first countability and
separability. (See 3.3 and 3.4 below.)

3. Countable Completeness

Definition 3.1. A uniform space is countably complete if each
Cauchy net which assumes only countably many values, is con-
vergent.

Theorem 3.2 For any uniform space (X,µ), the following are
equivalent:

(a) (X,µ) is countably complete.
(b) Each Cauchy filter, containing a countable set, converges.
(c) The closure of any countable set is complete.
(d) Each closed separable subspace is complete.

Proof. That (a) ⇔ (b) follows from the standard translation
from nets to filters.

(a) ⇒ (c). Let E be the closure of a countable set D and
let {xα} be a Cauchy net in E. Then this net {xα} converges
to a point s in the closure of E in the completion (X∗, µ∗). For
each index α, there is a net {yα,j} in D which converges in X
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to xα. By the Theorem on Iterated Limits (See [13], page 69),
there exists a subnet of {yα,j} which converges in X∗ to s. Since
this subnet is countably valued, condition (a) implies that it
converges to a point in X. So s ∈ E; whence E is complete.

Clearly (c) ⇒ (d).
(d) ⇒ (b). Let F be a Cauchy filter containing a countable

set D and set E = clD. Then by (d), the restriction of F to E
converges; whence F converges. 2

Corollary 3.3. Each countably complete, separable uniform
space is complete.

Theorem 3.4. If C(X) is first countable, then its completion
is bornological.

Proof. Recall that C(krX) is the completion of C(X). If C(X)
is first countable then both X and krX are σ-compact and thus
realcompact. The desired conclusion now follows from Theorem
A. 2

Remark 3.5. Complete ⇒ countably complete ⇒ sequentially
complete.
If X is the space described in Mrówka’s Example above, then
C(υX) is countably complete, but not complete, with respect
to the compact-open topology. The following example describes
a uniform space that is sequentially complete (i.e., each Cauchy
sequence converges) but is not countably complete.

Example. Let X = βN \ {p} where p is a non-isolated point
of the Stone-Čech compactification βN of the countably infinite
discrete space N. This space X admits a unique Hausdorff uni-
formity µ [10; 15R, p.238]. The completion of (X,µ) is βN. Since
(X,µ) is separable but not complete, it is not countably com-
plete. Every convergent sequence in βN is eventually constant
[10; 9N.2, p.139]. This implies that every µ-Cauchy sequence in
X converges.
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Definition. (a) A topological space is ℵ0-bounded if it is com-
pletely regular Hausdorff and each countable subset has compact
closure [22; p.381].
(b) A uniform space is ℵ0-totally bounded if each filter containing
a countable set is contained in a Cauchy filter.

Theorem 3.6. For any completely regular Hausdorff space X,
the following are equivalent:

(a) X is ℵ0-bounded.
(b) Every filter F on X, containing a countable set, clusters.

Proof. Clearly (a) implies (b). Assume that (a) fails. Then X
contains a countable set D whose closure in X is non-compact.
Then there is a point p in the βX-closure of D that is not in X.
If F is the filter on X generated by D and the trace on X of the
βX neighborhood system of p, then F contains the countable
set D but fails to have a cluster point in X. 2

Corollary 3.7. A uniform space is ℵ0-bounded if and only if it
is countably complete and ℵ0-totally bounded.

Note. In the proof of the next theorem, we will repeatedly refer
to [22]. Although Porter and Woods in their book [22] work
solely within the category of Hausdorff spaces and continuous
maps, their categorical approach permits ready application to
the category UNIF of Hausdorff uniform spaces and uniformly
continuous maps.

Theorem 3.8. (a) Countable completeness is preserved by prod-
ucts, closed subspaces and intersections.

(b) Countable completeness is a uniform extension property
(in the sense of [22]).

(c) If f : (X,µ) −→ (Y, ν) is uniformly continuous, then
f←[Z] is countably complete whenever both Z ⊂ Y and X are
countably complete.

