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A CATEGORY OF TOPOLOGICAL GROUPS
SUITABLE FOR A STRUCTURE THEORY OF

LOCALLY COMPACT GROUPS

KARL H. HOFMANN

Abstract. This survey outlines an approach to a projected
monograph on the “Structure of pro-Lie groups and Locally
Compact Groups” [3] which may be considered a sequel to
the book “The Structure of Compact Groups” [1]. In the
focus is the category of projective limits of finite dimensional
Lie groups. In a nontrivial fashion, every member G of this
category has a special presentation as a projective limit of
quotients G/N which are finite dimensional Lie groups. The
category of these limits is complete, and all of its objects have
a good Lie theory in terms of certain Lie algebras which are
well behaved projective limits of finite dimensional ones.

0. Locally compact groups: Pro and Con

The success story of locally compact groups has two roots: The
existence of Haar integral on a locally compact group G and the
successful resolution of Hilbert’s Fifth Problem with the proof that
connected locally compact groups can be approximated by
Lie groups.

Haar measure is the key to the representation theory of compact
and locally compact groups on Hilbert space, and the wide field of
harmonic analysis with ever so many ramifications (including e.g.
abstract probability theory on locally compact groups). A theorem
of A. Weil’s shows that, conversely, a complete topological group
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with a left- (or right-) invariant measure is locally compact. Thus
the category of locally compact groups is that which is exactly
suited for real analysis which rests on the existence of an invariant
integral. One cannot expect to extend that aspect of locally com-
pact groups to larger classes. This situation may be considered as
very satisfactory.

The situation is different if one thinks of locally compact groups
as a class of topological groups extending the class of finite dimen-
sional real Lie groups. Indeed every locally compact group G has
a Lie algebra L(G) which is in general infinite dimensional, and it
has an exponential function. But from the view point of Lie theory,
the category of locally compact groups has two major drawbacks:
—The topological abelian group underlying the Lie algebra L(G)
fails to be locally compact unless L(G) is finite dimensional. In
other words, the very Lie theory making the structure theory of
locally compact groups interesting leads us outside the class.
—The category of locally compact groups is not closed under the
forming of products, even of copies of R; it is not closed under pro-
jective limits of projective systems of finite dimensional Lie groups,
let alone under arbitrary limits. In other words, the category of
locally compact groups is badly incomplete.

Let us denote the category of all (Hausdorff) topological groups
and continuous group homomorphisms by TOPGR. It will turn out
that the full subcategory proLIEGR of TOPGR consisting of all pro-
jective limits of finite dimensional Lie groups avoids both of these
difficulties. This would perhaps not yet be a sufficient reason for
advocating this category if it were not for two facts: Firstly, while
not every locally compact group is a projective limit of Lie groups,
every locally compact group has an open subgroup which is a pro-
jective limit of Lie groups, so that, in particular, every connected
locally compact group is a projective limit of Lie groups. Secondly,
the category proLIEGR is astonishingly well-behaved. Not only is it
a complete category, it is closed under passing to closed subgroups
and to those quotients which are complete, and it has a good Lie
theory. It is perhaps a bit surprising that this class of groups has
been little investigated in a systematic fashion.

We submit that a general structure theory of locally compact
groups should be based on a good understanding of the category
proLIEGR.



A CATEGORY OF TOPOLOGICAL GROUPS SUITABLE . . . 653

1. The Strategy for a Structure Theory of Locally

Compact Groups

Let us discuss the lines along which a structure theory of locally
compact groups itself might be organized. I believe that the basic
strategy has to be a reduction to certain well established theories,
namely, the reduction to the theories of

(1) Lie groups,
(2) compact groups, and
(3) totally disconnected groups.

The first and second are highly developed and are very well docu-
mented in books on various levels. The third one has experienced
substantial progress in the last decade through the work of George
Willis and Helge Glöckner. The Willis theory proved its value by
providing solutions to problems which resisted solution for some
time and by providing alternative proofs to results with difficult
proofs in topological dynamics.

That a reduction to these basic theories is possible is well exem-
plified by a series of results, practically all of them classical.

Let us begin with a reminder of two almost elementary observa-
tions:
Remark 1.1. In any topological group G, the identity component
G0 is a closed fully characteristic subgroup (i.e. one that is invari-
ant under all continuous endomorphisms) and G/G0 is a totally
disconnected subgroup.

