Topology Proceedings

Web: http://topology.auburn.edu/tp/

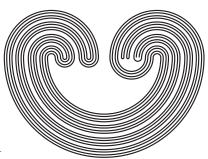
Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT \bigodot by Topology Proceedings. All rights reserved.



REFLECTING ON COMPACT SPACES

Franklin D. Tall*

Abstract

We consider whether, if a topological space reflects via an elementary submodel to a generalized Cantor discontinuum it must in fact equal its reflection. The answers involve large cardinals.

Given an elementary submodel M of some $H(\theta)$ (see [JW, Chapter 24] for a careful elucidation of the implications of this) and a topological space $\langle X, \mathcal{T} \rangle \in M$, we define X_M to be $X \cap M$ with topology generated by $\mathcal{T}_M = \{U \cap M : U \in \mathcal{T} \cap M\}$. In [JT₁] we developed this notion; in [T₁] I proved that if X_M is homeomorphic to the Cantor set, then $X = X_M$. I. Juhász (personal communication) asked whether this generalized to arbitrary cardinals, i.e. if X_M is homeomorphic to a generalized Cantor discontinuum D^{λ} , where D is the 2-point discrete space, then does $X = X_M$? We shall show that the answer is yes for small λ , but not necessarily for very huge ones.

The following technical result is the key observation for our work on Juhász' problem. It and Corollary 2 are due independently to Lucia Junqueira, conversations with whom have been very helpful. Note that when we write " X_M ", we are implicitly assuming that $X \in M$. Also note that $D^{\lambda} \in M$ implies $\lambda \in M$.

^{*} Research supported by NSERC Grant A-7354.

Mathematics Subject Classification: Primary: 54D30; Secondary: 03E35, 03E55, 54B10.

 $[\]it Key\ words$: Elementary submodel, reflection, compact, generalized Cantor discontinuum, huge cardinals.

Theorem 1. Let λ be a set. (Most of the time, it will be a cardinal.) Suppose $(D^{\lambda})_M$ is compact. Then $(D^{\lambda})_M$ is homeomorphic to $D^{\lambda \cap M}$.

Proof. Let $h:(D^{\lambda})_M\to D^{\lambda\cap M}$ be defined by $h(f)=f|(\lambda\cap M)$. Claim h is a homeomorphism. Since $(D^{\lambda})_M$ is compact and also T_2 (since D^{λ} is $[JT_1]$), it suffices to show h is continuous, one-one, and has dense image. Let $[p]=\{g\in D^{\lambda\cap M}:g|\mathrm{dom}(p)=p\}$, where p is a finite partial function from $\lambda\cap M$ into D. Then $h^{-1}([p])=\{f\in D^{\lambda}\cap M:f|\mathrm{dom}(p)=p\}$. But this is open in $(D^{\lambda})_M$. h is one-one, since if $f_1\neq f_2$ are in $D^{\lambda}\cap M$, $f_1|(\lambda\cap M)\neq f_2|(\lambda\cap M)$ by elementarity. Finally, given any non-empty basic open [p] in $D^{\lambda\cap M}$, since $\mathrm{dom}(p)\subseteq M$, $p\in M$, so the function f defined by

- i) f|dom(p) = p,
- ii) $f|(\lambda \operatorname{dom}(p)) = 0$,

is in $(D^{\lambda})_M$, and $h(f) \in [p]$.

Corollary 2. If $\lambda \subseteq M$ and $(D^{\lambda})_M$ is compact, then $(D^{\lambda})_M = D^{\lambda}$.

Proof. In this case, h is the identity function.

Corollary 3. Let μ be the least ordinal not included in M. Then if λ is a cardinal less than μ and $(D^{\lambda})_M$ is compact, then $D^{\lambda} = (D^{\lambda})_M$.

The proof is immediate.

Corollary 4. Let μ be the least ordinal not included in M. If X_M is homeomorphic to D^{λ} , $\lambda < \mu$, and $D^{\lambda} \in M$, then $X = X_M$.

Proof. By [J], since X_M is compact, so is X and there is a continuous map from X onto X_M . Relativizing, there is a continuous map from X_M onto $(D^{\lambda})_M$. Hence $(D^{\lambda})_M$ is compact,

so D^{λ} and hence $2^{\lambda} \subseteq M$. Therefore $\lambda^{+} \subseteq M$. We now do some easy calculation of cardinal functions. See [H] for definitions and theorems. Using a straightforward argument done in detail in [T₁], we see that X has no right- or left-separated subspaces of size $\geq \lambda^{+}$, else X_{M} would. But $w(X_{M}) = \lambda$. Since X_{M} and hence [T₁] X is T_{3} , it follows that $|X \cup \mathcal{T}| \leq 2^{\lambda}$, so $X \cup \mathcal{T} \subseteq M$, so $X = X_{M}$.

