Topology Proceedings

Web: http://topology.auburn.edu/tp/

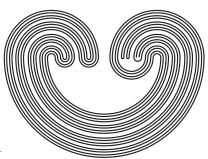
Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT \bigodot by Topology Proceedings. All rights reserved.



Pages 851-856

A SHORT PROOF OF A CLASSICAL RESULT OF M.G. TKACHENKO

V.V. TKACHUK*

Abstract. We give a comparatively short proof of a theorem which states that any compact space that is a continuous image of a dense subspace of a Σ -product of spaces with countable network, is metrizable. This is a very deep and non-trivial result of M.G. Tkachenko obtained in 1982. The original proof consists of eight pages of a very compressed text which involves construction of an inverse system whose elements are also constructed using additional inverse systems. We give a transparent proof on less than three pages hoping to contribute to a better understanding of the features of dense subspaces of Σ -products responsible for metrizability of their compact continuous images.

0. Introduction

Given a product $N = \prod \{N_t : t \in T\}$ of topological spaces and a point $u \in N$, let $\Sigma(N, u) = \{x \in N : \text{the set } \{t \in T : x_t \neq u_t\}$ is at most countable}. The space $\Sigma(N, u)$ is called a Σ -product of the spaces $\{N_t: t \in T\}$. Analogously, the space $\sigma(N,u) =$ $\{x \in N : |\{t \in T : x_t \neq u_t\}| < \omega\}$ is called a σ -product of the spaces $\{N_t: t \in T\}$. If $N_t = \mathbb{R}$ for each $t \in T$ then $\Sigma(N,u)$ $(\sigma(N,u))$ is called a Σ -product (σ -product) of real lines.

²⁰⁰⁰ Mathematics Subject Classification. 54B10, 54C05, 54D30.

Key words and phrases. Cosmic space, compact space, continuous image, a dense subspace of a Σ -product, a space of pointwise countable type.

^{*}Research supported by Consejo Nacional de Ciencia y Tecnología (CONA-CYT) of México, Grant 010350.

The first one to study Σ -products was H.H. Corson [Co] who established quite a few important properties of Σ -products and dense subspaces of products of second countable spaces. He proved, in particular, that if Z is a continuous image of a dense subspace of a product of second countable spaces and $Z \times Z$ is normal then Z is collectionwise normal. Later Efimov proved in [Ef] that every compact space that is a continuous image of a Σ -product of metrizable compact spaces, is metrizable.

However, Efimov's method was not applicable to prove that any compact continuous image of a Σ -product of real lines is also metrizable. This was an open problem until 1979 when Tkachenko proved in [Tk1] that any compact continuous image of any σ -product of metrizable compact spaces is metrizable. He also obtained a more general result under the Luzin's Axiom $(2^{\omega} < 2^{\omega_1})$: if S is a dense subspace of a Σ -product of spaces with countable network and K is a compact continuous image of S then K is metrizable.

Finally, in 1982, Tkachenko showed in [Tk2] that a stronger result is true without assuming the Luzin's Axiom. He proved that any space of pointwise countable type has a countable network if it is a continuous image of a dense subspace of a Σ -product of spaces with countable network. Up to the present day this is the strongest result known about dense subspaces of "nice" spaces.

Unfortunately, the proof given in [Tk2] is very difficult to read; it consists of eight pages of a very compressed text. A very sophisticated inverse system is constructed and the elements of this inverse system are obtained as limits of a family of (also very complicated) inverse systems. That is why the author presents this paper to the public; it has no new results but provides a much shorter and absolutely transparent proof of the main result of Tkachenko. This proof gives a clear idea of the properties of dense subspaces of Σ -products which account for metrizability of their compact images. For the sake of brevity we use E. Michael's term *cosmic* (see [Mi]) for the spaces with countable network.

