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DYNAMICS OF POLYNOMIAL MAPS 2 x 2 REAL
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ABSTRACT. We investigate the dynamics of iterated polyno-
mial maps of the form pc(Z) = anZ™ +---+a1Z + C, where
the aj are real numbers, and the variable Z and constant C'
are 2 X 2 real matrices. Under the action of these maps, every
orbit is confined to an invariant 3-dimensional subspace. For
any map pc, at most three of these invariant 3-spaces are dy-
namically distinct, with the exact number determined by the
eigenvalues of C'. It is well known that for polynomial maps of
the complex plane of degree at least two, every attracting cy-
cle must attract the orbit of a critical point. We demonstrate
that in the case of polynomial matrix maps, it is possible for
attracting cycles to exist that do not attract the orbit of any
critical point. In light of this fact, we discuss the potential
dynamical significance of a quadratic matrix Mandelbrot set.

1. INTRODUCTION

Iterated maps from R? to R? exhibit so many different behaviors
that few general conclusions can be made about the dynamics of
this class of maps. It is helpful to restrict to a narrower class of
maps that has enough structure to yield general results, but is still
broad enough to admit an interesting range of dynamical behaviors.
For example, the rigid structure of the algebra of complex numbers
yields many powerful and beautiful results about the dynamics of
polynomial maps of the complex plane that do not hold for more
general maps.
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Iterated maps from R* to R?* exhibit an even wider range of
behaviors than those in R2. We consider the more restricted class
of maps on R* defined by

pc(Z)=anZ" + ...+ a1 Z + C,

where the aj are real numbers and the variable Z and constant C
are elements of M, the set of 2 x 2 real matrices.

In this article, we investigate whether the algebraic properties of
matrix operations provide enough structure to make po a tractable
and dynamically interesting class of maps. We will show that the
structure of these maps is indeed quite rigid, making it possible for
us to establish the following results:

e When C is a multiple of the identity matrix I, we can com-
pletely describe the dynamics of p¢ in terms of the dynamics
of polynomial maps on the complex plane and the real line.

e When C' is not a multiple of the identity, there is a unique
invariant plane containing all multiples of the identity.

e Any 3-space containing this plane will be invariant, so every
orbit is confined to a 3-dimensional subspace of M.

e For C not a multiple of the identity, there are one, two, or
three dynamically distinct invariant 3-spaces for any map
pc depending on whether the eigenvalues of C' are complex,
real and identical, or real and distinct, respectively.

e For polynomial maps of the complex plane of degree at least
2, every attracting cycle must attract the orbit of a critical
point. However, in the case of polynomial matrix maps it
is possible for attracting cycles to exist that do not attract
a critical orbit.

e The quadratic matrix Mandelbrot set for the map go(Z) =
Z%+C is defined as the set of parameter values C such that
the orbit of the zero matrix Zy = 0 remains bounded under
iteration in go. Points C in the complement of this set
correspond to maps g¢ that admit no attracting cycles in
any invariant plane containing all multiples of the identity.

2. REDUCING THE DIMENSION OF THE PROBLEM

The Cayley-Hamilton theorem describes an important property
of matrix operations that will enable us to describe the dynamics of
po in the 4-dimensional matrix space in terms of the dynamics in a
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collection of 3-dimensional subspaces. The Cayley-Hamilton theo-
rem states that a matrix satisfies its own characteristic polynomial.
For Z € M, this implies that

7Z? = tr(2)Z — det(2)1.

Thus, Z? lies in the plane spanned by Z and the identity matrix
I. This fact together with the distributive property for matrix
multiplication tells us that for all positive integers k, Z* lies in the
span of Z and I.

Planes of matrices containing the line spanned by the identity
will play an important role in our discussion of the dynamics of pc.
For any matrix Z, let P(Z) denote the subspace spanned by Z and
1. This subspace is a plane unless Z is a multiple of the identity.

Proposition 1. If C is a multiple of the identity, P(Z) is invariant
for all Z.

Proof. Maps pc are composed of two transformations: a polynomial
in Z and a translation by a constant matrix C. The polynomial
transformation always leaves the image of Z in P(Z). If C is a
multiple of the identity, translation by C' will not remove the image
of Z from this subspace. O

We will see later that we can completely describe the dynamics in
any invariant subspace P(Z) in terms of the dynamics of polynomial
maps of the complex plane and the real line. Therefore, unless
otherwise stated, we assume that C' is not a multiple of the identity.