This is a first, although not yet very explicit reduction of the
structure theory to that of connected and that of totally discon-
nected group. This reduction has the expected functorial and uni-
versal properties. A profinite group is a projective limit of finite
groups (see [8], [9], [1], pp. 22, 23).

Remark 1.2. A locally compact totally disconnected group has
arbitrarily small compact open subgroups. A compact totally dis-
connected group has arbitrarily small open normal subgroups and
thus is profinite.

As a consequence it was observed at an early stage that profinite
groups played a role:

Remark 1.3. A locally compact group has open subgroups H such
that H/G0 is compact.
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It is still elementary that G and H × G/H are homeomorphis
where G/H is a discrete space. Topologically interesting things
take place in H.

A topological group G for which the factor group G/G0 is com-
pact is called almost connected.

Now let us turn to deeper results.
One piece of information derives from a basic result proved around

1948 by Iwasawa in [6], p. 547, Theorem 11:

Iwasawa’s Local Splitting Theorem. Let G be a locally com-
pact connected group. Then G has arbitrarily small neighborhoods
which are of the form NC such that N is a compact normal sub-
group and C is an open n-cell which is a local Lie group commuting
elementwise with N and is such that (n, c) 7→ NC : N × C → NC
is a homeomorphism.

The full power of Iwasawa’s Theorem became available only after
Hilbert’s Fifth Problem was settled a few years later by A. M.
Gleason, D. Montgomery and after H. Yamabe proved that every
almost connected locally compact group can be approximated by
Lie groups.

In [2] the following generalisation of Iwasawa’s Theorem is proved,
which carries it beyond the connected case:

Theorem 1.4 Let G be a locally compact group. Then for every
identity neighborhood U there is a compact subgroup N contained
in U , a (simply) connected finite dimensional Lie group L, and an
open and continuous morphism ϕ : N ×L→ G with discrete kernel
such that ϕ(n, 1) = n for all n ∈ N .

We can no longer assert normality of N in G, but from the very
statement of the theorem we see that N is normal in the open
subgroup ϕ(N ×L) ∼= (N ×L)/D with a discrete normal subgroup
D of N × L. Thus we can assert in full generality that

every locally compact group is locally isomorphic to a direct product
of a compact subgroup and a Lie group.

A second theorem which likewise goes back to Iwasawa is the
following:
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Theorem 1.5. Let G be an almost connected locally compact group.
Then there exists a maximal compact subgroup C such that the fol-
lowing conditions hold:

(i) All maximal compact subgroups are conjugates.
(ii) There are one-parameter groups Xj : R → G, j = 1, . . . , n

such that(
(t1, . . . , tn), c

)
7→ X1(t1) · · ·Xn(tn)c : Rn × C → G

is a homeomorphism.

As a consequence we know that every locally compact group G is
homeomorphic to Rn ×C ×D for a compact subgroup C of G and
some discrete space D. The topologist draws the conclusion that
all local properties are entirely settled inside the compact subgroup
C. For instance for compact groups we know that C and C0×C/C0

are homeomorphic (see [1], p. 541, Corollary 10.37), and more than
that: if C ′0 denotes the algebraic commutator group of C0, then C ′0
is closed by Gotô’s Theorem (see [1], p. 440, Theorem 9.2) and C
is homeomorphic to C ′0 × C0/C

′
0 × C/C0. Now C ′0 is a semisim-

ple compact connected group whose structure is well understood
and which is arcwise and locally arcwise connected (see [1], p. 441
ff.); moreover, C0/C

′
0 is isomorphic to a compact connected abelian

subgroup of C0 by the Borel-Scheerer-Hofmann Splitting Theorem
(see [1], p. 469, Theorem 9.39). We can draw from Theorem 2 the
following conclusion:

Theorem 1.6. Every locally compact group is homeomorphic to a
product space Rn×S×A×T ×D where S is a semisimple compact
connected subgroup of G, where A is a compact connected abelian
subgroup of G, and T is a compact totally disconnected group and
D is a discrete space. The group S is arcwise connected and locally
connected.

