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TOPOLOGICALLY TORSION ELEMENTS OF
TOPOLOGICAL GROUPS

DIKRAN DIKRANJAN∗

Abstract. An element x of a topological group G is topo-
logically torsion (topologically p-torsion) if the sequence n!x
(resp., pnx) converges to 0 in additive notation. These no-
tions, carrying relevant information about the structure of G,
were introduced independently by Braconnier and Vilenkin
and played a key role in the development of the structure
theory of LCA groups and profinite groups. This survey of-
fers a general unifying approach to these notion motivated by
several applications.

1. Introduction

The relation between the algebraic and the topological structure
of topological groups is displayed in most intermediate way by the
topologically torsion elements. This is why their role in the struc-
ture theory of topological groups can hardly be exaggerated (see
[39, 49] for the Sylow subgroup of profinite groups, or [5, 6, 46]
for the structure theory of locally compact abelian (briefly, LCA)
groups, further generalizations were found for locally compact non-
abelian groups by Glushkov, Platonov and Ushakov).
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At the first stages of the development of the theory of topological
groups the attention was naturally paid to generalize the notion
of a discrete torsion (p-torsion) group. This is why the property
of being topologically torsion (defined in one way or another, see
§2) was imposed first on all elements of the group. The “local”
approach (i.e., considering single elements x of a topological group
such that the sequences n!x or pnx converge to 0) appeared on a
later stage (cf. [22, 43, 1]). A unifying approach to both notions
was proposed in [19, §4.4.2], where for every increasing sequence
m = (mn) of naturals such that mn|mn+1 for every n, topologically
m-torsion elements of a topological abelian group G were defined
as those x ∈ G such that mnx→ 0 in G.

This survey covering author’s talk at the 16th Summer Topology
Conference (New York, July 2001) does not obviously pretend for
completeness. In particular, we do not pay enough attention to the
historical aspect and the classical results in the area. We concen-
trate instead on the “local” point of view of torsion, with particular
emphasis on the calculation of the topologically m-torsion elements
of locally bounded groups. Some of the proofs are ommitted, but
hints or due references are given in all cases. In §2 we start by giving
and comparing the different notions of topological torsion, includ-
ing a moderate categorical approach to torsion (in the framework
of preradicals) in §2.4. It permits to obtain easy uniform proofs of
the permanence properties of the subgroup of topologically torsion
elements (and to look at connectedness and at (pre)compactness
as a special form of torsion). In §2.3 we recall three stronger no-
tions of “topological torsion” introduced in [22, 43] because of their
numerous applications in the theory of minimal groups and else-
where. (A Hausdorff topological group (G, τ) is minimal if τ is a
minimal element of the partially ordered, with respect to inclusion,
set of Hausdorff group topologies on the group G [41].) Along with
§2.4, this subsection can be skipped at first reading if the reader
is interested only in topologically m-torsion elements (i.e., §§2.1-
2.2 are enough for understanding the rest of the paper). In §3 we
compute the topologically m-torsion elements of the circle group T,
in §3.1 we consider the case of sequences mn such that mn|mn+1

which allows for a complete description. In §4 some applications are
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given (precompact topologies on Z that make a given sequence con-
verge to 0, discrete subsets of Z equipped with the Bohr topology,
a topological game on LCA groups).

Notation and terminology. The symbols P, N, Z and Q are
used for the set of primes, the set of positive integers, the group of
integers and the group of rationals, respectively. The circle group T
is identified with the quotient group R/Z of the reals R and carries
its usual compact topology. The cyclic group of order n is denoted
by Z(n). The p-adic integers are denoted by Zp.

Let G be a group. The cyclic subgroup of G generated by g ∈ G
is denoted by 〈g〉. The set of torsion (p-torsion) elements of G is
denoted by t(G) (resp., tp(G)) (it is a subgroup of G when G is
abelian). Abelian groups are written additively. For an abelian
group G and n ∈ N we put G[n] = {g ∈ G : ng = 0} and nG =
{ng : g ∈ G}. We say that G is p-divisible if G = pG, G is divisible
if G is p-divisible for every prime p.

All topological groups, unless otherwise specified, are Hausdorff.
For a topological group G and a prime number p we denote by
tp(G) the set of all topologically p-torsion elements of G. For a
LCA group G we denote by Ĝ the Pontryagin dual of G.

The symbol c stands for the cardinality of the continuum, so
c = 2ℵ0 . For undefined terms see [19, 26, 31].

2. The various definitions of topological torsion

2.1. Topologically torsion and topologically p-torsion
elements

Vilenkin [46] called a topological group G topologically primary
with respect to a prime p if xp

n → 1 for all x ∈ G. The groups with
the same property are later called topological p-groups by Robertson
[40]. Let us stress the fact that the property xp

n → 1 was required
for all elements x of the group.

In algebra one checks whether an element x of an abstract group
G is torsion by looking at the cyclic subgroup 〈x〉 of G. This is why
it is reasonable to ask the property for a single element x ∈ G. In
this form the property appeared explicitly in Armacost [1]:

Definition 2.1. Let G be a topological group and p ∈ P. An
element x ∈ G is topologically p-torsion if xp

n → 1.
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Example 2.2.
(a) For the p-adic topology (Z, τp) every x ∈ Z is topologically

p-torsion.
(b) If G is locally compact, then x is topologically p-torsion iff

either x is p-torsion or 〈x〉 ∼= (Z, τp). Indeed, assume that
x is topologically p-torsion and 〈x〉 is infinite. Then 〈x〉
cannot be discrete, so that 〈x〉 must be precompact. Now
for every continuous character χ : 〈x〉 → T the element
χ(x) ∈ T is topologically p-torsion, hence p-torsion (see item
(c)). Hence 〈x〉 is topologically isomorphic to an infinite
subgroup of the product

∏
p Z(pn), so 〈x〉 ∼= (Z, τp).

(c) The second case in b) does not occur in a Lie group G since
Lie groups (and their subgroups) have no small subgroups,
so 〈x〉 6∼= (Z, τp). In particular, the topologically p-torsion
elements of Tn and Rn are p-torsion (so 0 in Rn). For an
alternative proof see the comments after Corollary 3.2.

According to Braconnier [5], a topological group G is primary
(relative to the prime p), if for each x in G the homomorphism
n → xn of the integers Z into G admits a continuous extension to
the group of p-adic integers Zp. If G is locally compact, then this
notion coincides with “topologically p-torsion” (cf. 2.13).

