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ON ALMOST HOMEOMORPHIC SPACES

J. Vermeer

Abstract

The purpose of this paper is to present an F -space
X with countably many isolated points with the
property that every almost homeomorphism on X
is a homeomorphism. We also make a link between
properties of the fundamental group of a space
and the (non-)existence of a non-trivial homeo-
morphism.

Introduction

In [1] Friedler and Kitover defined a continuous surjection
ϕ : K → K to be an almost homeomorphism if there is a
finite subset F ⊆ K such that the restriction of ϕ to K\F is
a bijection onto K\ϕ(F ). This definition was motivated by the
study of the Fredholm spectrum of the composition operators
in spaces of continuous functions. (See [1, Appendix] for a de-
tailed explanation.) We define AH to be the class of all spaces
on which every almost homeomorphism is a homeomorphism.
In [1] it was shown that: every compact F-space with at most
finitely many P-points is in AH; βN\N is not in AH; a compact
basically disconnected space with no isolated points might not
be in AH; every compact n-dimensional manifold is in AH; ev-
ery simply connected, compact space is in AH; the product of
two locally connected spaces with no isolated points is in AH.
In section 1 of this paper we examine almost homeomorphisms
on spaces with infinitely many isolated points and observe that a
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basically disconnected, compact space with infinitely many iso-
lated spaces is not in AH. We present an example of a compact
F space with infinitely many isolated points which is in AH. In
section 2 we consider the open question of characterizing those
subsets of the plane which are in AH. We show that, for an
arcwise connected space K, if the fundamental group of K is
finite, Abelian, or finitely generated then K ∈ AH. However, we
construct two arcwise connected subsets K and K ′ of the plane
which have isomorphic fundamental groups, but K ∈ AH while
K ′ /∈ AH.

All spaces are assumed to be Hausdorff. We use the notation
and terminology of [1]. In particular, N∗ = βN\BN and E(X)
is the absolute of the space X.

1. Infinitely Many Isolated Points

A space is an F-space if the closures of any two disjoint co-zero
sets are disjoint and is basically disconnected if the closure of
any co-zero set is open (so that a basically disconnected space
is an F -space.)

We show below that a compact, basically disconnected space
with infinitely many isolated points cannot be in AH. In [1] it
was shown that a compact, basically disconnected space with at
most finitely many isolated points and no P -points must be in
AH while a compact, basically disconnected space with at most
finitely isolated points might or might not be in AH.

Lemma 1. Let K be a basically disconnected compact space
with infinitely many isolated points. Then K /∈ AH.

Proof. Let k1, k2, ... be infinitely many pairwise distinct isolated
points in K. The set {kn : n ∈ N} is a co-zeroset and is C∗-
embedded in its closure K0 = cl{kn : n ∈ N}. So K contains K0

as a clopen copy of βN . Finally because βN /∈ AK (for example
we can consider the mapping ϕ defined as ϕ(1) = 1, ϕ(n+1) = n
for n > 1 and its extension to βN) our proposition is proved.
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A compact F -space with finitely many P -points must be in
AH [1, Corollary 1.3]. But if an F -space has infinitely many
isolated points then, if the space is basically disconnected,
it cannot be in AH by 1.1. We give an example below of a
compact F -space (which is not bascially disconnected) with in-
finitely many isolated points which is AH. Unfortunately we
need CH for the example. The problem whether the continuum
hypothesis is essential for the existence of such an example we
did not examine. The following four lemmas will be needed in
our construction. The proofs of Lemma 3 below is straightfor-
ward and so omitted.

Lemma 2. [2] If X is extremally disconnected and has non-
measurable cardinal, then X contains no non-isolated P-points.

Lemma 3. If A ⊂ X is a closed P-set of the normal, extremally
disconnected space X, then clβX A is a P-set of βX.

Lemma 4. [3] If X,Y are compact F-spaces, A is a closed P-set
of X, and f : A → Y is a continuous map, then the adjunction
space X ∪f Y is an F-space.

Lemma 5. Assume A ⊆ B ⊆ X and B is a closed P-set of
the space X and A is a closed P-set of B. If X is compact and
zero-dimensional then A is a P-set of X.