(d) Each uniform space (X,µ) admits a minimal countable
completion (Xc, µc) that is unique up to a uniform isomorphism.
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(e) Each uniformly continuous map f : (X,µ) −→ (Y, ν) with
countably complete codomain (Y, ν) admits a unique uniformly
continuous extension f c : (Xc, µc) −→ (Y, ν).

Proof. The proof that countable completeness is productive and
closed hereditary is the same as it is for completeness. See pages
194 and 192 in [13]. That countable completeness is preserved
by intersections follows as in 5.9(d) of [22]. Parts (b), (c), (d)
and (e) follow from 5.3(c), p.369; 5.9(c), p.385; 5.3(d), p.371 and
5.3(f), p.372 in [22], respectively. 2

The following theorem gives an explicit characterization of the
countable completion of a uniform space.

Theorem 3.9. If (X∗, µ∗) is the completion of (X,µ), then

Xc =
⋃
{X∗-cl D : D ⊂ X, D is countable}

and µc is the restriction of µ∗ to Xc.

Proof. Since any closed separable subspace E of Xc lies in the
closure of a countable subset of X, it follows that E is closed in
X∗; therefore E is complete. 2

Remark 3.10. Let UNIF be the category of Hausdorff uni-
form spaces and uniformly continuous maps. The full subcat-
egory COUNT COMP of UNIF , whose objects are the count-
ably complete uniform spaces, is an epireflective subcategory.
[22; 9.6(b)(4), p.717].

The question in Section 2 can now be restated.

Revised Question 3.11. For a completely regular space X,
does C(X) with the compact-open topology, admit an extension
C(Y ) that is both countably complete and bornological?

To achieve an answer (see 5.2) to the revised question, we obtain
the analogue of Theorem B, namely Theorem 4.3 below, that
characterizes countable completeness.
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4. kω
r -spaces

Definition 4.1. A map f : X −→ Y is an ω-map if it factors
through a separable metric space; i.e., there exists a separable
metric space M , a map g : M −→ Y and a continuous surjection
φ : X −→ M so that f is the composition g ◦ φ. A map is
kω-continuous provided it is both k-continuous and an ω-map.
KωC(X,Y ) will denote the set of all kω-continuous maps from
X to Y while KωC(X) will denote the topological ∗-algebra
of complex valued kω-continuous functions, with the compact-
open topology. Finally,X is a kω

r -space if it is completely regular
Hausdorff and KωC(X) = C(X).

Remark 4.2. (a) If X is separable metrizable, then every map
defined on X is an ω-map.

(b) If Y is separable metrizable, then every continuous map
from X to Y is an ω-map.

Theorem 4.3. A completely regular Hausdorff space X is a
kω

r -space if and only if C(X), with the compact-open topology, is
countably complete.

Proof. It suffices to prove that C(X) is countably complete if
and only if KωC(X) = C(X). This is done in the next two
Propositions. 2

Proposition 4.4. If C(X) is countably complete, then
KωC(X) = C(X).

Proof. By 4.2(b) above, C(X) ⊂ KωC(X). Let f ∈ KωC(X).
Then f is k-continuous and there are a separable metric space
(M,d), a continuous surjection φ : X −→ M and a map g :
M −→ C so that f = g◦φ. For a countable dense subspace {tn :
n ∈ ω} of M, define hn(t) = d(t, tn); then {hn : n ∈ ω} separates
points ofM . Let B be theQ[i]-linear ring generated by {hn : n ∈
ω}. (HereQ[i] denotes the field of Gaussian rationals.) Note that
the restriction of g to φ[K] is continuous for each compactum K
in X. By the Stone-Weierstrass Theorem (Theorem 11, p.58 in
[28]), each g ∈ KC(M) can be approximated on any compact
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subset of M by a sequence in B. Therefore f is the compact-
open limit of a net in the countable subset {h ◦ φ : h ∈ B} of
C(X). Since C(X) is countably complete, f ∈ C(X). 2

Proposition 4.5. For any completely regular space X, the
equality KωC(X) = C(X) implies that C(X) is countably com-
plete.