A topological group G is called topologically torsion if xn! → 1 for
all x ∈ G. It is easy to see that every profinite group is topologically
torsion. It was proved in the forties that every topologically torsion
LCA group is a local direct product of topologically primary groups
([46], see also [6], [40]).

Definition 2.3. An element x of a topological group G is topo-
logically torsion if xn! → 1 (so torsion elements are topologically
torsion).

Example 2.4. [1] T = (R/Z,+) has a non-torsion, topologically
torsion element (take e =

∑∞
n=0 1/n! mod Z and note that n!e −

[n!e] ≤ 2
n+1 , where [y] denotes, as usual, the largest integer below

y).

This left open the following

Problem 2.5. [1, p.34] Determine all topologically torsion ele-
ments of T.
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For every x ∈ [0, 1) there exist integers 0 ≤ cn < n with

x =
∞∑
n=0

cn/n!, (1)

such that the equality cn = n−1 for all n > n0 is not allowed for any
n0 ≥ 0 (indeed, in such a case, if cn0 < n0 − 1, then x has also an-
other representation as a finite sum, namely x =

∑n0−1
n=0

cn
un

+ cn0+1
un0

).
The integers cn are uniquely determined by these properties.

Theorem 2.6. [19, Chap.4], [17] x ∈ [0, 1) with representation (1)
gives rise to a topologically torsion element of T iff limn cn/n = 0
in T.

The proof exploits the inequality cn/n ≤ n!x−[n!x] ≤ (cn+1)/n.

Corollary 2.7. The topologically torsion elements of T form a
(Haar) measure zero subgroup of T of size c.

It is obvious that the topologically torsion elements of T form a
subgroup of T. It is clear from the description given in Theorem
2.6 that it has size c. The measure property is due to the following
result of Comfort, Trigos and Wu [9] applied to G = T.

Lemma 2.8. ([9, Lemma 3.10]) Let G be a compact abelian
group. Let (un)n<ω be a faithfully indexed sequence in Ĝ. Then
{x ∈ G : un(x)→ 0 in T} is a Haar measure zero subgroup of G.

2.2. Topologically m-torsion elements
In order to unify the notions of topologically p-torsion element

and topologically torsion element let Z = Z
N and consider the

following

Definition 2.9. For a topological group G and m = (mn) ∈ Z call
x ∈ G topologically m-torsion if xmn → 1 in G.

For a prime p and the sequence p = (pn) this gives
“topologically p-torsion element”, while the topologically torsion
elements are obtained with mn = n!. For sequences mn with
mn|mn+1 this definition can be found in [19, §4.4.2]. Denote by
tm(G) := {x ∈ G : xmn → 1} the subset of G of all topologically
m-torsion elements. It is a subgroup of G, if G is abelian.

In the next example we see that the only topologically m-torsion
element may be the neutral element if the sequence m is not suf-
ficiently “lacunary” in Z (see also [7]). A typical example of a
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lacunary set in Z is a Hadamard set {m1, . . . ,mn, . . .} (such that
there exists some q > 1 with mn+1 ≥ qmn for every n).

Example 2.10.
(a) tm(G) consists of only torsion elements if mn = P (n), where

P (x) ∈ Z[x] is a fixed polynomial function (this can be easily
proved by induction on the degree of the polynomial P (x)).

(b) For every q > 1 there exists a (Hadamard) set
{m1, . . . ,mn, . . .} in Z such that mn+1

mn
≥ q for every n ≥ q

and tm(G) = {1} for every topological group G. (Take
m2n = (2n−1)!!(q+ 1)n−1, m2n+1 = (2n−1)!!(q+ 1)n+ 1.)

(c) Item (a) may leave the wrong feeling that any sequence mn

in Z with polynomial growth may fail to give rise to non-zero
topologically m-torsion elements of Z. For an easy counter-
example take rn to be the residue of n2 modulo 2[logn]. Then
the sequence mn = n2 − rn converges to 0 in the 2-adic
topology of Z and obviously satisfies n2 − n ≤ mn ≤ n2.

(d) [50] If limmn+1/mn = ∞ then there exists a non-torsion
x ∈ tm(T).

(e) [38] If mn+1/mn ≥ n + 1 there exist c many real numbers
x such that mnx → 0 mod Z (i.e., x + Z ∈ tm(T)). For a
stonger result see Theorem 3.8.

We show in Example 2.15 that topologically m-torsion elements
can be defined also by means of an appropriate topology on Z.
This allows for an easy verification (in §2.4) of the properties of the
subgroups tm(G) we give now. For every m ∈ Z every continuous
homomorphism f : G→ H sends tm(G) into tm(H). The discussion
of this important property (functoriality), along with that of (a) and
(b) below, will be deferred to §2.4.

If G is abelian then tm(H) is a subgroup of G whenever H is a
subgroup of G. Moreover, one can easily prove that

(a) if M ⊆ H, then tm(M) = tm(H) ∩M .
(b) ifGi is a topological group for every i ∈ I, then tm(

∏
iGi) =∏

i tm(Gi).
Let G be a precompact abelian group. Since G can be considered

as a subgroup of Tλ, one gets

tm(G) = G ∩ tm(Tλ) = G ∩ tm(T)λ =
⋂
χ∈Ĝ

χ−1(tm(T)). (2)
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For a precompact abelian group G this formula means a ∈ tm(G)
iff χ(a) ∈ tm(T) for every χ ∈ Ĝ. It reduces the computation of the
subgroup tm(G) for precompact abelian G to that of tm(T). On the
other hand, the computation of tm(G) in an arbitrary topological
groups involves only the cyclic subgroup 〈x〉. Hence this property
of precompact abelian groups extends to LCA groups G. Indeed,
if x ∈ G is a non-torsion element, then the closed subgroup L of G
generated by x is either discrete and ∼= Z, or L is compact (so x
is a compact element, according to the current terminology [31]).
In the first case x cannot be topologically torsion. In the second
case we have the formula (2) applied to the group L (not G !!).
Let B(G) denote the sum of all compact subgroups of G. Then
tm(G) ≤ B(G), i.e.,

tm(G) = tm(B(G)) =
⋃
{tm(K) : K ≤ G, compact}.

Clearly, this approach extends further to locally bounded abelian
groups. Recall that a topological group G is called locally bounded,
if G has a totally bounded non-empty open set. It was proved by
A. Weil [47] that a group is locally bounded iff it is isomorphic to
a subgroup of a locally compact group.