Proof. Observe first that the trace of a clopen subset of X on B
is a P-set in X. Next, if Un is open in X with A ⊂ Un, n ∈ N,
then there is a relatively clopen subset C ⊂ B with A ⊂ C ⊂
∩(Un∩X). As C is a P-set it follows that A ⊂ C ⊂ int∩Un.

Lemma 6. The weight of E(2m), the absolute of 2m, is mω0.

Proof. It is clear that w(E(2m)) ≥ w(2m) = m. But E(2m))
is extremally discconnected, so the weight is an ω0 power, so
w(E(2m)) ≥ mω0. On the other hand, the space 2m is
c.c.c., so there cannot be more than mω0 regular open sets.
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(Take a base of 2m and observe that each regular open set U
contains countably many pairwise disjoint basic sets the union
of which is dense in U .) Therefore, E(2m) has at most mω0

clopen sets.

Example 1. (CH). A compact F-space K with infinitely many
isolated points and K ∈ AH.

Find a sequence {∆α : α < ω1} of non-measurable cardinals
with the property:

ω0 < ∆β = ∆ω0
β < ∆α for all β < α < ω1

For each α < ω1 let Yα be a compact extremally disconnected
space with no P -points and with the property that “every non-
empty open subset of Yα has weight ∆α.” Let Eα ⊆ Yα be a
closed nowhere dense P -set of Yα. Any such pair (Yα, Eα) will
suffice for our construction. (In Remark 1 below we show that
such a pair exists.) Note that as a compact subset of Yα, Eα is
C∗−embedded in Yα.

Let Y =
⊕

{Yα : α < ω1} and let E =
⊕

{Eα : α < ω1}.
Then (i) Y is extremally disconnected, normal, has no iso-
lated points, and is of non-measurable cardinality, so that by
Lemma 2 , βY contains no P -points. (ii) E is closed in Y, so is
C∗−embedded. Thus, clβY E = βE. (iii) E is a closed nowhere
dense P−set in Y, so that that by Lemma 3 βE is a closed
nowhere dense P -set in βY .

Under the continuum hypothesis the set of all P -points of N∗

is dense and of cardinality ω1. Write {pα : α < ω1} for this set
in N∗.

The map g : E → N∗ defined by g(Eα) = pα is a continuous
map and can be extended continuously to a map
βg : βE → N∗. As E is C∗-embedded in Y , we see that the
map βg is defined on the closed subspace clβY E.

Consider first the adjunction space

T = βY ∪βg N∗.
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We list some properties of the space T .
T1: By Lemma 4 the space T is an F–space. It can be seen

as the space βY in which the P–set βE is replaced by the P–set
N∗.

T2: By Lemma 5 all the P -points of N∗ are still P -points of
T .

T3: The only P–points of T are the P–points of N∗.
T4: To each pα ∈ N∗ an open subspace Y ′

α = Yα − Eα is
assigned. Moreover, every open subset of Y ′

α has weight ∆α and
pα ∈ clY ′

α.
T4: The P -point pα is the only P -point of N∗ which is in

the closure of an open subset of T with the property that every
non-empty open subset has weight ∆α.

Proof. Let p 6= pα be a P−point in N∗ and consider the set
A = {p} ∪ cl{pβ : β < α}. Note that pα /∈ A so that A ∩ clY ′

α =
∅. Now let V be an open set with A ⊆ V ⊆ clV ⊆ T − clY ′

α.
Every open set with p ∈ clU will intersect V, so it suffices to
show that every open subset Wof V contains a subspace W ′ of
weight not equal to ∆α. Let W be an open subset of V . If W
intersects

⋃
γ>α

(Yγ −Eγ) , then clearly the weight of W is strictly

larger than ∆α by the choice of Yγ , so take W ′ = W. If not,
then W intersects

⋃
β<α

(Yβ − Eβ). Since ∆α = ∆ω0
α , ∆α is not

a countable limit ordinal. Thus, the weight of
⋃

β<α

(Yβ − Eβ) is

sup{∆β : β < α} which is strictly less than ∆α. So, W contains
the open set W ′ = W ∩

⋃
β<α

(Yβ −Eβ), which has weight strictly

less than ∆α.

T5: If h : T → T is a homeomorphism with h(N∗) = N∗,
then h(p) = p for every p ∈ N∗.