Proof. Let {fα : α ∈ D} countably valued Cauchy net in C(X).
Since this net converges uniformly on compacta, the point-wise
limit f of {fα : α ∈ D} is k-continuous. To show that f is an
ω map, enumerate the set underlying {fα : α ∈ D} by ω to get
{gn : n ∈ ω} = {fα : α ∈ D}; define φ to be the evaluation
map, i.e., φ(x) = (gn(x))n∈ω ⊂ Cω and M = φ[X]. Then M
is separable metrizable and φ is a continuous surjection. For
t ∈M , each gn is constant on φ←(t); therefore f is constant on
these sets. This means g = f ◦φ← is a well-defined map from M
to C and that f is a kω-map. The hypothesis now insures that
f is continuous. So {fα : α ∈ D} converges to f in C(X). 2

Theorem 4.6. (a) Each open subspace of a kω
r -space is kω

r .
(b) If X is a kω

r -space, then the Hewitt realcompactification υX
is kω

r .

Proof. (a) Let Y be an open subspace of the kω
r -space X and

{fα} be a countably valued Cauchy net in C(Y ); denote by f
the point-wise limit of {fα}. For y0 ∈ Y, let h ∈ C(X, [0, 1])
be so that h(y0) = 1 while h←(0) is a neighborhood of X \ Y .
For each α, let Fα vanish on X \ Y and be equal to the product
fα · h|Y on Y. Then Fα ∈ C(X). Since each compactum K in
X is the union of a compact subset of Y and K ∩ h←(0), it
follows that {Fα} is a countably valued Cauchy net in C(X).
The fact that X is a kω

r -space, implies {Fα} converges to some
F ∈ C(X). Since f(y) = F (y)/h(y) at all points y ∈ Y at which
h(y) 6= 0, it follows that f is continuous on a neighborhood of
y0. So f ∈ C(Y ). That Y is a kω

r -space, is now a consequence of
Theorem 4.3.
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(b) Let f ∈ KωC(υX). Since f factors through a separable
metric space M , there is a continuous surjection φ : υX −→M
and a map g : M −→ C, so that f = g ◦ φ. Since X is a kω

r -
space, f |X is continuous and has an extension f1 ∈ C(υX) [10;
8.7(II)]. For p ∈ υX, φ←[φ(p)] is a zero-set in υX; therefore by
[10; 8.8(b)], φ←[φ(p)] is the closure of its intersection with X.
This implies that both f and f1 are constant on φ←[φ(p)]. So
f = f1 ∈ C(υX) and thus KωC(υX) = C(υX). 2

Definition 4.7. Recall that for completely regular Hausdorff
spaces X and Y , a continuous surjection τ : X −→ Y is a
completely regular quotient mapping if the topology on Y is the
coarsest one for which all functions in {g : g ∈ CY , g ◦ τ ∈
C(X)} are continuous. See 10.11 in [10].

Theorem 4.8. Each completely regular quotient of a kω
r -space

is kω
r .

Proof. Let Y be a completely regular quotient of the the kω
r -

space X with respect to the continuous surjection τ . If {gα} is
a countably valued Cauchy net in C(Y ), then {gα ◦τ} converges
to some f ∈ C(X). Clearly, g = f ◦ τ← is a well defined map on
Y . Then g ∈ C(Y ) since τ is a completely regular quotient map.
Since {gα} is Cauchy and converges uniformly to g on τ [K], for
each compactum K in X, it converges to g with respect to the
compact-open topology in C(Y ). Therefore C(Y ) is countably
complete and Y is a kω

r -space. 2

Notation. Let CReg be the category of completely regular
Hausdorff spaces and continuous maps and let Kω

r be the full
subcategory of CReg whose objects are kω

r -spaces.