Proposition 2. If C is not a multiple of the identity, P(C) is the
unique invariant plane containing the line spanned by I.

Proof. We can see from the previous discussion that P(C) will be
invariant. If a matrix Z is not a linear combination of C' and I,
then translation by C will necessarily remove the image po(Z) out
of the plane spanned by Z and I. Thus, no other plane containing
all multiples of I can be invariant. (]

By these arguments, it is clear that the image pc(Z) of any
matrix Z lies in the span of I, C', and Z, and so we have the
following proposition.

Proposition 3. Any 3-space containing P(C) is invariant.
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This proposition points out an important property of maps pc;
no orbit explores more than one 3-dimensional subspace of the 4-
dimensional matrix space. The dynamics of pc in M always reduces
to the dynamics of po in a collection of 3-dimensional subspaces.
We will see later that there are no more than three dynamically
distinct invariant 3-spaces for any map pc.

3. DYNAMICS IN INVARIANT PLANES

The Jordan canonical form theorem reveals another important
property of matrix operations that will enable us to further simplify
our task. This theorem allows us to describe the dynamics within
any invariant plane in terms of the dynamics in one of three planes
of matrices in Jordan canonical form.

3.1. Jordan Canonical Planes

Let z, y, h, u, and v be real numbers. Every matrix A € M
that is not a multiple of the identity is similar to a unique matrix
having one of three Jordan canonical forms:

- O A O

depending on whether the eigenvalues of A are complex, real and
identical, or real and distinct, respectively [5]. Each of these three
Jordan canonical forms defines a plane in matrix space contain-
ing all multiples of the identity. We will refer to them as Jordan
canonical planes.

The following proposition is easily verified.

Proposition 4. For S an invertible 2 x 2 matriz, let Sy : M — M
be the associated similarity transformation: S.(A) = S~'AS. S,
is an algebra automorphism for M, i.e. it preserves I and com-
mutes with addition, multiplication, and multiplication by scalars.
In particular, S, maps P(A) to P(S«(A)). Furthermore, it maps
the dynamical system pc to pg, (), that is,

S pc(2)]8 = ps-105(S7Z5).

Corollary 5. Without loss of generality, we can assume that C
lies in one of the three Jordan canonical planes.
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3.2. Dynamics in Invariant Jordan Canonical Planes

In this section we explain the dynamics in each of the three po-
tential invariant Jordan canonical planes. In the Jordan canonical
plane with complex eigenvalues, the dynamics of pc is equivalent
to the dynamics of a related polynomial map in the complex plane.
In the Jordan canonical plane with distinct real eigenvalues, the
dynamics of p¢ is equivalent to the topological product of the dy-
namics of related polynomial maps on two copies of the real line. In
the Jordan canonical plane with identical real eigenvalues, the dy-
namics of po is dominated by the dynamics of a related polynomial
map on the real line.

3.2.1. The Jordan Canonical Plane with Complex
Eigenvalues

Consider the plane of matrices in Jordan form with complex
eigenvalues. Let ¢ be the canonical isomorphism between matrices
Z in this plane and points ¢(Z) in the complex plane given by

(5 2]) - oo

This isomorphism respects the matrix operations of addition and
multiplication so that ¢(pc(Z)) = pyc)(#(Z)). This means that
the dynamics of pc in any invariant plane of matrices with complex
eigenvalues is equivalent to the dynamics of pg(c) in the complex
plane.

3.2.2. The Jordan Canonical Plane with Distinct Real
Eigenvalues

Consider the plane of matrices in Jordan form with distinct real
eigenvalues. Suppose C has diagonal entries ¢, and ¢,. For any
matrix Z in this plane with diagonal entries v and v,

po(Z) = [pc“o(u) chO(v) }

The dynamics in each coordinate is independent of the other. There-
fore the dynamics in any invariant plane with distinct real eigenval-
ues is equivalent to the product space of the dynamics of p., and
De, on their respective real lines.
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3.2.3. The Jordan Canonical Plane with Identical Real
Eigenvalues

Consider the plane of matrices in Jordan form with identical real
eigenvalues. Let Z; have diagonal entries x; and off-diagonal entry
h;. The dynamics of the x coordinates of an orbit in this plane is
independent of the values of the h coordinates. Moreover, the be-
havior of the x coordinates of an orbit dominates the behavior of the
h coordinates in a sense made precise by the following proposition.