We cannot assert that T is isomorphic to a subgroup of G; but by
Dong Hoon Lee’s Supplement Theorem there is a compact totally
disconnected subgroup of G from which T arises as a quotient (see
[1], p. 470, Theorem 9.41).
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2. Topological groups with Lie algebras

We have seen that it makes good sense to envision one main task
of a structure theory of locally compact groups the reduction to
the theory of finite dimensional Lie groups and to the theory of
compact groups. Thus one must first find a formulation for the
exact nature of the link between Lie group theory and topological
group theory on a general level. This calls for a precise explanation
which topological groups possess a Lie algebra and an exponential
function. The space of all one parameter subgroups X : R→ G en-
dowed with the topology of uniform convergence on compact sets
is denoted L(G). Accordingly L is a limit preserving functor from
the category of topological groups to the category of pointed topo-
logical spaces. For suitably good specimen of topological groups,
the assignment L has much better properties, as we shall outline in
the following definition. For a real number r we set square(r) = r2.

Definitions 2.1. Let G be a topological group. Then it is said
that G has a Lie algebra or, equivalently, that G is a topological
group with a Lie algebra if the following conditions hold:

(i) For all X,Y ∈ L(G), the following limits exist pointwise:

X + Y
def= limn→∞

((
1
n ·X

)(
1
n ·Y

))n
, (4)

[X,Y ] ◦ square def= limn→∞ comm
(

1
n ·X,

1
n ·Y

)n2

(5)

and X + Y, [X,Y ] ∈ L(G).
(ii) Addition (X,Y ) 7→ X+Y : L(G)×L(G)→ L(G) and bracket

multiplication (X,Y ) 7→ [X,Y ] : L(G) × L(G) → L(G) are
continuous.

(iii) With respect to scalar multiplication ·, addition + and
bracket multiplication [·, ·] the set L(G) is a real Lie algebra.

In particular, if G has a Lie algebra, then L(G) is a topological
Lie algebra. Note that a topological group G has a Lie algebra if
and only if G0 has a Lie algebra.

We denote the full subcategory of TOPGR consisting of all con-
nected topological groups by CONNGR, and the full subcategory of
TOPGR containing all topological groups having a Lie algebra by
LIEGR. The category of all topological Lie algebras with continuous
Lie algebra homomorphisms is called LIEALG.
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Theorem 2.2. The category LIEGR is closed in TOPGR under
the formation of all limits and passing to closed subgroups. It is
therefore a complete category. The functor L : LIEGR → LIEALG

is continuous, that is, preserves all limits.
Proof. See [3]. �

For the concept of weakly complete vector spaces see [1], p. 319
ff. One way of explaining a weakly complete vector space is declar-
ing a topological vector space as weakly complete if there is an
isomorphism of topological vector spaces to some product vector
space RX ; two equivalent ways of saying the same thing are firstly,
that a weakly complete vector space is a topological vector space
which is naturally isomorphic to the projective limit of all of its
finite dimensional quotients, and, secondly, that it is the dual of a
vector space in the topology of pointwise convergence.

Definition 2.3. A Lie algebra is said to be profinite dimensional
if it is a projective limit of finite dimensional real Lie algebras. The
underlying vector space of a profinite dimensional Lie algebra is a
weakly complete vector space.

Using the continuity of the functor L, it is not hard to see the
important fact that every topological group G which is the limit of
any projective system of finite dimensional real Lie groups has a Lie
algebra, and indeed a profinite dimensional one. As a consequence,
all locally compact groups have a Lie algebra.

3. Projective limits

Projective limits are clearly fundamental to the structure theory
of compact and locally compact groups. In the theory of locally
compact groups it has been customary to handle projective lim-
its of Lie groups. Usually one thinks that a topological group G
is a projective limit of Lie groups if it has arbitrarily small com-
pact normal subgroups N such that G/N is a finite dimensional
Lie group. Such a group is necessarily locally compact. At the root
of this opinion is the theory of compact groups, which reaches back
to the twenties of the last century (for a recent presentation see
[1]), to Iwasawa’s fundamental paper of 1949 [6], and to Yamabe’s
article [11] in which he showed that every locally compact group
G such that G/G0 is compact is a projective limit of Lie groups in
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this sense. This point of view was made popular through the enor-
mously influential book by Mongomery and Zippin [7]. However,
we shall deal with arbitrary projective systems such as

{fjk : Gk → Gj | j ≤ k, (j, k) ∈ J × J}
for a directed index set J and for topological groups groups Gj and
consider the limit

G = lim
j∈J

Gj = {(gj)j∈J ∈
∏
j∈J

Gj : (∀j ≤ k) gj = fjk(gk)}.

Any such limit is called the projective limit of the system. In our
context, the groups Gj will be finite dimensional Lie groups. But
before we turn to these groups, we record some fundamental facts
on projective limits of topological groups.