Example 2.11. It is important to note that tm(T) = T for a
sequence m implies that the sequence m is eventually null. This
follows from a more general result of Flor [27] (see also the end of
§2.4), we offer here a short direct argument. Clearly, for such a
sequence m the definition of tm(T) implies that mnx → 0 in T for
every x ∈ T, hence T =

⋃
n Fn, where

Fn = {y ∈ T : (∀k ≥ n) mky ∈ U}
and U is the neighborhood

[
−1

6 ,
1
6

]
+ Z of 0 in T. By the Baire

category theorem there exists n0 such that Int Fn0 6= ∅. Let V be a
neighborhood of 0 such that z + V ⊆ Fn0 . Since mnz → 0 we have
mkV ⊆ U+U for all k ≥ n0. This may occur only for finitely many
integer valuesmk (depending on V ). As every constant subsequence
of mn must be necessarily null, we conclude that mn = 0 for all
sufficiently large n.

2.3. Quasi-torsion and quasi-p-torsion elements
The following stronger version of “topologically torsion element”

of a compact abelian group G was defined in [22]: an element x ∈ G
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is quasi-torsion (following the terminology of [43]) if x is contained
in a closed totally disconnected subgroup of G. Following [22] de-
note by td(G) the sum of all closed totally disconnected subgroups
of G. This subgroup coincides with the set of all quasi-torsion
elements of G. Obviously, every quasi-torsion element is topolog-
ically torsion, while td(T) = Q/Z, so that (according to Example
2.4 and Corollary 2.7) the former property is essentially stronger
than the latter one. The functor td(−) applied to the category of
compact abelian groups preserves surjective continuous homomor-
phisms (compare with Proposition 2.18) and commutes with direct
products, i.e.,

td(
∏
i∈I

Gi) =
∏
i∈I

td(Gi) (2)

for every family of compact abelian groups Gi, i ∈ I [22, Ex. 10]
(in particular, td(Tα) = (td(T))α = (Q/Z)α for every cardinal α
[22, Th. 11]). These nice properties of the subgroups td(G) were
exploited essentially in [22] to resolve problems of Arhangel′skii and
Stephenson [42] on products of minimal groups (the latter asked
whether the power (Q/Z)N is minimal, for other solutions of this
problem see also [25, 30]).

The functor td was extended to arbitrary topological groups G
by Stoyanov [43] (see also [19, Chap.4]) by setting x ∈ td(G) for
some x ∈ G iff the cyclic subgroup 〈x〉 is either finite or carries a
non-discrete topology generated by open subgroups of 〈x〉 (see §2
for an equivalent definition). Clearly, every quasi-torsion element is
topologically torsion. Property (2) holds for arbitrary topological
abelian groups Gi.

Here is also a stronger version of “topologically p-torsion ele-
ment”, introduced by Stoyanov [43].

Definition 2.12. An element x of a topological group G is quasi
p-torsion if either 〈x〉 is a finite p-group, or 〈x〉 ∼= (Z, τp) when
equipped with the induced by G topology.

For a prime p denote by tdp(G) the subset of all quasi p-torsion
elements of a topological group G. If G is abelian, then tdp(G) is
a subgroup of G. The properties of this subgroups were studied
in detail by Stoyanov [43] and in [11, 12, 19]. In particular, the
counterpart of (2) holds true for the subgroups tdp(−).
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Clearly, quasi-p-torsion elements are always topologically
p-torsion. Let us see that these notions coincide in locally bounded
groups.

Proposition 2.13. [19, §4.4.1, Theorem] Let G be a locally bounded
group. Then for every prime p the topologically p-torsion elements
of G are quasi-p-torsion.

For reader’s convenience we give a sketch of the proof here. For
G = T this follows from item (b) of Example 2.2. By the counter-
part of (2) for the subgroups tdp(−), one can extend it to all com-
pact abelian groups (and consequently, for all precompact ones). In
the general case for every non-torsion element x of G the subgroup
〈x〉 is either discrete or precompact.

Local boundedness is essential in this proposition (for an example
of a topologically 2-torsion element that is not quasi 2-torsion see
[19, Exer. 4.5.1 (d)], or Example 2.15 (a)).

Let G be a compact abelian group. When G is totally discon-
nected, then G =

∏
p tdp(G) by Braconnier-Vilenkin’s theorem and

by the above proposition. This property extends to sequentially
closed subgroups of compact abelian groups, in particular to count-
ably compact abelian groups [24]. On the other hand, when the
compact abelian group G is connected (i.e., divisible), then tdp(G)
is divisible and dense in G for every prime p [11]. Therefore, for an
arbitrary compact abelian group G the closure Tp(G) of tdp(G) is
a closed subgroup of G containing the connected component c(G)
of G and such that Tp(G)/c(G) coincides with tdp(G/c(G)). One
can prove also that Tp(G) coincides with the intersection of all sub-
groups of G of the form nG, where n ∈ N is coprime to p (or dually,

identifying G and ̂̂
G, Tp(G) coincides with the annihilator of the

subgroup
⊕

q 6=p tq(Ĝ) of Ĝ; recall that c(G) coincides with the an-
nihilator of t(Ĝ) [31]). The quasi p-torsion elements have been very
successfully exploited in various questions regarding the structure
of topological groups and especially, the minimal topological groups
([4, 8, 11, 12, 13, 18, 19, 22, 24, 43]).

As mentioned above, the topologically torsion elements of T are
not quasi-torsion, so that Proposition 2.13 does not extend to topo-
logically torsion elements even for the compact group T.
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An alternative way to define “topologically torsion elements” was
adopted by Stoyanov [43], who considered the subgroup wtd(G) of
a topological group G generated by the family {tdp(G)}p∈P. The
elements of this subgroup were called weakly periodic in [43] and
the following important property was established:

Theorem 2.14. For every compact group G the subgroup wtd(G)
is dense.

It was shown in [23] that wtd(G) is actually sequentially dense
in G. Since every weakly periodic element of a topological group
is quasi-torsion, this theorem implies that the subgroup td(G) of a
compact topological group G is dense. Let us note also that while
the subgroups wtd(G) and td(G) of a compact abelian group are
always covered by compact subgroups, this fails to be true for the
subgroup of topologically torsion elements, even in the simplest
case of the group T. For further details on these subgroups see
[4, 19, 24, 43].

