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INDEPENDENCE

NIEL SHELL∗

Abstract. We survey the very few known results on inde-
pendent sets of topologies on topological spaces. We introduce
the notion of multiplicatively independent ring topologies on
a field.

The purpose of the first section of this note is to present a topo-
logical notion which

• has been stated in the literature in general topological terms
over twenty years ago,

• has an easy intuitive interpretation,
• has an application in algebra dating back to ancient times,

and yet fails to attract the attention of general topologists. We
attempt to generate interest by “surveying” the very few known
results and asking some natural questions. In the second section,
we consider a related notion for fields with a ring topology.

1. Independence In Topological Spaces

A collection T of topologies on a set X is independent if, for
each nonempty finite subset F of T and each choice of nonempty
sets UT ∈ T , for T ∈ F, ∩{UT : T ∈ F} 6= ∅. One readily checks
that this is equivalent to the Approximation Theorem: Given xi,
1 ≤ i ≤ n, in X and Ti-neighborhoods Vi of xi, where Ti, 1 ≤ i ≤ n,
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are distinct topologies in T, there exists x ∈ X such that x ∈ Vi for
all i. Another condition clearly equivalent to independence of T is
that the diagonal is dense in the product

∏
T ∈T(X, T ).

The natural interpretation is that a pair of topologies form an
independent set if they are “very different” in the sense that every
neighborhood of any point in one topology is dense in the other
topology: all points collected into a small region in one topology
are spread throughout the space in the other topology.

The algebraic application mentioned is the Chinese Remainder
Theorem: Given integers a1, . . . , an and pairwise relatively prime
integersm1, . . . ,mn, there exists an integer a such that a ≡ ai (mi).
We will rephrase this statement to show that it is a special
case of the Approximation Theorem. Observe that, by factoring
mi =

∏
p
ki j
i j into powers of primes and replacing the congruence

a ≡ ai (mi) by the congruences a ≡ ai (pki ji j ) for all j, we may
assume in the statement of the Remainder Theorem that mi = pkii ,
with the pi all distinct.

For each prime p, a metric is defined on Z by the conditions

dp(x, y) = |x− y|p, where |pna|p = p−n, when p |/a.

This may be extended to a metric, with associated topology Tp
called the p-adic topology, on Q by letting |pn(a/b)|p = p−n, when
p |/a and p |/b. We let Vi = {a ∈ Z : |a−ai|pi ≤ p

−ki
i }. For a fixed i, as

ki varies over the positive integers, the sets Vi vary over a base at ai
for Tpi . In this notation, the Remainder Theorem becomes exactly
the Approximation Theorem for the set of all p-adic topologies.

By a valuation we mean a Krull valuation to an ordered group
whose operation we write multiplicatively. By an absolute value we
mean a rank one valuation or a power of the usual absolute value
on a subfield of the complex numbers.

The generalization of this Approximation Theorem form of the
Remainder Theorem to any set of distinct topologies induced by
absolute values on a field is due to Artin and Whaples [1]. The
term independence is due to Shanks who first considered the no-
tion as applying just to ring topologies on a field. An unpublished
result of Shanks, quoted as Theorem 3 in [11], is the first theorem
about independence stated in terms of topologies: A topology on a
field induced by a valuation and a field topology not finer than the
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valuation induced topology are independent. Weber [9] extended
Shanks’ result to say that a finite number of valuation topologies
and a field topology not finer than any of them form an independent
set.

The only discussion in the literature of independence for topo-
logical spaces without an algebraic structure is in the form of brief
introductory comments (which precede a deeper analysis of inde-
pendent ring topologies) by Weber in [9] and [10]. Statements of
some of these basic properties of independence also appear in [4,
Theorems 3.4.1 and 3.4.2]. Some elementary results which include
those made by Weber are described below.

We let 0 and 1 denote the trivial and discrete topologies, re-
spectively, on any set. All spaces are assumed to have more than
one point. For a set T of topologies on a set X, ∨T denotes the
topology generated by ∪T. The cardinality of a set A is denoted
by #A.

When will a collection be independent?
Clearly, for any topology T , {0, T } is independent and, for T 6=

0, {1, T } is not independent. If T is an independent collection and
for each T ∈ T, ST is a topology weaker than T , then {ST : T ∈ T}
is an independent collection. If Ti is an independent collection of
topologies on a set X for each i ∈ I and the collections Ti are
disjoint, then ∪i∈ITi is independent if and only if {∨Ti : i ∈ I} is
independent.