1. NOTATION AND TERMINOLOGY

All spaces are assumed to be Tychonoff. If X is a space then $\tau(X)$ is its topology; if $A \subset X$ then $\tau(A, X) = \{U \in \tau(X) : A \subset U\}$. We write $\tau(x, X)$ instead of $\tau(\{x\}, X)$. A family $\mathcal{B} \subset \tau(A, X)$ is

called $a(n \ external)$ base of A in X if, for any $U \in \tau(A, X)$, there is $V \in \mathcal{B}$ such that $V \subset U$. If a set $F \subset X$ has a countable external base, we say that F has countable external character. In general, $\chi(A, X)$ is the minimum of the cardinalities of external bases of A in X. Given any $x \in X$, we write $\chi(x, X)$ instead of $\chi(\{x\}, X)$. A space X is of pointwise countable type if X can be covered by its compact subspaces of countable external character.

A family \mathcal{N} of subsets of a space X is called a network of X if every $U \in \tau(X)$ is a union of some subfamily of \mathcal{N} . Thus a network is like a base, only its elements are not necessarily open in X. A space is called cosmic if it has a countable network. Given a product $N = \prod\{N_t : t \in T\}$ of spaces and an arbitrary point $u \in N$, let $\Sigma(N, u) = \{x \in N : |\{t \in T : x_t \neq u_t\}| \leq \omega\}$. If X is a space and $f_t : X \to N_t$ is a map for every $t \in T$ then the Δ -product $f = \Delta\{f_t : t \in T\} : X \to \prod\{N_t : t \in T\}$ of the family $\{f_t : t \in T\}$ is defined by $(f(x))_t = f_t(x)$ for each $x \in X$ and $t \in T$. The symbol \square is used to indicate the end of a proof. The rest of our notation is standard and follows [En].

2. TKACHENKO'S THEOREM AND ITS PROOF

Throughout our proof we are going to use the following fact which is simple and well-known. Its proof can be left to the reader as an easy exercise.

Proposition 2.1. Every Lindelöf space L is normally placed in any larger space Z, i.e., $Z \setminus L$ is a union of closed G_{δ} -subsets of Z. In particular, any cosmic space is normally placed in any larger space.

Proposition 2.2. Suppose that K is a non-empty compact space with no points of countable character. Then K cannot be represented as a union of $\leq \omega_1$ -many cosmic subspaces.

Proof. To get a contradiction assume that $K = \bigcup \{M_{\alpha} : \alpha < \omega_1\}$ where $nw(M_{\alpha}) \leq \omega$ for each $\alpha < \omega_1$. Let $F_0 = K$; suppose that $0 < \alpha < \omega_1$ and we have a family $\{F_{\beta} : \beta < \alpha\}$ of non-empty closed G_{δ} -subsets of K with the following properties:

- (1) $F_{\gamma} \subset F_{\beta}$ whenever $\beta < \gamma < \alpha$;
- (2) if $\beta < \alpha$ then $F_{\beta} \cap M_{\gamma} = \emptyset$ for any $\gamma < \beta$.

It is evident that $F'_{\alpha} = \bigcap \{F_{\beta} : \beta < \alpha\}$ is a non-empty closed G_{δ} -subset of K and hence $\chi(x, F'_{\alpha}) > \omega$ for any $x \in F'_{\alpha}$ for otherwise $\chi(x, K) \leq \chi(x, F'_{\alpha}) \cdot \chi(F'_{\alpha}, K) = \omega$ which is a contradiction. In particular, F'_{α} is not cosmic and therefore we can pick a point $x \in F'_{\alpha} \backslash M_{\alpha}$. By Proposition 2.1 there is a closed G_{δ} -set G such that $x \in G \subset X \backslash M_{\alpha}$. It is clear that $F_{\alpha} = F'_{\alpha} \cap G$ is a non-empty closed G_{δ} -subset of K such that (1) and (2) are fulfilled for the family $\{F_{\beta} : \beta \leq \alpha\}$. Consequently, we can continue our inductive construction to obtain a family $\{F_{\alpha} : \alpha < \omega_1\}$ of closed non-empty G_{δ} -subsets of K with the properties (1)-(2) for each $\alpha < \omega_1$. Since K is compact, the property (1) implies that $F = \bigcap \{F_{\alpha} : \alpha < \omega_1\} \neq \emptyset$. It follows from (2) that $x \notin \bigcup \{M_{\alpha} : \alpha < \omega_1\}$ for any $x \in F$, which is a contradiction.