In the diagram below we give all implications between the six
levels of “topological torsion” we introduced so far. According to
Proposition 2.13 the implication (1) becomes an equivalence for
locally bounded groups. The implication (2) holds only for those
m that converge to 0 in the group topology ν of Z that has as basic
open neighborhoods of 0 all non-zero subgroups of Z. The rest of
the paper (with exception of §2.4) is dedicated to the three notions
from the right half of the diagram.

2.4. The “abstract” notion of topological torsion
A functorial subgroup (or preradical, cf. [11]-[15], [23]) in the class

of topological abelian groups is defined by assigning to every group
G a subgroup r(G) such that f(r(G)) ⊆ r(H) for every continuous
homomorphism f : G → H. Following the terminology from [28],
a functorial subgroup r(G) is said to be
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(i) hereditary, if x ∈ r(G) iff x ∈ r(〈x〉) (i.e., if x ∈ r(G) can
be decided for x ∈ G within the cyclic subgroup 〈x〉 of G),

(ii) jansian if r(
∏
iGi) =

∏
i∈I r(Gi) for every family of topo-

logical abelian groups {Gi}i∈I .
We shall see here that the five functorial subgroups we defined

(with exception of wtd(−)) have both properties. In order to do it
more effectively we need a unified treatment.

Using the group (Z, τp) as a sample group for determining topo-
logical p-torsion (in the spirit of the definition of Braconnier), one
can see that an element x of a topological group G is quasi p-torsion
iff the unique homomorphism f : (Z, τp)→ G with f(1) = x is con-
tinuous. Indeed, if x has the latter property and ker f 6= 0, then
ker f = pnZ (being a closed, hence open, subgroup of (Z, τp)) and
consequently 〈x〉 is a finite p-group. If ker f = 0, the continuous
group isomorphism f : (Z, τp) → 〈x〉 is a homeomorphism by the
minimality of (Z, τp) ([19]). The other implication is obvious.

Let us see that all other notions of “topological torsion” given
so far (with exception of wtd(−))) can be obtained in this way.
Namely, for a group topology τ on Z and a topological group G
define x ∈ G to be τ -torsion if the unique homomorphism f :
(Z, τ) → G with f(1) = x is continuous. We have just seen that
“quasi p-torsion” coincides with “τp-torsion”. Before doing this for
the remaining notions of topological torsion we denote by rτ (G)
the set of all τ -torsion elements of G. This is a functorial subgroup
when G is abelian. Moreover, it is easily verified that rτ (G) satisfies
both (i) and (ii). If we want τ -torsion to imply torsion in the usual
sense, we have to ask τ to be finer than ν.

Example 2.15. Following [50] call a sequence m ∈ Z a T -sequence
if Z admits a Hausdorff group topology such that mn → 0 in that
topology. It is clear, that if m is not a T -sequence, then every
topologically m-torsion element of a Hausdorff topological group is
necessarily torsion. For a T -sequence m in Z there exists a finest
group topology λm on Z such that mn → 0 in λm (for the important
properties of this topology see [50], where this topology is denoted
by Z{mn}). Clearly, x ∈ G is topologically m-torsion iff x is λm-
torsion in the above sense.

(a) Topologically p-torsion elements can be defined, in analogy
to the case of quasi p-torsion ones, by means of the topology
λp on Z (as before, λp denotes the finest group topology on
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Z such that pn → 0), i.e., x ∈ G is topologically p-torsion
iff x is λp-torsion. Note that every element of (Z, λp) is
topologically p-torsion, whereas no element of Z beyond 0
is quasi p-torsion.

(b) An element x of a topological group G is quasi-torsion iff x
is ν-torsion.

Let us see now that the functorial subgroups rτ (G) can be char-
acterized with the natural properties (i) and (ii).

Proposition 2.16. A functorial subgroup r(−) in the category of
abelian topological groups coincides with rτ (−) for some topology τ
on Z iff r(−) is hereditary and jansian.

Proof. The necessity was already mentioned before. Assume now
that r(−) is hereditary and jansian. We have to find a group topol-
ogy τ on Z such that for every abelian topological group G the
subgroups r(G) and rτ (G) of G coincide. Let τ be the supremum
of all, not necessarily Hausdorff, group topologies κ on Z with the
property

C = Z/{0}κ satisfies r(C) = C. (3)
To see that this is the desired topology take a topological group

G. Fix x ∈ r(G). Then the cyclic subgroup C = 〈x〉 satisfies
r(C) = C by (i). Consider the initial topology κ induced on Z
under the homomorphism f : Z→ C, defined with f(1) = x. Since
G is Hausdorff, ker f = {0}κ and C ∼= Z/ ker f . Hence, it follows
from (3) that κ is coarser than τ , so that f is continuous when Z
is equipped with τ , thus x ∈ rτ (G). On the other hand, if x ∈ G is
τ -torsion, then f : (Z, τ)→ G with f(1) = x is continuous, so that
the functoriality of r implies x ∈ r(G). �

Note that if τ in the above proposition is not Hausdorff, then
r(G) = G[n] for every G, where nZ = {0}τ .

If (i) or (ii) fails, then this need not be true any more. For
example, wtd(−) fails to satisfy both (i) and (ii) (see also Example
2.17 (b) below, where only (ii) fails).

A more general approach (in module categories and without the
restraint ii)) can be found in [14].

Example 2.17. (a) Call an element x of a topological group G
precompact if the subgroup 〈x〉 is precompact. IfG is complete, then
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every precompact element x is contained in a compact subgroup (so
x is a compact element). If τ is the Bohr topology on Z we get as
rτ (G) the subset (subgroup if G is abelian) of precompact elements
of G.

(b) An element x ∈ G is metrizable, if the subgroup 〈x〉 is metriz-
able (Wilcox [49]). The set M(G) of all metrizable precompact el-
ements of an abelian group G is a functorial subgroup ([20]) that
cannot be obtained in the way described above, i.e., as rτ (G) for
some appropriate τ .

Contrary to the case of tdp and td, the functor tm need not
preserve epis when restricted on the category of compact abelian
groups.

Proposition 2.18. The functor tm from the category of compact
abelian groups to the category of all topological abelian groups pre-
serves epis iff tm(T) is divisible.

Proof. Since the epis in both categories are precisely the continu-
ous surjective homomorphisms, we have to show that tm preserves
surjective morphisms iff tm(T) is divisible.