Theorem 4.9. Kω
r is a coreflective subcategory of CReg.

Proof. It is clear that Kω
r is closed with respect to the formation

of topological sums. That Kω
r is coreflective now follows from

4.8 above and [22; 9.7(f), p.728]. 2

Theorem 4.10. Let (Y,T ) be a completely regular Hausdorff
space.
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(a) There is a coarsest completely regular topology T ω
r on the

set Y , finer than the original topology, for which (Y,T ω
r ) is a

kω
r -space.
(b) If f ∈ C(X, (Y,T )) for a kω

r -space X, then f is also
continuous as a map from X to (Y,T ω

r ).

Proof. Part (a) follows immediately from 4.9 above. See the
comment in [22] that follows the the proof of 9.7(c) on p.727.
Part (b) is intrinsic in the definition of coreflection. See [22;
9.7(a)]. 2

5. Main Result

Recall that the definition of extension is stated in 2.1 above.

Definition 5.1. For extensions (B1, E1) and (B2, E2) of (A,T )
with extendors θ1 and θ2, respectively, define (B1, E1) ≤ (B2, E2)
to mean that there is an injective homomorphism h : B1 −→ B2

so that h ◦ θ1 = θ2.

Notation. Let f ∈ C(X,Y ).
(a) Then fω

r denotes the continuous map from kω
r X to kω

r Y
which equals f as a set mapping.

(b) Also, fυ denotes the continuous map from υX to υY
which extends f . [10; 8.7(I), p.118]

Theorem 5.2. For any completely regular Hausdorff space X,
the algebra C(υ[kω

r (υX)]) is an extension of C(X) which is min-
imal among the countably complete, bornological extensions of
C(X).

Proof. Observe that C(υ[kr(υX)]) is a countably complete,
bornological extension of C(X) with extendor ψ defined by
ψ(f) = [(fυ)ω

r ]υ. That ψ is an open map follows the fact that the
υX-compact-open topology on C(υX) ∼= C(X) is finer than the
X-compact-open topology. Let Y be completely regular so that
C(Y ) is a countably complete, bornological extension of C(X)
with extendor θ. By [10; 10.8, p.143], there is an open-closed
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subspace E of Y and a continuous mapping τ : E −→ υX so
that fυ ◦ τ is the restriction of θ(f) to E. Since C(Y ) is count-
ably complete and bornological, the open-closed subspace E of
Y is a realcompact kω

r -space. By 4.10(b), the map τ is continu-
ous from E into kω

r (υX) ⊂ υ[kω
r (υX)]. Define a homomorphism

h : C(υ[kr(υX)]) −→ C(Y ) so that h(g) vanishes on Y \ E and
equals g ◦ (τω

r )υ on E. Since θ is an open map, there exists,
for each compact K ⊂ X, a compact subset H of Y for which
τ [H∩E] = K; hence τ [E] contains X. Thus the image of E, un-
der (τω

r )υ, is dense in its codomain. It now follows from [10; 10.3,
p.141] that h is an injective homomorphism. Clearly θ = h ◦ ψ.
Hence C(υ[kω

r (υX)]) is minimal among the countably complete,
bornological extensions of C(X). 2

Corollary 5.3. For any completely regular space X, the alge-
bra C(υ[krX]) is a countably complete, bornological extension of
C(X) which is ‘larger’ than C(υ[kr(υX)]).

Proof. Note that the homomorphism θ from C(X) to C(υ[krX])
defined by θ(f) = (fω

r )υ is an extendor. The rest of 5.3 follows
from 4.6(b) and 5.2. 2

Added in proof.
Theorem 5.4. The space kω

r X is realcompact for each realcom-
pact X.

Proof. Available at mack@ms.uky.edu 2

In 5.2, this means that the desired extension of C(X) is
C([kω

r (υX)]).

Acknowledgement. The insightful comments by the referee
assisted the author in enhancing both the quality of the exposi-
tion and the significance of the mathematics in this paper.
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