Proposition 6. Let Z; have diagonal entries x; and off-diagonal
entry h;, and let C have diagonal entries ¢, and off-diagonal entry
cn. If the map pe, induces an attracting (repelling) n-cycle on the
real line, then the map pc induces an n-cycle that attracts (repels)
nearby orbits in the Jordan canonical plane with identical real eigen-
values. If the x coordinates of an orbit in this plane grow without
bound, the h coordinates of the orbit will also be unbounded.

Proof. The polynomial map pc sends a point Z; in this Jordan
canonical plane to the point

o N | T hign | | pe (i) pe, (@i)hi e

where p’ is the derivative with respect to z. This coordinate form
of the map can be established by inductively deriving the form of
zk.

Suppose that the = coordinates of a particular orbit are on an
attracting n-cycle. The definition of an attracting cycle and the
associated theorems presented in [2] apply to this situation, so

(pe,) (@) = Ipe, (@1) - pr, (22) - Pl ()| < 1.

The expression for each iterate h;11 is linear in h; with slope given
by pl. (x;). Composing this expression n times will give us a linear
function with slope equal to the product of the slopes of each linear
function around the n-cycle. Since this product is less than 1, the
composed linear function has an attracting fixed point correspond-
ing to the unique attracting n-cycle which lies over the x coordinate
cycle.

Similarly, a repelling cycle in the z coordinates of an orbit will
induce a repelling cycle in the h coordinates.
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If the x coordinates of an orbit grow without bound, the polyno-
mial p;, (x;) yields values with arbitrarily large magnitude. Since
the h coordinate of a point on the orbit is multiplied by this quantity
at each iteration, the h coordinates of the orbit also grow without
bound. O

3.2.4. References Discussing Dynamics in Isomorphic
Planes

There are many sources describing details of the dynamics of
polynomial maps of the complex plane and the real line. A good
starting reference for this information is [2]. All three of the Jor-
dan canonical planes have isomorphic incarnations as “cycle planes”
and as graphic representations of “binary number systems”. Refer-
ences discussing the dynamics of polynomial maps in these related
systems include [1, 3, 4, 6, 7).

4. DYNAMICALLY DISTINCT INVARIANT 3-SPACES

In this section, we use similarity transformations to demonstrate
the following proposition.

Proposition 7. There are at most three dynamically distinct in-
variant 3-dimensional subspaces for any map pc.

Proof. There is a standard inner product on M that establishes
an isometry between M and R* with the Euclidean inner product.
If A and B are matrices in M, $tr(ABT) is the expression for the
square of this inner product [5]. (The scalar factor of  is chosen
so that the identity matrix I has unit norm.)

We define the matrices H, G, and D as follows:

0 1 01 1 0
sl o] e[ el ]
Together with the identity matrix I, these matrices form an or-
thonormal basis for M with respect to the inner product defined
above. The matrices =H are unique in that they are the only two
normal' matrices in M with eigenvalues +i. A calculation shows
that a matrix with unit norm is orthogonal to both H and I if and
only if it is a normal matrix with eigenvalues £1. Consequently, any
3-dimensional subspace containing all multiples of I must contain
a normal matrix with eigenvalues +1.

LA matrix Z is normal if 2727 = 227
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Let W be an invariant 3-dimensional subspace for a map po. We
first show that we may assume without loss of generality that W
contains the basis elements I and D.

Normal matrices with distinct real eigenvalues are orthogonally
diagonalizable. Therefore, there exists some orthogonal similarity
transformation @, taking any given normal matrix with eigenvalues
+1 to the diagonal matrix D. Since every 3-dimensional subspace
containing all multiples of I contains a normal matrix with eigen-
values 41, there is a map @, that takes a 3-dimensional subspace
invariant under the action of pc to an isometric and dynamically
equivalent 3-space containing I and D that is invariant under the
action of pg-10¢-

Now, given I and D as two basis elements for an invariant 3-
space W, the third orthonormal basis element B must be some
linear combination of G and H, having the form

. 0 y+z
B_{—y—i—z 0 }

The eigenvalues of this basis element will either be complex, real
and identical, or real and distinct depending on whether y is greater
than z, the two variables are equal, or z is greater than y, respec-
tively.