Proposition 2.3. Suppose that X is a space and K is a non-metrizable compact subspace of X with $\chi(K,X) = \omega$. Then there exists a space Y and a continuous onto map $f: X \to Y$ such that $f(K) \cap f(X \setminus K) = \emptyset$, $w(f(K)) = w(Y) = \omega_1$ and $\chi(f(K), Y) = \omega$.

Proof. Let $\{O_n : n \in \omega\}$ be an external base of the set K in X. Take any continuous function $f_n : X \to \mathbb{I} = [0,1]$ such that $f_n(K) = \{1\}$ and $f_n(X \setminus O_n) = \{0\}$ for every $n \in \omega$. It is a well-known (and easy to prove) fact that any non-metrizable compact space can be continuously mapped onto a (compact) space of weight ω_1 [Ar2, Proposition IV.8.11]. Let $g: K \to K_1$ be a continuous onto map such that $w(K_1) = \omega_1$. We can consider that $K_1 \subset \mathbb{I}^{\omega_1}$; let $\pi_\alpha : \mathbb{I}^{\omega_1} \to \mathbb{I}$ be the natural projection onto the α -th factor. For each $\alpha < \omega_1$, the map $g_\alpha = \pi_\alpha \circ g : K \to \mathbb{I}$ can be continuously extended to a continuous function $h_\alpha : X \to \mathbb{I}$; let $h = \Delta\{h_\alpha : \alpha < \omega_1\}$. Then $f = h\Delta(\Delta\{f_n : n \in \omega\})$ and Y = f(X) are as promised. \square

Proposition 2.4. Suppose that N_t is a cosmic space for each $t \in T$ and take any point $u \in N = \prod \{N_t : t \in T\}$. If $|T| \leq \omega_1$ then any subspace $E \subset \Sigma(N, u)$ is a union of $\leq \omega_1$ -many cosmic spaces.

Proof. Given any point $x \in E$ let $\operatorname{supp}(x) = \{t \in T : x_t \neq u_t\}$. Choose an enumeration $\{t_\alpha : \alpha < \omega_1\}$ of the set T and let $T_\alpha = \{t_\beta : \beta < \alpha\}$ for every $\alpha < \omega_1$. If $E_\alpha = \{x \in E : \operatorname{supp}(x) \subset T_\alpha\}$ then $nw(E_\alpha) \leq \omega$ for each $\alpha < \omega_1$ and $E = \bigcup \{E_\alpha : \alpha < \omega_1\}$. \square

The following result of Arhangel'skii [Ar1] is of crucial importance for the proof of Tkachenko's Theorem. In fact, we formulate only a consequence of Arhangel'skii's Theorem which suffices for our purposes.

Theorem 2.5 ([Ar1]). Suppose that N_t is a cosmic space for each $t \in T$ and S is a dense subspace of the space $N = \prod \{N_t : t \in T\}$. If Z is any space and $\varphi : S \to Z$ is a continuous onto map then, for any infinite cardinal κ ,

- 1) the space $Y = \{z \in Z : \chi(z, Z) \leq \kappa\}$ has network weight at most κ ; in particular, if $\chi(Z) = \omega$ then Z is cosmic.
- 2) if $\chi(Z) = \kappa$ then there is a set $A \subset T$ with $|A| \leq \kappa$ and a continuous map $h: p_A(S) \to Z$ such that $h \circ (p_A|S) = \varphi$. Here $p_A: N \to N_A = \prod \{N_t: t \in A\}$ is the natural projection onto the face N_A .

Now we are ready to formulate and prove Tkachenko's Theorem.

Theorem 2.6 ([Tka2]). Suppose that a space N_t is cosmic for each $t \in T$. Given any point $u \in N = \prod \{N_t : t \in T\}$ and any dense subset $S \subset \Sigma(N, u)$, assume that a space X of pointwise countable type is a continuous image of S. Then X is cosmic. In particular, if X is compact then X is metrizable.