If tm(T) is divisible, then for a surjective continuous homomor-
phism f : G → G/N , with G compact, consider an element a ∈
tm(G/N). Let X be the discrete Pontryagin dual of G, so that the
annihilator Y of the subgroup N is isomorphic to the Pontryagin
dual of G/N . So the adjoint of f is the inclusion of Y in X. In
these terms a can be considered as a character a : Y → T such that
a(Y ) ≤ tm(T). Now the divisibility of tm(T) permits to extend a
to a character a′ : X → T with a′(X) ≤ tm(T), so that a′ can be
identified with an element of tm(G). By the choice of a′, we have
f(a′) = a.

Viceversa, if tm preserves epis, then tm(T) is divisible. Indeed,
for every n ∈ N the multiplication by n is a surjective homomor-
phism f : T→ T. Hence

ntm(T) = f(tm(T)) = tm(f(T)) = tm(T). �

Since the subgroup T of topologically torsion elements of T is not
divisible (according to [21] it is not p-divisible for any p), for every
n 6= 0 the (surjective) multiplication by n in T does not induce a
surjective endomorphism of T .
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For more examples of this categorical interpretation of “topolog-
ical torsion” see [15].

Another possible categorical approach to topological torsion is
offered by the so called limit laws in topological groups and topolog-
ical algebras ([44]). A sequential limit law is a map f : N→ F (X)
to the free group F (X) over some set X. A topological group G
satisfies the sequential limit law f provided that for every group
homomorphism π : F (X) → G from F (X) to G the sequence
π(f(n)) → 1 in G [32, 34]. Let us call the rank of F (X) (i.e.,
the cardinality of X) rank of the sequential limit law f . Now it is
easy to see that a topological group G satisfies a sequential limit
law f : N → Z of rank one iff all elements of G are topologically
m-torsion, where m = (f(n)). More generally, for a rank-one se-
quential limit law f and an arbitrary topological abelian group G
the subgroup tm(G) (with m = (f(n)) as before) is the largest sub-
group of G that satisfies the limit law f . In this setting, Example
2.11 follows also from the general fact that T admits no non-trivial
sequential limit laws [32].

Let us close this discussion with a few words about closedness
of the subgroup of (appropriately defined) topologically torsion el-
ements. The subgroups tm(G) need not be closed and the same
applies to tdp(G) as mentioned above. This can be considered as a
disadvantage since it may lead out of the category, if one works with
complete groups. On the other hand, one can always pass from a
preradical r(G) to its closure r(G) = r(G) that gives the smallest
closed preradical above r. There is obviously a loss of information
in the passage r 7→ r. This makes clear that r has the advantage
to be richer from the point of view of information.

3. Computation of tm(T)

In the previous section we showed that the computation of the
subgroups tm(G) can be reduced to that of tm(T), whenever G is
a locally bounded group. Here we propose various ways how to
compute tm(T) for certain sequences m.

3.1. A complete description of tm(T) when mn|mn+1

Let bn = mn+1

mn
∈ Z and assume bn > 1 for every n. Then again

for every x ∈ [0, 1) there exist integers 0 ≤ cn < bn for every n such
that
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x =
∞∑
n=0

cn
mn

, (4)

and cn < bn− 1 for infinitely many n. The integers cn are uniquely
determined with these properties.

Let supp x = {n ∈ N : cn 6= 0}. Call an infinite set A of naturals
b-bounded if the sequence {bn : n ∈ A} is bounded.

Theorem 3.1. For x ∈ [0, 1) with representation (4) the following
are equivalent:

(a) x gives rise to a topologically m-torsion element of T;
(b) if supp x is infinite, then for every infinite subset A ⊆

supp x the following holds true:
(b1) if A is b-bounded, then

lim
n∈A

cn + 1
bn

= lim
n∈A

cn+1 + 1
bn+1

= 1.

(b2) if limn∈A bn =∞, then limn∈A
cn
bn

= 0 (or, equivalently,
limn∈A

cn+1
bn

= 0) in T.

Note that the limit in (b1) is taken in R, while that in (b2) – in
T. An incomplete proof of a different version of this theorem can
be found in [19], a complete proof of the theorem is given in [17].

Due to its general character, Theorem 3.1 is somewhat heavy to
apply. This is why we give now a series of corollaries where, under
additional natural conditions, the description of the topologically
m-torsion elements of T becomes more transparent.

Corollary 3.2. Let x ∈ [0, 1) and let A = supp x. If A is b-
bounded, then x ∈ tm(T) iff cn = 0 for almost all n ∈ N (in partic-
ular, x is torsion).

Proof. Assume that A is infinite. Now limn∈A
cn+1
bn

= 1 implies
cn = bn − 1 for almost all n ∈ A as bn is bounded. Next,
limn∈A

cn+1+1
bn+1

= 1 implies that cn+1 6= 0 for sufficiently large n

(as bn+1 ≥ 2), hence n+ 1 ∈ A for all sufficiently large n ∈ A. This
means that A is co-finite in N and hence cofinitely many cn = bn−1,
a contradiction. �

A similar result can be found also in [19, Chap. 4].
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In particular, this corollary implies that all topologically p-torsion
elements of T are p-torsion for every prime p (cf. Example 2.2).

In the next corollary (proved in [17]) we determine when x ∈
tm(T) for x ∈ [0, 1) such that supp x splits into a b-bounded part
and a part where bn →∞.

Corollary 3.3. Let x ∈ [0, 1). Suppose that A = supp x \ I
is b-bounded for some set I ⊆ N that is either finite or satisfies
limn∈I bn =∞. Then x ∈ tm(T) iff the following conditions hold:

(a) cn = bn − 1 for almost all n ∈ A;
(b) if A is infinite, then also C = {n ∈ A,n+ 1 6∈ A} is infinite

and

lim
n∈A

cn+1 + 1
bn+1

= 1 and lim
n∈C

cn+1

bn+1
= 1;

(c) if I is infinite, then limn∈I
cn
bn

= 0 in T.

Note that (b) implies limn∈C bn+1 = ∞ when x ∈ tm(T) and A
is infinite.

Corollary 3.4. Let x ∈ [0, 1) and let I = supp x. If limn∈I bn =
∞, then x ∈ tm(T) iff limn

cn
bn

= 0 in T.

Proof. Follows directly from Corollary 3.3 with A = ∅. For a direct
proof exploit the inequality cn/bn ≤ mnx−[mnx] ≤ (cn+1)/bn. �

Corollary 3.5. If bn is not bounded, then |tm(T)| = c.