Let S be an invertible diagonal matrix, so that it has the form

S:[m—i—w 0 }

0 Tr—w

where © # +w. The associated similarity transformation S, pre-
serves the plane of matrices spanned by I and D, possibly trans-
forming the basis element B.

e If B has complex eigenvalues, it is always possible to find a
transformation S, of this form that takes B to some multi-
ple of H.

e If B has distinct real eigenvalues, it is possible to find a
transformation S, taking B to some multiple of G.

e If B has identical real eigenvalues, then B has a single non-
zero entry in one of the two off-diagonal positions. The two
possible 3-spaces occurring in this case are isometric and
dynamically equivalent via conjugation by the matrix H.
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Since similarity transformations preserve the dynamics of poly-
nomial maps, we conclude that are at most three dynamically dis-
tinct invariant 3-spaces for any map po. We can describe the dy-
namics in any invariant 3-space in terms of the dynamics of an
appropriate map acting on either the 3-space spanned by I, D, and
H, the 3-space spanned by I, D, and G, or the 3-space of upper
triangular matrices. O

If C' has complex eigenvalues, only one of these 3-spaces contains
the invariant plane P(C'), and so there is only one dynamically
distinct invariant 3-space. If C has identical real eigenvalues, there
will be exactly two dynamically distinct invariant 3-spaces. If C
has distinct real eigenvalues, all three types of dynamically distinct
3-spaces occur as invariant sets.

5. CRITICAL ORBITS AND ATTRACTING CYCLES

Let us consider whether polynomial matrix maps pc have one of
the most well-known properties of polynomial maps of the Riemann
sphere. For polynomial maps of the Riemann sphere of degree at
least 2, every attracting cycle must attract the orbit of a critical
point [2]. This limits the number of attracting cycles that can exist
to the number of critical points of pc. To determine whether an
analogous result holds for polynomial matrix maps we must first
find a dynamically appropriate definition of critical point.

We define a critical point of po to be any matrix A at which
all partial derivatives within the plane P(Z) vanish, for some ma-
trix Z not a multiple of the identity. Note that the set of critical
points of pc does not depend on the value of the constant C' since it
represents a translation in matrix space. Our definition guarantees
that the restriction of the map pc to any potential invariant plane
will be equipped with the same set of critical points as the appro-
priate corresponding 2-dimensional dynamical system. Requiring
instead that all partials in the 4-dimensional matrix space vanish
can exclude points that are in fact critical to the dynamics.

5.1. Renegade Attracting Cycles Induced by Quadratic
Matrix Maps

Let us examine whether every attracting cycle attracts the or-
bit of a critical point in the case of the family of quadratic maps
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qc(Z) = Z? + C. For this family, Z = 0 is the only critical point
coming from planes with complex or distinct real eigenvalues. In
planes with identical real eigenvalues, the set of critical points con-
sists of all trace zero matrices. Note that the square of any of the
critical points is the zero matrix. Thus, we may simply consider
whether the orbit of Zy = 0 finds all attracting cycles induced by
gc. We further note that the orbit of Zy = 0 must remain in the in-
variant plane P(C). Therefore, if an attracting cycle exists outside
of the plane P(C), the critical orbit could not possibly find it.

We test our conjecture that every attracting cycle attracts the
orbit of Zy = 0 experimentally. We choose values of C' from the
Jordan canonical plane with complex eigenvalues. As we know from
our previous discussion, the dynamics in the invariant plane P(C)
is equivalent to the dynamics of go in the complex plane. For C
values in this plane, there is only one dynamically distinct invariant
3-space. Let D be the diagonal matrix with entries 1 and -1 as in
section 4. Without loss of generality, we may restrict our attention
to the dynamics of g¢ in the invariant 3-space containing the Jordan
canonical plane with complex eigenvalues and the matrix D. For
C not a multiple of the identity, the plane P(D) is not invariant
under the action of po, and so it will be interesting to see how
orbits originating in this plane behave.