Let T be a collection of topologies on X; let Y be a subset of
X; and let TY = {T |Y : T ∈ T}: (1) If T is independent and
Y ∈ T \{∅} for some T ∈ T, then TY is independent. (2) If TY

is independent and Y is dense with respect to each T ∈ T, then
T is independent. Consequently, if Y is cofinite and each T ∈ T
satisfies the T1 separation axiom and has no isolated points, then
T is independent if and only if TY is independent.

What can be asserted about an independent collection T?
If S ∈ T is T1, then, for T ∈ T\{S}, T has no isolated points.

(Proof: (C{x}) ∩ {x} = ∅ would contradict independence.)
If either (1) some topology in T is T1 and has no isolated points

or (2) two distinct topologies in T are T1, then ∨T 6= 1. (Proof:
From the paragraph above, (2) implies (1). If T1 ∈ T is T1 and
has no isolated points and ∩ni=1Ui = {x}, where Ui ∈ Ti ∈ T, then
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C{x} ∩ (∩ni=1Ui) = ∅, which may be written as

(C{x} ∩ U1) ∩ (∩ni=2Ui) = ∅.

Independence implies C{x} ∩ U1 = ∅, so U1 = {x}, contradicting
the hypothesis.)

If T1, T2 ∈ T and T ⊂ T1 ∩T2, then there are no pairs of disjoint
nonempty T -open sets. Hausdorff spaces and nontrivial regular
(not necessarily T1) spaces have pairs of disjoint nonempty open
sets. Example: T in the last statement need not be 0. Let X be
a set of cardinality greater than an infinite cardinal α; let Tα be
the topology whose nonempty open sets are the complements of
sets of cardinality at most α; and let T consist of all topologies
weaker than or equal to Tα. The cofinite topology T is in T, and
T ⊂ T ∩ Tα.

A useful consequence of independence is the following: If each
topology T ∈ T arises from a uniformity UT , then the completion
of X with respect to the least uniformity finer than each UT (which
has ∨T as its associated topology) is the product of the completions
of X with respect to each UT . (Proof: The natural embedding into
the diagonal takes X onto a dense subset of the product of the
completions.)

Question 1. The p-adic topologies on Z constitute an infinite
independent collection of topologies with a rich structure: they
are homogeneous totally bounded metric spaces. It is also known
([3]; see also [8]) that on an algebraically closed field K such that
(#K)ℵ0 = #K (for example, the complex field) there is an indepen-
dent collection consisting of 2#K topologies induced by complete
absolute values. Thus, given a cardinal α, there are independent
collections of cardinality greater than α consisting of homogeneous
complete metric spaces.

Do there exist independent collections of arbitrary cardinality
consisting of compact Hausdorff spaces?

Question 2. An independent collection of topologies on a set X
will be called maximal if it is maximal (under set containment)
among independent collections of proper (i.e., nontrivial, nondis-
crete) topologies on X. By Zorn’s Lemma, each independent col-
lection of proper topologies is contained in a maximal independent
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collection. Let I(α) denote the least upper bound of the cardi-
nalities of independent collections of proper topologies on a set of
cardinality α.
I(2) = 1 and there are two maximal independent collections,

each having a single member; the topologies involved are homeo-
morphic. On the set X = {a, b, c}, a direct computation yields
I(3) = 6. Among the maximal independent collections are the fol-
lowing, listed (omitting ∅ and X in each topology) with commas
separating sets in a topology and slashes separating topologies:

{a/ab/ac/a, ab/a, ac/a, ab, ac} {a, bc/ab}.
For which α do all maximal collections of independent topologies

on a set of cardinality α have cardinality I(α)? For a given α what
is I(α)?
Question 3. Let S be a set of topologies on X, for example, all
nontrivial topologies or all Hausdorff topologies on X; let T be a
topology on X; and let T(S, T ) be the set of topologies in S such
that {S, T } is independent.