Theorem 3.1. (Fundamental Theorem on Projective Limits) Let
G = limj∈J Gj be a projective limit of a projective system

P = {fjk : Gk → Gj | (j, k) ∈ J × J, j ≤ k}
of topological groups and let Uj denote the filter of identity neigh-
borhoods of Gj, U the filter of identity neighborhoods of G, and N
the set {ker fj | j ∈ J}. Then

(i) U has a basis of identity neighborhoods {f−1
k (U) | k ∈

J, U ∈ Uk}.
(ii) N is a filter basis of closed normal subgroups converging to

1.
If M ⊇ N in N and if νMN : G/N → G/M is defined by

νMN (gN) = gM , then

{νMN : G/N → G/M | (M,N) ∈ N ×N , M ⊇ N}
is a projective system of topological groups, and there is a
unique isomorphism η : limN∈N G/N → G such that the
following diagram commutes with j ≤ k, M = ker fj, N =
ker fk, and with the morphisms f ′j : G/ ker fj → Gj induced
by the limit map fj : G→ Gj:

· · · G/M
νMN←−−−− G/N

νN←−−−− limP∈N (G)G/P

f ′j

y yf ′k yη
· · · Gj ←−−−−

fjk
Gk

fk←−−−− G.

The limit maps νN are quotient morphisms.
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(iii) Assume that all bonding maps fjk : Gj → Gk are quotient
morphisms and that all limit maps fj are surjective. Then
the limit maps fj : G→ Gj are quotient morphisms.

(iv) Set Hj = fj(G) for each j ∈ J and let f ′jk : Hk → Hj the
morphisms induced by fjk for j ≤ k. Then

{f ′jk : Hk → Hj | (j, k) ∈ J × J, j ≤ k}

is a projective system of topological groups and G = limj∈J Hj.
The limit maps f ′j : G→ Hj are corestrictions of the fj and
they have dense images.

(v) Assume that all Gj are complete, then so is G.
(vi) Let G be a complete topological group and N a filter ba-

sis of closed normal subgroups converging to the identity.
Then γG : G → GN , γ(g) = (gN)N∈N (G) is an isomor-
phism. That is, G ∼= limN∈N G/N .

Proof. A detailed proof is given in [3]. �

In Lie theory it is a known fact that closed subgroups of a Lie
group are Lie groups again. In order to deal with such a result for
projective limits of Lie groups, the following theorem is important.

Theorem 3.2. (The Closed Subgroup Theorem for Projective
Limits) Assume that N is a filterbasis of closed normal subgroups
of the complete topological group G and assume that limN = 1.
Let H be a closed subgroup of G. For N ∈ N set HN = HN . Then
the following conclusions hold:

(i) The isomorphism γG : G → limN∈N G/N maps H isomor-
phically onto limN∈N HN/N .

(ii) Under the present hypotheses,

H ∼= lim
N∈N

H/(H ∩N) ∼= lim
N∈N

HN/N ∼= lim
N∈N

HN/N.

(iii) The limit maps µM : limN∈N HN/N → HM/M , M ∈ N ,
are quotient morphisms.

(iv) The standard morphisms H/(H∩N)→ HN/N are isomor-
phisms of topological groups.

Proof. For the details of the proof we must refer to [3] or [4]. �
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In dealing with connected topological groups it is often useful to
shift between the categories TOPGR and CONNGR.

Lemma 3.3. If D : J → CONNGR is a diagram and limTOPGRD
denotes the limit of D in TOPGR, then (limTOPGRD)0 is the limit
of D in CONNGR with the restrictions of the limit maps giving the
limit cone. Thus

limCONNGRD = (limTOPGRD)0.

Proof. See [4]. �

Lemma 3.4. The functor G 7→ G0 which associates with a topolog-
ical group its identity component and with a morphism f : G → H
its restriction and corestriction f0 : G0 → H0 from the category of
topological groups to the category of connected topological groups
is right adjoint to the inclusion functor of the latter into the for-
mer category. It preserves limits, that is if D : J → TOPGR is a
diagram, and D0 : J → CONNGR is defined by D0(j) = D(j)0, then

limD0 = (limD)0.

Proof. We refer to [4]. �

4. The fundamental category of pro-Lie groups

The first definition of this principal section outlines the optimal
kind of representing a topological group as a projective limit of
simpler ones.