Proof. Let I ⊆ N be infinite with bn → ∞ when n ∈ I. For every
ξ = (ξn) ∈ {0, 1}N consider xξ ∈ [0, 1) having a representation (3)
with integers cn satisfying cn = 0 when n 6∈ I and cn = ξn for all
n ∈ I. By Corollary 3.4, the hypothesis bn → ∞ for n ∈ I implies
that each xξ ∈ [0, 1) gives rise to a topologically m-torsion element
of T (as limn cn/bn = 0 in T). Obviously, there are c many elements
xξ of T of this form. �

Example 2.10 (b) (with tm(T) = 0 and mn+1

mn
unbounded, but not

an integer) shows that the hypothesis mn|mn+1 cannot be removed
for the proof of the implication d) ⇒ a) in the next theorem.

Corollary 3.6. For a strictly increasing m ∈ ZN with mn|mn+1

for each n the following are equivalent:
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(a) |tm(T)| = c;
(b) tm(T) is uncountable;
(c) tm(T) contains non-torsion elements;
(d) bn = mn+1

mn
is unbounded;

(e) |tm(T)/ptm(T)| = c for every prime p.

Proof. The implications (e) ⇒ (a) ⇒ (b) ⇒ (c) are trivial. The
implication (c) ⇒ (d) follows from Corollary 3.2. The implication
(d) ⇒ (a) follows from Corollary 3.5. The implication (d) ⇒ (e) is
proved in [21]. �

Remark 3.7. The equivalence a) ⇔ b) of Corollary 3.6 can be
proved without the assumption mn|mn+1 for each n (as tm(T) is a
Borel set of T). We shall see later that in general the implication
c) ⇒ d) fails (cf. Example 3.10 (a)), while b) ⇒ d) remains valid
(cf. Theorem 3.9). Therefore the implication c) ⇒ b) fails too in
general.

In connection to Proposition 2.18 we shall briefly discuss now
when tm(T) is divisible. It follows from Corollary 3.6 (e) that when
mn|mn+1 for each n and bn is unbounded, then tm(T) is not divis-
ible. On the other hand, it is obvious that when tm(T) contains
Q/Z, then non-divisibility of tm(T) yields tm(T) 6⊆ Q/Z and conse-
quently, under the condition mn|mn+1 for each n, bn is unbounded
by virtue of the above corollary. The restraint tm(T) ≥ Q/Z in
the last argument cannot be removed. Indeed, for distinct primes
p, q and the sequence mn = pqn one has tm(T) = Z(p) × Z(q∞)
non-divisible, while mn+1

mn
= q is bounded.

3.2. When mn|mn+1 fails
It turns out that the assymptotic behavior of the ratio mn+1

mn
may

determine the size of the subgroup tm(T) in two important cases.
For t = 0 the next theorem is proved in [2]:

Theorem 3.8. If limn
mn+1

mn
= ∞ then for every t ∈ T there exist

c many elements x ∈ T such that mnx → t in T. In particular,
|tm(T)| = c.

Proof. Assume without loss of generality that m1 ≥ 3 and εn =
mn/mn+1 ≤ 1/4 for every n. Then build for every ξ = (ξn) ∈
{0, 1}N, a descending chain of intervals Ik(ξ) = [uk(ξ), vk(ξ)]
(k ∈ N), such that:
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(1) the length λ(Ik(ξ)) = 3/mk+1;
(2) ∃bk(ξ) ∈ t + Z such that Ik(ξ) coincides with

[bk(ξ)/mk − εk/mk, bk(ξ)/mk + εk/mk];
(3) for η 6= ξ there exists k ∈ N with Ik(ξ) ∩ Ik(η) = ∅.

By (1) limk λ(Ik(ξ)) = 0 for every ξ, hence there exists a (unique)
point xξ ∈

⋂
k Ik(ξ). By (2) one has bk(ξ)−εk < mkxξ < bk(ξ)+εk.

This proves that limkmkxξ = t in T (in particular, xξ ∈ tm(T) when
t = 0) for every ξ. To see that there exist c many elements x ∈ T
with mnx → t it suffices to observe that xη 6= xξ for η 6= ξ by
(3). �

If one relaxes the condition limn
mn+1

mn
=∞ in Theorem 3.8, then

no x ∈ T with mnx→ t need exist (take mn = pn for a fixed prime
p and any non-torsion t ∈ T).

The following recent general result from [2] shows that the im-
plication b) ⇒ d) in Corollary 3.6 holds without the restraint
mn|mn+1:

Theorem 3.9. ([2]) If the ratio mn+1

mn
is bounded for a sequence m,

then tm(T) is countable.

Easy examples show that unboundedness of the ratio mn+1

mn
need

not imply any definite assertion on the size of the subgroup tm(T)
when mn|mn+1 fails (Example 2.10 (b)). Hence the implication in
the above theorem cannot be inverted.

Now we consider strictly increasing sequences m ∈ ZN with an-
other relevant divisiblity condition, namely

mn|mn+1 −mn−1 for each n. (5)

This means that mn+1 = anmn + mn−1 for some positive an ∈ Z.
Now the continued fraction

α =
1

a1 + 1
a2+ 1

a3+ 1
...

(6)

defines an irrational number α that satisfies mnα→ 0 in T. Indeed,
the n-th approximation of α is pn/mn with |α − pn/mn| < 1/m2

n,
hence |mnα−pn| < 1/mn. On the other hand, every irrational num-
ber α ∈ (0, 1) has a continuous fraction (6), hence α determines a
topologically m-torsion element of T. This shows that every ele-
ment of T is topologically m-torsion for an appropriate non-trivial
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sequence m satisfying (5). However this cannot be extended to
every power of T. Indeed, one can choose an approariate element
x ∈ G = T

c (namely, the “diagonal element” of Tc = T
T), such that

if x ∈ tm(G), then m ∈ Z0 by Example 2.11 (in other words, the
ciclic subgroup 〈x〉 is t-dense in G in terms of §4).

Example 3.10. Let bn = mn+1/mn and note that this number is
not an integer. Under condition (5) the torsion elements in tm(T)
can be only finitely many and hence form a cyclic subgroup. This
subgroup is trivial precisely when m1 and m2 are coprime.

(a) It is easy to see, from the equality bn = an+1/bn−1, that bn
is bounded iff an is bounded (while bn → ∞ iff an → ∞).
In particular, for every bounded sequence (an) we get an
example of a sequence m with bounded bn and a non-torsion
element α ∈ tm(T).