Proof. Fix a continuous onto map $\varphi: S \to X$ and denote by C the set of points of countable character of X; we have $nw(C) = \omega$ by Theorem 2.5. If C = X then there is nothing to prove so assume that there is $x \in X \setminus C$. By Proposition 2.1, there is a closed G_{δ} -set P such that $x \in P \subset X \setminus C$. Since X is of pointwise countable type, there is compact subspace $F \subset X$ such that $\chi(F,X) = \omega$ and $\chi(F,X) = \omega$ and $\chi(F,X) = \omega$ and $\chi(F,X) = \omega$. No point $\chi(F,X) = \omega$ and $\chi(F,X) = \omega$ which contradicts $\chi(F,X) = \omega$ which contradicts $\chi(F,X) = \omega$ which contradicts $\chi(F,X) = \omega$ to find a continuous onto map $\chi(F,X) = \omega$ such that

- (3) if $K_1 = f(K)$ then $w(Y) = w(K_1) = \omega_1$;
- (4) $\chi(K_1, Y) = \omega$ and $K_1 \cap f(X \setminus K) = \emptyset$.

Since the space Y is a continuous image of S and $w(Y) \leqslant \omega_1$, we can apply Arhangel'skii's theorem again to find a subset $A \subset T$ such that $|A| \leqslant \omega_1$ and there is a continuous map $h: p_A(S) \to Y$ such that $\delta \circ \varphi = h \circ (p_A|S)$. Observe that $S_A = \pi_A(S)$ is a dense subset of $\Sigma(N_A, p_A(u))$ which maps continuously onto the space Y so we can apply Arhangel'skii's theorem once more to conclude that the space $M = \{y \in Y : \chi(y, Y) \leqslant \omega\}$ is cosmic. Since $nw(K_1) = w(K_1) = \omega_1$, the set K_1 is not covered by M; take any $z \in K_1 \setminus M$. Applying Propostion 2.1 again we can find a closed G_δ -set H in Y such that $z \in H \subset Y \setminus M$. It is evident that $K_2 = H \cap K_1$ is a compact subspace of Y with $\chi(K_2, Y) \leqslant \chi(K_2, K_1) \cdot \chi(K_1, Y) \leqslant \omega$. For any point $y \in K_2$ we have $\chi(y, K_2) > \omega$ because otherwise $\chi(y, Y) \leqslant \chi(y, K_2) \cdot \chi(K_2, Y) = \omega$ which contradicts $y \notin M$.

Now apply Proposition 2.4 to conclude that S_A is a union of $\leqslant \omega_1$ -many cosmic subspaces. Being cosmic is preserved by continuous maps so the space Y is a union of $\leqslant \omega_1$ -many cosmic subspaces. Being cosmic is also preserved by subspaces so the space $K_2 \subset Y$ is a union of $\leqslant \omega_1$ -many cosmic subspaces which contradicts Proposition 2.2.

References

- [Ar1] A.V. Arhangel'skii, On mappings of dense subspaces of of topological products (in Russian), DAN SSSR, 197:4 (1971), 750–753.
- [Ar2] A.V. Arhangel'skii, Topological Function Spaces, Kluwer Acad. Publ., Dordrecht, 1992.
- [Co] H.H. Corson, Normality in subsets of product spaces, Amer. J. Math., 81:3 (1959), 785–796.
- [Ef] B.A. Efimov, Metrizability and Σ-product of compacta (in Russian), DAN SSSR, 152 (1963), 794–797.
- [En] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [Mi] E. Michael, No-spaces, Journal of Math. and Mech., 15:6 (1966), 983–1002.
- [Tk1] M.G. Tkachenko, On continuous images of dense subspaces of topological products (in Russian), Uspehi Mat. Nauk, 34:6 (1979), 199–202.
- [Tk2] M.G. Tkachenko, On continuous images of dense subspaces of Σ-products of metrizable compacta (in Russian), Siberian Math. J., 23:3 (1982), 198– 207.

DEPARTAMENTO DE MATEMÁTICAS, UNIVERSIDAD AUTÓNOMA METROPOLITANA, AV. SAN RAFAEL ATLIXCO, 186, COL. VICENTINA, IZTAPALAPA, C.P. 09340, MÉXICO D.F.

Current address: Department of Mathematics, Queens College, The City University of New York, Flushing, N.Y., 11367, U.S.A.

E-mail address: vova@xanum.uam.mx