Proof. T4 gives a pure topological difference between P -points
pα, so h(pα) = pα for all α. Since {pα : α < ω1} is dense in N∗,
the result follows.
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Next consider again the map βg : βE → N∗ and the inclusion
map i : N∗ ⊂ βN. Let h = i ◦ βg : βE → βN.

The next space we look at is the adjunction space

X = βY ∪h βN.

We list some properties of the space X.

X1: X is an F–space.
X2: X is T together with countably many isolated points.
X3: X can be seen as the space βY in which the P–set βE

is replaced by the P–set βN.
X4: The P -points of ω∗ are no longer P–points in βN and

so there are no P–points in X. The only P–points of X are the
isolated points.

X5: The subset N∗ can be rediscovered from the the topo-
logical structure of X as the points which are in the closure of
the isolated points.

We claim that X is the required F-space.

Proof of the claim. Assume f : X → X is an almost homeomor-
phism which is not a homeomorphism. Then there is a finite
subset F ⊆ X such that the restriction of f to X\F is a bi-
jection onto X\f(F ) and each point of F is identified with at
least one other point of F . If there were two or more points in
F ∩ X\N which mapped to the same point, then, since X\N
has no P -points, it would follow from Theorem 1.1 of [1] that X
would not be an F -space. Furthermore, if x ∈ T , then f(x) ∈ T
for otherwise f−1f(x) would be a finite, clopen subset of X\N
– which is impossible. It follows that f(T ) ⊆ T, f : T → T
is injective, and F ∩ N 6= ∅. But then f(T ) = T, for other-
wise the set T\f(T ), which is open in T and hence uncountable,
could be covered by the images of the countable set N (since
f : X → X is surjective.) It follows that the restriction of f to
T is a homeomorphism of T onto T.
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Since f is an almost homeomorphism, card f−1(t) > 1 for
only finitely many t ∈ X. But then we have f(t) ∈ N for all
t ∈ N except for finitely many points. From this it follows that
f(N∗) = N∗, so that by T5, f must be the identity on N*.

Since F ∩N 6= ∅ and f : X → X is surjective, we can find an
infinite subset A ⊂ N with A ∩ f(A) = ∅ and f(A) ⊂ N. But
then f(clA) ⊂ clf(A) and since cl(A)∩clf(A) = ∅, we see that
f is not the identity on N∗.

We have our contradiction.

Remark 1. We show here that the pair (Yα, Eα) exists.

First, consider the Cantor space 2∆α . Note that the weight
of every non-empty open subset of 2∆α is ∆α (since every open
subset contains a clopen copy of the space 2∆α) and also note
that 2∆α contains no P−sets since 2∆α is c.c.c.. Now consider
the compact ordinal space ω1 + 1. Note that the endpoint ω1 of
ω1 + 1 is a P -point. In the product space (ω1 + 1) × 2∆α , the
weight of every non-empty open subset is ∆α. Finally, define Yα

to be the absolute of (ω1 +1)× 2∆α and let Eα be the preimage
under the natural map πα : E((ω1 + 1)× 2∆α) → (ω1 + 1)× 2∆α

of the set {ω1} × 2∆α . To verify that the weight of Yα is ∆α,
observe that the weight of Yα is the weight of E( 2∆α), since
Yα is the Stone-Cech compactification of ω1 disjoint copies of
E(2∆α). But the weight of the absolute of 2κ is κω0 by Lemma
6.

2. The Fundamental Group and Almost Homeomorph-
isms

The main open problem concerning almost homeomorphisms is
to characterize those subsets of the plane that are in AH. The-
orem 10 below shows that the fundamental group is useful in
distinguishing subsets of the plane which are in AH, yet Exam-
ple 2 demonstrates that the fundamental group will not yield a
complete characterization.
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We need the following lemmas. Lemmas 7 and 9 are well-
known and Lemma 8 follows easily.

Lemma 7. Let A ⊂ X be a retract of X and let a0 ∈ A. If
r : X → A is a retraction then the map r∗ : Π1(X, a0) →
Π1(A, a0) between the fundamental groups is surjective.

Lemma 8. Let X be an arcwise connected space. Then for any
finite collection of points x0, · · ·x` there exists a tree-stucture in
X (i.e. a graph without loops) containing these points.

Note that these trees are absolute retracts for the class of
compact spaces (even for the class of normal spaces) and that
the fundamental group of a tree is trivial.