(b) When an is eventually constant we get a sequence m with
bn → a+

√
a2+4
2 . As far as the subgroup tm(T) is concerned,

one can assume that an is constant. Conversely, if bn con-
verges then the sequence an is eventually constant. Indeed,
let limn bn = ρ. Then an is bounded by (a). Since an can
take only finitely many values, there is one, say c, taken for
infinitely many indices nk. Since lim bnk = lim bnk−1 = ρ,
we get the equation ρ = c + 1/ρ. This determines ρ =
c+
√
c2+4
2 . To prove that an → c it suffices to show that if

anm = d for an infinite set of indices nm, then d = c. In-
deed, as above we conclude that ρ = d+

√
d2+4
2 . The function

f(x) = x+
√
x2+4
2 is strictly monotone for positive x, hence

d = c. Therefore, all an coincide with c for n ≥ n0.
(c) In the general case of a bounded sequence (an) one should

consider the cluster points of the sequence bn in order to ob-
tain useful information about tm(T) (compare with limn bn ∈
tm(T) in the case when bn converges).

With a = 1 in Example 3.10 (b) we get the Fibonacci sequence
f = (fn) defined by fn+1 = fn + fn−1.

Question 3.11. Describe tf (T), where f is the Fibonacci sequence.
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4. Some applications

4.1. The finest precompact topology on Z with mn → 0
A counterpart of the notion of a T -sequence was proposed in [2]

(see also Example 2.15): a sequence (mn) in an abelian group G
is a TB-sequence if there exists a precompact group topology τ on
G such that mn → 0 in (G, τ). The next lemma offers an easy
description of the TB-sequences of Z.

Lemma 4.1. [2] A fixed sequence m = (mn) in Z is a TB-sequence
iff tm(T) is infinite.

Proof. Since precompact group topologies on Z are determined by
their continuous characters, one will have τ = TH , where TH is
the precompact group topology on Z generated by the subgroup
H of the character group T = Ẑ [10]. As mn → 0 in (Z, TH) we
conclude that mnα → 0 in T for every α ∈ H. Hence H ≤ tm(T).
Hausdorffness of TH implies that H separates the points of Z, hence
H is infinite. Therefore, tm(T) is infinite too. Viceversa, if H =
tm(T) is infinite, then TH is Hausdorff and obviously mn → 0 in
(Z, TH) by the definition of TH . �

The topologies τ = TH as in the lemma correspond to infinite
(Haar measure 0) subgroups H of tm(T) (cf. Lemma 2.8). Clearly,
τm := Ttm(T) is the finest precompact topology on Z with mn → 0.
Since always w(Z, TH) = |H|, we get w(Z, τm) = |tm(T)|.

Theorem 4.2. (Raczkowski [37]) If mn+1

mn
≥ n+1, then there exists

a precompact group topology τ of weight c on Z such that mn → 0
in (Z, τ).

Applying Theorems 3.6, 3.8 and the above argument with
w(Z, τm) = |tm(T)| = c one can conclude (cf. [2]) that

• if mn+1

mn
→ ∞, then there exists a finest precompact group

topology τm of weight c on Z such that mn → 0 in (Z, τm);
• if mn|mn+1 and m is strictly increasing, then the following

are equivalent:
(i) mn+1

mn
is bounded;

(ii) w(Z, τm) < c;
(iii) τm is metrizable;
(iv) τm has a local base at 0 of open subgroups.
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Therefore the restraint mn+1

mn
≥ n + 1 in Theorem 4.2 can be

replaced by mn+1

mn
→∞. On the other hand, if the latter condition

fails, then tm(T) may be trivial (see Example 2.10 where m2n+1

m2n
is

bounded whereas m2n
m2n−1

→∞).

4.2. The finest precompact topology on Z
We denote by Z# the group Z equipped with the Bohr topology,

namely the initial topology of all homomorphisms Z → T. Kunen
and W. Rudin [33] proved that Z# contains a subset A such that
the only limit point of A−A in Z# is 0 and A+A has no limit points
in Z#. Actually, every Hadamard set A of Z has these properties
[33, Th. 2.3], but this is not relevant for the proof of their main
theorem which requires only the existence of such a set A. As an
application of Theorem 3.8 we show here an easy way to construct
such a set A with stronger properties.

Theorem 4.3. Let A = {mn : n ∈ N} be a subset of Z enumerated
in a strictly monotone way, such that m0 > 0 and limnmn+1/mn =
∞. Then there exist c many elements θ ∈ T such that for the
topology τ induced on Z by the embedding χ : Z → T, defined by
χ(n) = nθ, the following hold

(a) A(k) = A+ . . .+A︸ ︷︷ ︸
k

has no limit points in (Z, τ) for every

k ∈ N,
(b) the only limit point of A−A in (Z, τ) is 0.

Proof. Fix a non-torsion element t ∈ T. By Theorem 3.8 there exist
c many elements θ ∈ T satisfying mnθ → t in T. Choose among
them c many non-torsion ones with 〈t〉 ∩ 〈θ〉 = 0. Then θ ∈ T has
the required properties. �

Corollary 4.4. Let A = {mn : n ∈ N} be a subset of Z enumerated
in a strictly monotone way, such that m0 > 0 and limnmn+1/mn =
∞. Then:

(a) A(k) = A+ . . .+A︸ ︷︷ ︸
k

has no limit points in Z
# for every

k ∈ N,
(b) the only limit point of A−A in Z# is 0.

Question 4.5. Let A ⊆ Z be a Hadamard set of Z.
(a) Is then A+A+A closed discrete in Z# ?
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(b) Is the set A(k) closed and discrete in Z# for every k?
(c) In case b) has negative answer, is there any relation between

the ratio of A and the maximum number k such that A(k)

is closed discrete ?

4.3. The Galois closure associated to topological torsion
Here we define for every subset H of a topological group G a

largest subset t(H) of G containing H that has “the same topolog-
ically m-torsion elements as H” in the following sense:

t(H) =
⋂
{x ∈ G : (∀m ∈ Z)[(∀h ∈ H)hmn → 1]⇒ xmn → 1]},

in other words,

t(H) =
⋂
m∈Z
{tm(G) : H ≤ tm(G)}.

We say
• H is t-closed if H = t(H);
• H is t-dense if t(H) = G.