We will color each point in the plane P(D) to indicate the ulti-
mate fate of the orbit beginning at that point under the repeated
action of pc. Black indicates that some matrix in the first 500
iterations has a determinant? exceeding 4. White indicates that
the orbit comes extremely close to P(C) after 500 iterations and
suggests that the orbit may approach the attracting cycle in the
invariant plane. Grey indicates that the orbit does neither of these,
suggesting that it may approach a renegade attracting cycle outside
of the invariant plane. Thus, the appearance of grey in any of the
images suggests that our conjecture is likely to be false.

2Note that the implied escape criterion does not actually work for all orbits,
since it is possible for a matrix with determinant larger than 4 to have an image
under gc with determinant less than 4. We therefore accept the possibility that
some points colored black should perhaps be assigned another color instead,
though this difficulty does not seem to occur in the images shown.
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The Mandelbrot set for the map of the complex plane ¢o(Z) =
Z% + C gives a convenient visual summary of the periods of at-
tracting cycles corresponding to various values of the parameter C'
(see figure 1). For example, C values in the main cardioid corre-
spond to maps go with an attracting fixed point, points in the large
circle to the left of this region correspond to maps with an attract-
ing 2-cycle, points in the next circle to the left yield an attracting
4-cycle. This period doubling continues infinitely, limiting on the
Feigenbaum value of C' on the real axis before giving way to regions
for attracting cycles of all other periods. The complement of the
Mandelbrot set (all of the points not colored black in figure 1) con-
sists of the set of C' values for which there is no attracting cycle in
the complex plane under the action of ¢¢ [2].

FiGUurRE 1. The complex quadratic Mandelbrot set.

When we choose C' values corresponding to the main cardioid
of the complex Mandelbrot set for our experiment, the computer
algorithm colors no points grey (see figure 2). However, as we
choose C values from successive circles along the real axis, a period-
doubling, hyperbolic checkerboard pattern with grey and white re-
gions emerges. The checkerboard effect is more pronounced for
values of C near (but not on) the real axis and degenerates for
values of C that are farther from this axis.
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C=-7T+ .01 C=-774.01¢ C=-1+.22%
P(C) has attracting P(C) has attracting P (C') has attracting
fixed point 2-cycle 2-cycle

ool

C=-126+.001¢ C=-1371+.0001z C = —1.399+4.0001¢
P(C) has attracting P(C) has attracting P (C') has attracting
4-cycle 8-cycle 16-cycle

FIGURE 2. Hyperbolic checkerboard patterns sug-
gest the existence of renegade attracting cycles.

5.2. Renegade Attracting Cycles

We can understand the curious hyperbolic checkerboard patterns
described in the previous section by first considering what happens
when C' is a multiple of I and every plane P(Z) is invariant. Sup-
pose that C' = ¢l is chosen so that ¢. induces an attracting 2-cycle
on the real line. The dynamics in planes of matrices with distinct
real eigenvalues is equivalent to the topological product of the dy-
namics of g, on two copies of the real line. Suppose that each of
the two independent variables is on the 2-cycle. The two variables
may execute the 2-cycle in phase, resulting in a 2-cycle on the axis
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spanned by the identity, or they may be out of phase, resulting in
a 2-cycle off this line (see figure 3).

N ~o Multiples of | axis

e R it i TR b peE it Rk SRR BT Clthose
initial conditions for which both variables approach their attracting
cycles in phase. The grey regions in the hyperbolic checkerboard
consist of those initial conditions for which the two variables ap-
proach their attracting cycles with different phases. The boundaries
of the regions are the topological product of the set of repelling pe-
riodic points and all their pre-images under ¢. on two copies of the
real line.

When C' has complex eigenvalues and is no longer a multiple of
the identity, exactly one renegade 2-cycle survives (see figure 4).
When C' is not a multiple of the identity, a calculation shows that
the renegade 2-cycle is unique if it exists. While C lies inside the
circle to the left of the cardioid in the complex Mandelbrot set (pro-
ducing an attracting 2-cycle in the invariant plane), the renegade
2-cycle exists and is attracting. The correspondence does not go
the other way, however; there are C values that produce an attract-
ing renegade 2-cycle that do not produce any attracting cycles in
the invariant plane.