For a topological group G we let N (G) denote the set of all
normal subgroups N of G such that G/N is a finite dimensional
Lie group. Notice that G ∈ N (G), but {1} ∈ N (G) if and only if G
is a finite dimensional Lie group. If M,N ∈ N (G) then G/(M ∩N)
is injectively mapped into the Lie group G/M×G/N , but that does
not imply that G/(M ∩N) is a Lie group, and so we do not know
that M ∩ N ∈ N (G), that is that N (G) is a filter basis. We note
in passing that we do have this information if G is locally compact,
because then G/(M ∩N) is a locally compact group without small
subgroups.



A CATEGORY OF TOPOLOGICAL GROUPS SUITABLE . . . 661

The Definition of Pro-Lie Groups

Definition 4.1. A topological group G is said to to be a proto-Lie
group if N (G) is a filter basis which converges to 1. If, in addition,
G is a complete topological group, then G is called a pro-Lie group.
The full subcategory of the category TOPGR of topological groups
consisting of all pro-Lie groups and all morphisms of topological
groups between them is called proLIEGR.

A pro-Lie group is the most lucid and desirable type of projective
limit of Lie groups; indeed for any proto-Lie group the quotient
maps G/N → G/M , N ⊆ M in N (G) for a projective system of
finite dimensional Lie groups and

g 7→ (gN)N∈N (G) : G→ lim
N∈N (G)

G/N

is a dense embedding; if G is a pro-Lie group, then it is an isomor-
phism. The limit maps are none other than the quotient morphisms
G → G/N . By what we saw in Section 1, every almost connected
locally compact group is a pro-Lie group, and everly locally com-
pact group has an open subgroup with this property. In fact every
locally compact abelian group and every compact group is a pro-Lie
group.

However, it is anything but clear that a projective limit of an
arbitrary projective system

{fjk : Gk → Gj | j ≤ k, (j, k) ∈ J × J}

of finite dimensional Lie groups Gj is a pro-Lie group. Yet this
indeed the case:

The Fundamental Theorem on Pro-Lie Groups

Theorem 4.2.

(i) Every projective limit of finite dimensional Lie groups is a
pro-Lie group.

(ii) The category proLIEGR is closed in TOPGR under the for-
mation of all limits and under the passing to closed sub-
groups. In particular, it is a complete category containing
all finite dimensional Lie groups.
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(iii) Every quotient of a projective limit of finite dimensional Lie
groups is a proto-Lie group. The group G = R

2ℵ0 is a pro-
Lie group which has a totally disconnected subgroup N such
that G/N is incomplete and thus fails to be a pro-Lie group.

(iv) Every pro-Lie group G has a Lie algebra L(G) and the Lie
algebra functor L : proLIEGR→ LIEALG is continuous, that
is, preserves all limits.

(v) If f : G → H is an open proLIEGR morphism then
L(f) : L(G)→ L(H) is surjective and open.

Proof. The proofs are given in [3], [4], and [5]. �

The proof of (i) is harder than one thinks. If G = limj∈J Gj
is a projective limit of Lie groups, by the Fundamental Theorem
on Projective Limits 3.1(i), the group G is a projective limit of the
quotients G/ ker fj , where fj : G→ Gj denotes the limit morphism,
and there is an injective morphism G/ ker fj → Gj . But that does
not allow us to conclude right away that G/ ker fj is a Lie group.
Extra ideas are needed, and they come from Lie theory.

The basis of the proof of (ii) consists of the easier conclusion that
the category of all projective limits of Lie groups is complete, and
a harder proof, based on the Closed Subgroup Theorem 3.2, which
shows that a closed subgroup of a pro-Lie group is a pro-Lie group.

The proof that a quotient of a pro-Lie group is a proto-Lie group
is not exactly hard, but is not trivial either. The construction
of an example showing that a pro-Lie group may have incomplete
quotients is much harder and is based on new results on compact
abelian groups [5] which say that the exponential function of a
compact connected abelian group is open onto its image if and
only the group is locally connected. The image exp L(G) is the arc
component Ga of the identity. There are locally connected compact
connected abelian groups which fail to be arcwise connected (e.g.
the character group of the discrete group ZN ); if G is one of these
then L(G) provides us with an example of an abelian pro-Lie group
with a quotient Ga that cannot be complete.

Conclusion (iv) is comparatively easy, given all of the other in-
formation and enough category theoretical background [3].