Theorem 5. The first cardinal λ – if any – such that $(D^{\lambda})_M$ is compact for some M but $\neq D^{\lambda}$ must be strongly inaccessible.

Proof. The first cardinal – if any – for which $(D^{\lambda})_M$ is compact but $\neq D^{\lambda}$ cannot be $\leq 2^{\kappa}$ for some $\kappa < \lambda$, $\kappa \in M$. By elementarity, we can omit ' $\kappa \in M$ '. The point is that – since D^{κ} is a continuous image of $D^{\lambda} - (D^{\lambda})_M$ compact implies $(D^{\kappa})_M$ is compact implies $D^{\kappa} = (D^{\kappa})_M$ implies $2^{\kappa} \subseteq M$ implies $\lambda \subseteq M$ implies $(D^{\lambda})_M = D^{\lambda}$. The first such cardinal can also not be singular, since $D^{\lambda} \in M$ implies $\lambda \in M$ implies $cf(\lambda) \in M$ implies $C^{cf(\lambda)} \in M$ (since $C^{\lambda} \in M$). Then, since $C^{\lambda} \in M$ implies $C^{cf(\lambda)} \in M$ is compact, $C^{cf(\lambda)} \in M$ is least and – as before – $C^{cf(\lambda)} \in M$ is compact, $C^{cf(\lambda)} \in M$. But then there is a set $C^{cf(\lambda)} \in M$ included in $C^{cf(\lambda)} \in M$ is compact, so $C^{cf(\lambda)} \in M$ is compact, so $C^{cf(\lambda)} \in M$ is contradiction. Thus $C^{cf(\lambda)} \in M$ and so $C^{cf(\lambda)} \in M$ is strongly inaccessible, so it is.

Corollary 6. Suppose X_M is homeomorphic to $D^{\lambda} \in M$ and λ is less than the first strongly inaccessible cardinal. Then $X = X_M$.

Proof. As for Corollary 4 above.

Thus if there are no strongly inaccessible cardinals, Juhasz' problem is solved. A less draconian solution is given by the following two results. $0^{\#}$ is a set of natural numbers, the existence of which has large cardinal strength. See [K]. V = L implies $0^{\#}$ does not exist.

Corollary 7. If $0^{\#}$ does not exist and $|M| \geq \lambda$ and $(D^{\lambda})_{M}$ is compact, then $(D^{\lambda})_{M} = D^{\lambda}$.

Proof. This follows immediately from

Lemma 8. [KT] If $0^{\#}$ does not exist and $|M| \geq \lambda$, then $M \supseteq \lambda$.

Corollary 9. If $0^{\#}$ does not exist and X_M is homeomorphic to $D^{\lambda} \in M$, then $X = X_M$.

Proof. $|M| \ge |X_M| = 2^{\lambda}$, so $2^{\lambda} \subseteq M$, so as in the proof of Corollary 4, $X = X_M$.

By going to very large cardinals, we can find a λ such that $(D^{\lambda})_{M}$ is compact but not equal to D^{λ} .

Definition. A cardinal λ is η -extendible if there is a ζ and an elementary embedding $j: V_{\lambda+\eta} \to V_{\zeta}$, with critical point λ .

See [K] to find out about such cardinals and about 2-huge ones, which we shall shortly introduce. Here we shall only mention that η -extendible cardinals are weaker in consistency strength than supercompact cardinals.

Observe that for $\eta \geq 1$,

$$\begin{split} D^{j(\lambda)} \cap j``V_{\lambda+\eta} &= \{j(S): j(S) \in D^{j(\lambda)} \quad \text{and} \quad S \in V_{\lambda+\eta} \} \\ &= \{j(S): S \in D^{\lambda} \} \\ &= j``D^{\lambda} \;. \end{split}$$

Now if we want $D^{j(\lambda)} \in j$ " $V_{\lambda+\eta}$, we need $\eta \geq 2$, for then $D^{\lambda} \in V_{\lambda+\eta}$, so $j(D^{\lambda}) = D^{j(\lambda)} \in j$ " $V_{\lambda+\eta}$. We would be done if our definition of X_M used " V_{θ} " instead of " $H(\theta)$ " since j " $V_{\lambda+\eta}$ is an elementary submodel of V_{ζ} . To get $H(\theta)$, we use the fact that for inaccessible θ , $V_{\theta} = H(\theta)$, and work with a larger cardinal.