By an argument similar to the one given above for 2-cycles, we
know that if C' = ¢l and ¢, induces an attracting n-cycle on the real
axis, then every plane P(Z) with distinct, real eigenvalues contains
n n-cycles that attract nearby orbits within the plane.

Conjecture 8. Let H be defined as in the proof of Proposition
7, let C = cl 4+ eH, and suppose that q. induces an attracting n-
cycle on the real axis. For e sufficiently small, g admits precisely n
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Dy <

7/

N

@p=—

FIiGURE 4. The only remaining renegade attract-
ing 2-cycle. In this figure, the axis consisting of
multiples of I extends orthogonally out of the page
through the center of the diagram. The horizontal
line is the invariant plane P(C') and the vertical line
is the plane P(D).

attracting n-cycles — one in the invariant plane and n—1 renegade
attracting cycles.

One piece of evidence for this conjecture is that computer-gener-
ated hyperbolic checkerboard patterns persist even under signifi-
cant increase in the number of iterations.

5.3. The Quadratic Matrix Mandelbrot Set

Let us define the quadratic matrix Mandelbrot set for the map
qc(Z) = Z* + C to be the set of parameter values C' such that
the orbit of Zy = 0 remains bounded under iteration in go. This
orbit must remain in the invariant subspace P(C). We recall that
for the quadratic map ¢¢ acting on the complex plane or on the
real line that when the orbit of Zy = 0 is unbounded, no attract-
ing cycle can exist. This fact together with our earlier discussion
about the dynamics in each of the 3 types of invariant planes tells
us that parameters C' in the complement of the quadratic matrix
Mandelbrot set admit no attracting cycle in any invariant plane of
the form P(Z).

6. CONCLUSION

The structure provided by 2 x 2 matrix operations turns out
to be quite rigid. We have seen that for any polynomial matrix
map pc we can explain the dynamics of the entire 4-dimensional



DYNAMICS OF POLYNOMIAL MAPS 2 x 2 REAL MATRICES T

space in terms of the dynamics of po in at most three 3-dimensional
subspaces. The interaction between the easily understood dynamics
of the invariant plane P(C') and the rest of a given invariant 3-
space is intricate, and the examples we have shown reveal intriguing
relationships that merit additional study.

The quadratic matrix Mandelbrot set does not give us nearly
as much information about the dynamics of go as the complex
Mandelbrot set does, even though it does allow us to determine
when no attracting cycle exists in the invariant plane. We have
seen that it is possible for renegade attracting cycles to exist when
there is no attracting cycle in the invariant plane, and so there is
no direct correspondence between attracting cycles in the invariant
plane and renegade attracting cycles.

It is possible that there is nevertheless some relationship between
attracting cycles within the invariant plane and renegade attracting
cycles. We saw that the existence of an attracting 2-cycle implies
the existence of a renegade attracting 2-cycle even though the con-
verse does not hold. If some relationship between renegade cycles
and invariant plane cycles does exist, the information encoded in
the quadratic matrix Mandelbrot set may turn out to have broader
dynamical significance after all. Without any such relationship be-
tween the attracting cycles, another method would be required to
determine which parameters C' admit attracting cycles under the
action of q¢.

This discussion leaves a number of interesting open questions
about the dynamics of polynomial matrix maps.

e Are all renegade cycles produced out of planes with distinct
real eigenvalues in the manner of the 2-cycles presented in
section 5.2 or can renegade cycles emerge spontaneously
when C' is nowhere near the real axis?

e Are renegade cycles possible in the 3-space that includes
the Jordan canonical plane with complex eigenvalues if C
has identical real eigenvalues or distinct real eigenvalues?

e For the family of quadratic maps g¢, do all C' values with
complex eigenvalues that admit an attracting n-cycle in
the invariant plane also admit n — 1 renegade attracting
n-cycles, as we know to be the case for 2-cycles?
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e Is there a convenient way of characterizing those C' values
that permit at least one attracting cycle to exist when there
is no attracting cycle in the invariant plane?

e How do renegade cycles behave in the other 2 potential
invariant 3-spaces? (Both of these 3-spaces contain planes
with distinct, real eigenvalues. We know that whenever
C = cl and ¢, induces an n-cycle on the real line, these
planes will contain n n-cycles. Do some of these persist
as renegade cycles? How does the stability of these cycles
compare with the stability of cycles in the invariant plane?)
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