For S being the set of all Hausdorff topologies, when is T(S, T )
empty? Equivalently: when does the collection consisting of the
empty set and all T -dense subsets not contain a Hausdorff topol-
ogy? Restricting consideration to Hausdorff topologies eliminates
the possibility of including very weak topologies which do not con-
stitute a substantive solution to the problem.
Example 1. We construct a Hausdorff topology on [0, 1] which
is independent of the usual topology. To begin, let (X, T ) be an
arbitrary topological space, and let D be the collection consisting
of the empty set and all T -dense subsets of X. Let E be a pairwise
disjoint subcollection of D\{∅}. If, for each E ∈ E , TE is a topology
on E such that TE ⊂ D, then

S = {X} ∪ ({∪E∈EUE : UE ∈ TE for all E ∈ E})
is a topology and S ⊂ D. Now let X = [0, 1] with the usual
topology, and let E consist of the equivalence classes of the relation
x ≡ y if x−y ∈ Q. The equivalence class x̂ of x is (x+Q)∩[0, 1]. Let
A ⊂ [0, 1] consist of a single representative from each equivalence
class, with 0 being the representative of Q ∩ [0, 1]. From Section
1, we see that, for any prime p, Tp|Q∩(0,1), the p-adic topology
restricted to the rationals in the open interval (0, 1), is independent
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of the usual topology on Q ∩ (0, 1). Since (0, 1) is dense in [0, 1)
and [0, 1], Tp|Q∩[0,1) ⊂ D and Tp|Q∩[0,1] ⊂ D. For x ∈ A\{0} we
let ϕx : [0, 1) −→ [0, 1) be defined by ϕx(t) = t + x if t < 1 − x;
ϕx(t) = t + x − 1 if 1 − x ≤ t < 1. Then ϕx|Q∩[0,1) is a bijection
onto

(x+ Q) ∩ [0, 1) = (x+ Q) ∩ [0, 1] = x̂,

and the restriction of ϕx carries sets in D into D. We let T0̂ =
Tp|Q ∩ [0, 1] and, for x ∈ A\{0}, we let Tx̂={ϕx(U) :U ∈Tp|Q∩[0,1)}.
We still obtain a topology independent of the usual topology if we
choose a prime p(x) for each x ∈ A instead of fixing p at the outset.

This example is not entirely satisfying, in the sense that it re-
lies heavily on algebra, while our question is whether or not inde-
pendence is (pardon the pun and vague language) independent of
algebra.

Question 4. Call two maximal independent collections on a set X
equivalent if there is a bijection Φ between them such that (X, T )
and (X,Φ(T )) are always homeomorphic. Call two maximal inde-
pendent families on a set X strongly equivalent if there is a bijection
f of X onto itself and a bijection Φ between the two independent
collections such that f : (X, T ) −→ (X,Φ(T )) is always a homeo-
morphism.

For any point x in any set X, the collection Tx consisting of all
nontrivial topologies T on X for which x belongs to every nonempty
set in T is readily seen to be a maximal independent collection. The
families Tx for various choices of x are strongly equivalent.

How many inequivalent (strongly inequivalent) maximal indepen-
dent collections are there on a set of a given cardinality?

2. Independence In Fields With a Ring Topology

Let E* denote the nonzero elements of a subset E of a field.
A topology on a ring is called a ring topology if subtraction and
multiplication are continuous. A ring topology on a field (or, in
Theorem 1, a division ring) K is called a field topology if inversion
on K* is continuous. For a ring topology T , let B(T ) denote the
neighborhood filter at zero.
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On a field, the only ring topology which is not Hausdorff is 0. We
denote by S∧T (S+T ) the finest ring (additive group) topology on
a field which is weaker than ring topologies S and T . It is possible
that S ∧ T , S + T and S ∩ T all be distinct (see [7]). The set
{U + V : U ∈ B(S), V ∈ B(T )} is a neighborhood base at zero
for S + T . We interpret S ∧ T = 0 as meaning that S and T are
quite different in the sense that S ∩ T is too small to contain a
Hausdorff ring topology. A subset B of a field with a ring topology
T is bounded if, for all U ∈ B(T ), there exists V ∈ B(T ) such that
V B ⊂ U .

In [5] we introduced a notion of two ring topologies S and T
“being different” which is closely related to the condition S∨T = 1.
We say that S is T -big if for, for every T -bounded set B, there
exists an S-neighborhood of zero, U , such that B ∩ U* = ∅. If
S ∨T = 1, then S is T -big, and the converse is true if S and T are
first countable or if T is locally bounded.

In Section 1 we noted three equivalent formulations of indepen-
dence. For a field with a ring topology we give additional equivalent
statements that have elementary proofs. Some of these equivalences
and their proofs appear in [9] and [10] (a portion of these were
known earlier). For convenience, we give a complete proof.