Definition. λ is 2-huge if there is an elementary embedding $j:V\to N$, an inner model, with critical point λ such that $j(j(\lambda))N\subset N$.

2-hugeness has considerably more consistency strength than supercompactness and assures us that $j"V_{j(\lambda)} \in N$, as is $j"D^{\lambda}$. $j"V_{j(\lambda)}$ is an elementary submodel of $V_{j(j(\lambda))} = H(j(j(\lambda)))$ (since $j(j(\lambda))$ is inaccessible by elementarity). As before, $D^{j(\lambda)} \in j"V_{j(\lambda)}$ and $D^{j(\lambda)} \cap j"V_{j(\lambda)} = j"D^{\lambda}$, which is compact T_2 . $(D^{j(\lambda)})_{j"V_{j(\lambda)}}$ is also a T_2 (since $D^{j(\lambda)}$ is and T_2 "goes down" [JT₁]) topology on $D^{j(\lambda)} \cap j"V_{j(\lambda)}$ that is weaker than the subspace topology and hence the two topologies are equal by compactness. Both $j"V_{j(\lambda)}$ and $V_{j(j(\lambda))}$ are in N; the proof that the former is an elementary submodel of the latter can be carried out in N. Thus, N thinks there is an elementary submodel M of $H(j(j(\lambda)))$ such that $(D^{j(\lambda)})_M$ is compact T_2 but $\neq D^{j(\lambda)}$ (since $j(\lambda) > \lambda$). By elementarity, in V there is an elementary submodel M' of $H_{j(\lambda)}$ such that $(D^{\lambda})_{M'}$ is compact T_2 but $\neq D^{\lambda}$. We have proved

Theorem 8. If λ is 2-huge, then there is an elementary submodel M such that $(D^{\lambda})_M$ is compact but $\neq D^{\lambda}$.

There are several problems that remain:

What is the consistency strength of the existence of a λ such that $(D^{\lambda})_M$ is compact but $\neq D^{\lambda}$?

Could such a λ be a successor cardinal?

Must the first such λ be "larger" than merely 'strongly inaccessible'?

After this paper was completed, Lucia Junqueira [JT₂] proved that the condition that $|M| \geq \lambda$ can be removed from Corollary 7. It follows that the existence of a compact $(D^{\lambda})_M \neq D^{\lambda}$ has consistency strength at least equal to the existence of $0^{\#}$. In [JT₂] we discuss in general when X_M compact implies $X_M = X$. In [T₂] we investigate the particular case of when X_M is a dyadic compactum; the results obtained generalize those in this paper. Of course there are simple examples in ZFC of X's which are not equal to X_M , even if the latter is compact. For example, let X be the one-point compactification of an uncountable discrete space and let M be countable.

In [Ku], K. Kunen considerably sharpened the large cardinal bounds of Theorems 5 and 8.

References

- [H] R. Hodel, Cardinal Functions I, 1-61, eds., K. Kunen and J.E. Vaughan, The Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984.
- [J] L.R. Junqueira, *Upwards preservation by elementary submodels*, Top. Proc. **25**, Spring 2000.
- [JT₁] L.R. Junqueira and F.D. Tall, *The topology of elementary sub-models*, Top. Appl. **82** (1998), 239-266.
- [JT₂] , More reflections on compactness, submitted.
- [JW] W. Just and M. Weese, Discovering modern set theory, II in Graduate Studies in Mathematics, American Mathematical Society 18 1997.
- [K] A. Kanamori, The Higher Infinite, Springer Verlag, Berlin 1994.
- [Ku] K. Kunen, Compact spaces, compact cardinals, and elementary submodels, preprint.
- [KT] K. Kunen and F.D. Tall, The real line in elementary submodels of set theory, J. Symbolic Logic **65** (2000), 683-691.
- [T₁] F.D. Tall, If it looks and smells like the reals,..., Fund. Math. 163 (2000), 1-11.
- [T₂] F.D. Tall, Reflections on dyadic compacta, Top. Appl., to appear.

Department of Mathematics, University of Toronto, Toronto, Ontario M5S 3G3 CANADA

E-mail address: tall@math.utoronto.ca