Assertion (v) again is difficult to prove. It involves the lifting of
one-parameter subgroups which requires the Axiom of Choice.
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Condition (v) shows us that the one-parameter subgroups of a
pro-Lie group algebraically generate a dense subgroup of the iden-
tity component. A pro-Lie group G is totally disconnected iff
L(G) = {0} iff it is protodiscrete, i.e. has a filterbasis of open
normal subgroups converging to 1. For any pro-Lie group, G/G0 is
protodiscrete, but we do not know whether it has to be complete.
In the context of Condition (v) we recall that L preserves kernels
by (iv) since a kernel is an equalizer and thus a limit.

One reason why the Fundamental Theorem is so important for
the structure theory of projective limits of Lie groups is the follow-
ing proposition:

Proposition 4.3. If G is a pro-Lie group, then the topological
Lie algebra L(G) has a filter basis of ideals i of L(G) converging to
0 such that L(G)/i is finite dimensional that is, L(G) is profinite
dimensional.

Proof. See [3]. �

Thus the abelian group underlying L(G) is back in proLIEGR.
The duality theory of weakly complete vector spaces [1] applies to
L(G) and shows that the adjoint module L(G)′ is a vector space in
which every finite subset is contained in a finite dimensional L(G)-
submodule. This aspect of Lie theory has not even observed for
compact groups. When applied to this case this fact yields a new
approach to some of the basic theorems of the structure theory of
compact groups [1, 3].

5. A postscript

The theory of locally compact groups is a theory of the 20th
century. Since we are in the 21st century, one expects some words
of justification for an attempt to present it in a book now.

Firstly, a comparison of the situation of mathematics and the
mathematicians in 1901 and 2001 very quickly reveals significant
psychological and sociological differences. At the beginning of the
20th century mathematicians looked back on the enormous progress
mathematics made in the 19th century: the entire foundations of
analysis that we teach in our analysis courses for instance and
no less the roots of abstract algebra stem from the 19th century;
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at that time mathematicians were in a position to have a good com-
mand of everything that had been achieved and the best of them
had an excellent vision on what should be accomplished in the 20th
century; Hilbert’s famous address to the international congress of
1900 is a much studied example of a programmatic proclamation.
Accordingly, the active researchers looked forward. Our situation
is more complex: Naturally we are looking forward and know that
new challenges lie ahead. But we also know that an enormous
quantity of mathematical insights have been created in the twenti-
eth century—a quantity so enormous that no individual is capable
of a global overview. We had to become specialists, and even in
our own field it has become impossible to remain familiar with all
relevant aspects. As mathematics progresses, entire areas that were
active for decades fade out of focus in a natural way; teachers make
sure that dissertations are written in topical areas as one moves
with the tides. All of this is quite natural and commendable, but
on the risk side of this state of affairs we notice that information
well present and well understood tends to vanish from conscious
memory of living mathematicians. Information is stored in books
or other archival media, but information being present in the minds
of living individuals is another matter. I think that we have an ex-
tra obligation to keep alive some of the mathematics which was
mainstream mathematics in the 20th century but which may no
longer be quite in the focus of the forward looking. This obligation
distinguishes us from our colleagues one hundred years ago.

Secondly and specifically concerning the theory of locally com-
pact groups, ongoing research and a general interest represented
by internet inquiries indicate that information on compact and lo-
cally compact groups continues to be needed. After the friendly
reception which the book [1] on compact groups, and the books on
profinite groups [9] and [8] have received, one expects that there
is a demand for a comprehensive source on the structure of locally
compact groups. Such a source is surprisingly absent while sources
on harmonic analysis and representation theory of locally compact
groups abound.

Thirdly, the success of the theory of Lie groups and Lie algebras
and their representations continues unabated over some 120 years
and now takes a direction towards one aspect that was already So-
phus Lie’s original vision (too early in the 19th century to be really



A CATEGORY OF TOPOLOGICAL GROUPS SUITABLE . . . 665

successful at that time), namely infinite dimensional Lie theory. As
is usual in this area, there are many aspects to infinite dimensional
Lie theory. The theory of compact and locally compact groups of-
fers one of these aspects and indeed one which has not been very
overtly recognized. We hoped to demonstrate in [1] that infinite
dimensional Lie theory is an important aspect even in the theory
of compact groups. In this regard, the theory of locally compact
groups is indeed much in line with current trends.

On the balance, therefore, an attempt to complement a source
book on compact groups by one on locally compact groups appears
to be justified.
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