Lemma 9. Let G be a graph with k loops. Then the funda-
mental group Π1(G) of G is the free group on k-generators. In
particular, if k > 1 then Π1(G) is not abelian.

Theorem 10. Let X be a compact arcwise connected space.

(1) If the fundamental group Π1(X) is finite then X ∈ AH.

(2) If the fundamental group of X is Abelian, then X ∈ AH.

(3) If the fundamental group of X is finitely generated, then
X ∈ AH.

We assume first that the more general situation that f : X → Y
is a finite-to-one surjective map, almost everywhere f is injec-
tive, except for the points y1, · · · yk in Y . By this we mean that
card f−1(y) = 1, for all y ∈ Y , except for the points yi. But we
do assume that f−1(yi) is finite. For such a situation we have
the following construction.

Construction of the map f : X → Y .
Write f−1(yi) = {xi,0, · · · , xi,`i}. So, Y is the space ob-

tained from X by identifying {xi,0, · · · , xi,`i} to one point, for
i = 1, · · · k. As X is arcwise connected we can find in X a tree T
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containing the finite set
⋃

i=0..k{xi,0, · · · , xi,`i}. Let r : X → T
be a retraction. The map f induces a retraction rY : Y → f(T ).
But f(T ) is a graph with at least k loops in it (In fact, `1 + · · · `k

loops). Choose a0 ∈ f(T ). We conclude that there exists a sur-
jective group homomorphism rY

∗ : Π1(Y, a0) → Π1(f(T ), a0)
between the fundamental groups of Y and f(T ). (In particular
we observe that the fundamental group of Y is infinite.)

End construction.

Now we can prove the results.
Let us assume now that Y is homeomorphic to X, so that

f : X → Y can be considered to be an almost homeomorphism
f : X → X which is not a homeomorphism.

(1) The first claim follows directly from the previous observa-
tion that the fundamental group of X is infinite.

(2) The second claim follows from the observation that the map
f2 : X → X is also an almost homeomorphism and the
above construction applied to g = f2 gives a tree T ′ con-
taining at least three points which are identified under g and
so g(T ′) is a non–Abelian group. But then Π1(X) cannot
be Abelian, as there do not exist surjective homomorphisms
from Abelian to non–Abelian groups.

(3) Finally the third claim. Let us assume that Π1(X) has
N generators. Take m large enough so that the map
fm : X → X has the property that `1 + · · · `k > N .
But if this is the situation then our construction induces
a surjective map from Π1(X)- a group with N generators-
onto Π1(graph) the free group on > N -generators. But this
group cannot be generated by less than N generators.

Corollary 11. [1] If X is a compact, arcwise connected, simply
connected space, then X ∈ AH

The following example is due to Friedler and Kitover.
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Example 2. Two subsets, K and K ′, of the plane with isomor-
phic fundamental groups, but K ∈ AH and K ′ /∈ AH.

Let K be the following compact subset of the plane R2 . K
consists of:
1. The union of the circles centered at ( n

n+1
, 0) with radii

rn = 1
2(n+1)(n+2)

, n = 0, 1....

2. The union of the circles centered at (− n
n+1

± 1
6(n+1)(n+2)

, 0)

with radii 1
6(n+1)(n+2)

, n = 1, 2....

3. All the segments of the x axis between the named circles.

4. Points (1, 0) and (−1, 0).
Let K

′
be the union of K and the vertical segment between

the points (−1/2,−1) and (−1/2, 1). The compact sets K and
K

′
are path connected and their fundamental groups are clearly

isomorphic. But K /∈ AH (identifying the points (0,−1/4) and
(0, 1/4) in K we obtain a space homeomorphic to K) and it is
easy to see that K

′ ∈ AH.

References

[1] Friedler, L.M. and Kitover, A.K., Almost homeomorphisms of
compact spaces, Topology and its Applications, 81 (1997) 233-
246.

[2] Gillman, L. and Jerison,M., Rings of Continuous Functions, Van
Nostrand (1960), N.Y.

[3] van Mill, J., An introduction to βω, Handbook of Set-Theoretic
Topology, edited by K Kunen and J.E. Vaughan, North-Holland
(1984), Amsterdam.

Technical University Delft, Faculty I.T.S., POBox 5031, 2600
GA Delft, the Netherlands

E-mail address: J.Vermeer@its.tudelft.nl