Consequently, for a topological group G and m ∈ Z = Z
N the

subset tm(G) as a typical t-closed subobject. It is easy to see that
t is a monotone idempotent closure operator in the power set of
G (the lattice of all subgroups of G, in case G is abelian). One
can define an appropriate Galois correspondence between subsets
of G and subsets of Z = Z

N, so that the t-closed subsets of G
are precisely the Galois closed subobjects of G. Here we do not
give explicitly this correspondence. The reader can find details
concerning this correspondence and proofs of the theorems given
below in [16]. Let us mention here that t-closedness and t-density
have nothing to do with closedness and density w.r.t. the topology
of the group G (cf. Example 4.11).

For a cyclic subgroup 〈x〉 of G write for brevity t(x) instead of
t(〈x〉). If G is abelian then t(H) is a subgroup of G whenever H is
a subgroup of G. Moreover, if M ⊆ H, then tH(M) = tG(M) ∩H.
If Hi is a subgroup of Gi for every i ∈ I, then t(

∏
iHi) =

∏
i t(Hi).

Example 4.6. All subgroups of Q/Z are t-closed, when Q/Z is
equipped with any Hausdorff group topology.

Let us see now an interesting property of the circle group T.

Theorem 4.7. All cyclic subgroups of T are t-closed.
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Proof. If o(x) = n in T, then t(x) = T[n] ∼= Z(n) so t(x) = 〈x〉 is
the group of n-th roots of unity.

If o(x) =∞ and y ∈ t(x) consider the algebraic homomorphism
f : 〈x〉 → 〈y〉 defined by f(x) = y. Now y ∈ t(x) means ymn → 1
in T if xmn → 1 in T. This proves that f is continuous at 1. So
f is a continuous homomorphism, hence f extends to a continuous

endomorphism of the completions 〈̂x〉 = T
f̂→ T = 〈̂y〉. Since the

continuous automorphism of T have the form x 7→ xn with n = ±1,
we conclude y ∈ 〈x〉. This proves t(x) = 〈x〉. �

Let Gc = {G : every cyclic 〈x〉 ≤ G is t-closed}. Hence, T ∈ Gc
(by Theorem 4.7) and Q/Z ∈ Gc along with all its subgroups (by
Example 4.6). The following surprising theorem shows that these
are the only locally compact groups with this property.

Theorem 4.8. [16] If G ∈ Gc is locally compact, then either G ∼= T

or G is isomorphic to a subgroup of the discrete group Q/Z.

Note that according to this theorem G ∈ Gc alone implies G
is abelian for a locally compact group G (for the failure of some
familiar LCA groups to satisfy G ∈ Gc see Example 4.11).

Following the line of the proof of Theorem 4.7 one can prove that
all countable subgroups of T are t-closed ([16]). Moreover, there
are many uncountable proper t-closed subgroups of T according
to Corollary 3.6 (indeed, the t-closed subgroups tm(T) are proper
and have size c when mn+1

mn
is an unbounded sequence of integers).

Nevertheless, the following question remains open.

Question 4.9. Are all subgroups of T t-closed?

This question should be compared to another question raised by
Raczkowski [38, Question 1] that can be formulated as follows in
these terms:

Question 4.10. Is it true that a measure zero subgroup of T is
never t-dense ?

In other words, does there exists a measure-zero subgroup H of
T such that H is not contained in any subgroup tm(T) 6= T? Note
that by Lemma 2.8 every proper subgroup of T of the form tm(T)
has measure zero.

Now we consider the locally compact abelian groups with t-dense
cyclic subgroups. Note that:
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• t(x) = R for all x ∈ R \ {0},
• t(x) = Zp for x ∈ Zp \ {0}.

Let Gd = {G : every cyclic 〈x〉 ≤ G is t-dense}. It is clear, that
G ∈ Gd if and only if G has no proper t-closed subgroups. It was
kindly noted by Markus Stroppel that the class Gd contains the
class of topological groups G such that the group of continuous
automorphisms of G acts transitively on G \ {1}. However, the
latter class is much smaller than G ∈ Gd even in the framework of
compact abelian groups as the second example above shows (see
also the examples below).

Example 4.11.
(1) G = R

n × D ∈ Gd for every discrete torsion-free group D
and every n ∈ N;

(2) G = Z
α
p ∈ Gd and G = Z(p)α × (

⊕
β Z(p)) ∈ Gd for all

cardinals α, β, where Zαp and Z(p)α carry their compact
product topology, while

⊕
β Z(p) is discrete;

(3) G ∈ Gd if G is torsion-free and G has an open subgroup
K ∼= Z

α
p for some α, such that G/K is torsion (so that

Z
α
p ≤ G ≤ D(Zαp ) = Z

α
p ⊗Z Q).

Theorem 4.12. ([16]) If G ∈ Gd is locally compact abelian, then
one of the cases (1)-(3) in Example 4.11 occurs.

For compact abelian groups G distinct from T one can try to
obtain a countepart of Theorem 4.7 by an appropriate change of the
domain of the sequences (mn). Indeed, for the group T the integers
Z = T̂ arise as a natural object via the Pontryagin duality. For an
arbitrary compact abelian group G one may consider a sequence
u = (un) in the discrete Pontyagin dual Ĝ of G. Now the subgroup
tu(G) can be defined as the set of elements x ∈ G such that un(x)→
0 in T (as in the statement of Theorem 2.8). We do not know if this
countepart of Theorem 4.7 remains true for every compact abelian
group G:

Question 4.13. Is every cyclic subgroup 〈x〉 of a compact abelian
group G intersection of the subgroups tu(G) containing x (i.e., if
for some y ∈ G un(y) → 0 in T for every sequence un in Ĝ, such
that un(x)→ 0 in T, is it true that y = kx for some k ∈ Z)?

The answer to this question is positive for the tori Tn, for all
pro-p abelian groups and for all torsion-free profinite abelian groups.
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This approach will necessarily lead to a different Galois closure, but
we are not going to discuss this matter here. The following example
showing that the Galois closure t has not good functorial properties
may serve as a motivation to carry out such a programme.

Example 4.14. Let f : R → T be the canonical quotient map.
Then for every irrational number α ∈ R the cyclic subgroup H =
〈α〉 is t-dense in R, while f(H) is t-closed in T by Theorem 4.7.
Hence f(t(H)) 6⊆ t(f(H)).

Note added July 2002. Questions 4.9 and 4.10 are answered
negatively in [2], under the assumption of Martin Axiom. A com-
plete descrtiption of the subgroups tm(T), under confition (5), is
given in [3]. This answers completely Question 3.11 (the group
tf (T) is shown to be infinite cyclic).
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