Theorem 1. Let T = {S, T } be a set of two nondiscrete, Hausdorff
ring topologies on a field (or, more generally, a division ring) K.
The following are equivalent:

(1) T is independent.
(1′) TK* (defined as in Section 1) is independent.
(2) 1 ∈ U + V for all (U, V ) ∈ B(S)× B(T ).
(3) U + V = K for all (U, V ) ∈ B(S)× B(T ) (i.e., S + T = 0).
(4) U ∩ (1 + V ) 6= ∅ for all (U, V ) ∈ B(S)× B(T ).
(5) 0 ∈ S + T for all (S, T ) ∈ (S\{∅})× (T \{∅}).
(6) S + T = K for all (S, T ) ∈ (S\{∅})× (T \{∅}).

If at least one of the topologies S and T is a field topology, then
the above statements are equivalent to each of the following three
statements:

(3′) (1 + U)*(1 + V )* = K* for all (U, V ) ∈ B(S)× B(T ).
(5′) 1 ∈ ST for all (S, T ) ∈ (S|K*\{∅})× (T |K*\{∅}).
(6′) ST = K* for all (S, T ) ∈ (S|K*\{∅})× (T |K*\{∅}).
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Statements (7), (8) and (8′) below are equivalent to each other
and, if at least one of S and T is a field topology, are implied by
all of the statements above.

(7) 1 ∈ UV for all (U, V ) ∈ B(S)× B(T ).
(8) UV = K for all (U, V ) ∈ B(S)× B(T ).
(8′) U*V * = K* for all (U, V ) ∈ B(S)× B(T ).

Proof. The equivalence of (1) and (1′) was observed in Section 1.
The proof by Weber in [9], repeated below, of the equivalence of

(1), (3) and (6) uses only these properties: addition is continuous
with respect to both S and T ; negation is continuous with respect
to at least one these topologies; K is a (not necessarily commuta-
tive) group under addition. Thus, the same proof applies to the
multiplicative group K*, under the additional hypothesis that S or
T be a field topology, and establishes that (1′), (3′) and (6′) are
equivalent.

(1) =⇒ (6): If S ∈ S\{∅}, T ∈ T \{∅} and x ∈ K, then (from
the continuity of negation with respect to T ) x − T ∈ T \{∅};
S ∩ (x − T ) 6= ∅; s = x − t for some s ∈ S and t ∈ T ; and
x = s+ t ∈ S + T .

(6) =⇒ (3), since every neighborhood contains a nonempty open
set in the topology with respect to which it is a neighborhood.

(3) =⇒ (1): Suppose s ∈ S ∈ S\{∅} and t ∈ T ∈ T \{∅}. Then
−s+S ∈ B(S) and (again using only the continuity of negation with
respect to T ) −T+t ∈ B(T ). Therefore, −s+t ∈ (−s+S)+(−T+t)
and −s + t = −s + s′ − t′ + t, for some s′ ∈ S and t′ ∈ T , and,
consequently, s′ = t′ ∈ S ∩ T .

(2) =⇒ (3): If U ∈ B(S) and V ∈ B(T ) and x ∈ K*, then
1 ∈ x−1U + x−1V , so that x ∈ U + V . Certainly also 0 ∈ U + V .

[(1), and thus] (3) =⇒ (4), again because neighborhoods contain
nonempty open sets.

(4) =⇒ (2): If U ∈ B(S) and V ∈ B(T ) then −V ∈ B(T ), so
U ∩ (1 − V ) 6= ∅. Therefore, u = 1 − v, or equivalently 1 = u + v,
for some u ∈ U and v ∈ V .

(5) ⇐⇒ (6): Obviously (6) implies (5). Conversely, given S ∈
S\{∅}, T ∈ T \{∅} and x ∈ K, then −x + S ∈ T \{∅}. Thus,
0 = −x+ s+ t for some s ∈ S and t ∈ T .

(5′) ⇐⇒ (6′): Certainly (6′) implies (5′). Conversely, if S ∈
S|K*\{∅}, T ∈ T |K*\{∅} and x ∈ K*, then 1 ∈ (x−1S)T , so
x ∈ ST .
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(8)⇐⇒ (8′) is obvious.
(7)⇐⇒ (8′): The proof is similar to that of (5′)⇐⇒ (6′).
(5′) =⇒ (7) is obvious. �

By replacing x− T by −T + x in the proof that (1) implies (6),
we obtain that T + S = K. Thus, if K is a division ring, the last
statement shows that, also, T*S* = K*.

Theorem 1 remains true if, in (5), 0 is replaced by any fixed
element x ∈ K; and, in (2), (4) and (5′), 1 can be replaced by any
nonzero element.

Topologies satisfying equivalent conditions (7), (8) and (8′) will
be called multiplicatively independent. Example 2 below shows that
in general neither independence nor multiplicative independence
imply the other.

Certainly, if multiplicatively independent topologies are weak-
ened, the new topologies will also be multiplicatively independent.

Theorem 2. S ∧ T = 0 for multiplicatively independent ring
topologies S and T on a field.

Proof. Suppose S and T are ring topologies on K. If K 6= U ∈
B(S ∧ T ) and V V ⊂ U for V ∈ B(S ∧ T ), then V V 6= K and
V ∈ B(S) and V ∈ B(T ). �

Theorem 3. If U is a topology on the field K induced by a non-
trivial valuation and S and T are U-big ring topologies on K, then
S and T are not multiplicatively independent.

Proof. Let U be induced by ν. There exists U ∈ B(S) and V ∈
B(T )) such that ν(u), ν(v) > 1 for u ∈ U* and v ∈ V *. Then for
such u and v, ν(uv) > 1, so 1 /∈ UV . �

Finally, we consider the relation between each pair of the follow-
ing four topologies on Q, and use the construction of the topology
labelled T to show that independent topologies need not be multi-
plicatively independent.

T∞: the usual topology;
Tp: the p-adic topology for any fixed prime p;
TZ : the ring topology on Q having the nonzero ideals of Z as a

neighborhood base at zero;
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T : the ring topology, introduced by Mutylin ([2]) and generalized
in [6], which has as a neighborhood base at zero the sequence Un
defined as follows.

Let γ be a positive real number less than or equal to 1; let {αi n},
where i and n are positive integers such that i ≥ n, be real numbers
greater than or equal to 1; and let {Pi}, where i is a positive integer,
be positive real numbers satisfying P1 ≥ 1/γ and

αi n ≥ αi n+1(2
i−1∑

j=n+1

αj n+1Pj + αi n+1Pi);
γPi+1

2 · 23i
≥

i∑
j=1

αj 1Pj .

Let {ti} be a sequence of integers such that γPi ≤ |ti| ≤ Pi, for all
i.

Un = {
k∑
i=n

ai
bi
ti : ai, bi ∈ Z, k ≥ n,

∣∣∣∣aibi
∣∣∣∣ ≤ αi n, 0 < |bi| ≤ 23i−n}.

Example 2. (1) Tp and T∞ are independent field topologies since
they are induced by valuations.

(2) Tp and T are independent if p |/tr for any r: Given a positive
integer n, choose r such that r > n, and Pr > pn+1 and solve
ktr ≡ 1 (pn+1), with 0 < k < pn+1. The first inequality in the
definition of Un implies that αr n ≥ Pr. Thus,

1 = (1− ktr) + ktr ∈ {x ∈ Q : |x|p < p−n}+ Un.

Since {Pr} increases monotonically to infinity, it is possible to
choose the sequence ti so that p |/ti for any i, provided we have
chosen (1−γ)P1 > p+ 1. Note that the theorem of Shanks cited in
Section 1 does not apply here, since T is not a field topology (see
[6]).

(3) TZ and T∞ are not independent. However, by writing a
b ∈ Q,

where a, b ∈ Z, in the form

a

b
= (k! a)(

1
k! b

),

we see that TZ and T∞ are multiplicatively independent.
(4) T∞ and T are multiplicatively independent:

a

b
= (

a

b
tr)(

1
tr

).
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The second inequality preceding the definition of Un implies that
±tn/2 are the nonzero elements in Un with smallest absolute value.
Therefore, T∞ ∨ T = 1, and the topologies are not independent.

(5) T and TZ are not multiplicatively independent: For the topol-
ogy U of the usual absolute value, T and TZ are both U-big. Thus,
by Theorem 3, T and TZ are not multiplicatively independent.

Numbers αi n and Pi satisfying the two inequalities can be deter-
mined inductively so that, after P1, . . . , Pn have been chosen, there
is a real number a such that Pn+1 may be chosen to be any number
larger than a. If we choose each Pn to be of the form kn! + 1 and
let tn = Pn, then 1 = −kn! + tn and T and TZ are independent.

(6) Tp < TZ.
(7) In the definition of Un we may choose γ < 1 and elements

ti such that γPi ≤ ti < ti + 1 ≤ Pi. Let T ′ be the topology
determined by the sequence U ′n, where the sequence U ′n is obtained
by substituting ti + 1 for ti in the definition of Un. Since 1 =
(tn + 1) − tn ∈ U ′n + Un, T and T ′ are independent. However, as
in (5), both topologies are U-big and, hence, not multiplicatively
independent.

The author thanks the referee for calling attention to errors in
the original exposition of this paper.
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