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A NOTE ON SPECIAL MEASURE PRESERVING
DYNAMICAL SYSTEMS IN METRIC SPACES

MARCIN KULCZYCKI

Abstract. We prove that if a dynamical system on a sepa-
rable metric space X is measure preserving (with respect to
some complete Borel measure µ that is finite on balls) and
every orbit is bounded, then almost all points (in the sense of
measure µ) have their orbits contained in their ω-limit sets.

1. Introduction

An example of a dynamical system in R3 without fixed points
with the diameters of the trajectories uniformly bounded is known
(see [2] for the example itself and a discussion of its relation to
Problem 110 from [3]).

A paper by G. Kuperberg [1] shows the existence of a volume-
preserving dynamical system without fixed points or closed trajec-
tories on any smooth 3-dimensional manifold with an empty bound-
ary (compact or not) giving another class of counterexamples to the
Seifert Conjecture. (The conjecture stated that every fixed point
free dynamical system on the three-sphere has a periodic orbit.)
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The following question has been posed by G. Kuperberg: Is it
possible to obtain a dynamical system in R3 that combines sev-
eral of these properties: a system that is fixed point free, volume-
preserving, AND has the diameters of the trajectories bounded by
the same constant?

The theorem below was motivated by a search for specific prop-
erties that such a system would have to exhibit, but is presented
here in a much more general setting; the dynamical system is as-
sumed to be defined on a general metric space and the assumptions
about the measure are weak.

2. Main result

To introduce some notations used later we begin with a handful
of basic definitions.

Definition 2.1. A dynamical system is a continuous mapping Φ :
R ×X → X such that Φ(0, x) = x and Φ(t,Φ(s, x)) = Φ(s + t, x)
for any x, s and t.

Definition 2.2. Let A denote the closure of the set A. The ω-limit
set of a point x is defined as

⋂∞
n=1 Φ([n,∞), x).

Definition 2.3. A minimal set of a dynamical system Φ is a set
that is closed, nonempty, invariant with respect to Φ, and does not
contain a smaller set with such properties.

Definition 2.4. A dynamical system Φ is measure preserving if
for any measurable A ⊂ X and for any t, the set Φ(t, A) is also
measurable and has the same measure as A.

Theorem 2.5. Let X be a separable metric space with metric d.
Let µ be a complete Borel measure on X that is finite on balls. Let Φ
be a measure preserving dynamical system on X that has diameters
of all its orbits bounded (not necessarily uniformly). Define the set
A as the collection of all points that have their orbits contained in
their ω-limit sets (that is, A is the union of all minimal sets of Φ).

Then µ(X\A) = 0.

Proof: The proof is divided into five parts presented below as
separate lemmas. To show that the set X\A has measure zero, we
will decompose it into smaller parts. Each such part will, in turn,
be expressed as a countable union of even smaller sets, and so on,
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until we prove that the smallest division consists entirely of sets of
measure zero.

The structure of the proof: Lemmas 2.6 to 2.9 give conditions
that (if proven) imply the previous statement. That is, Lemma
2.6 gives a condition that needs to be proven to finish the proof of
the main theorem; Lemma 2.7 gives a condition that implies the
one from Lemma 2.6, and so on. Finally, Lemma 2.10 proves the
condition from Lemma 2.9.

Let ∀! denote “for almost all points except for a set of measure
zero.”

Lemma 2.6. It is enough to prove

∀ε > 0 ∀!x ∈ X ∃t1, t2, . . .→∞ s.t. ∀i d(Φ(ti, x), x) < ε.

Proof: Indeed, if A 1
k

is the set of all x ∈ X satisfying the

above for ε = 1
k , then A =

⋂∞
k=1A 1

k
. Therefore, µ(X\A) ≤∑∞

k=1 µ(X\A 1
k
) = 0. �

Lemma 2.7. To prove the condition in Lemma 2.6, it suffices to
show that
∀ε > 0 ∀x ∈ X ∀!y ∈ B(x, ε)∃t1, t2, . . . → ∞ s.t. ∀i Φ(ti, y) ∈
B(x, ε).

Proof: For a given ε we choose a countable cover of X with such
balls (X is separable metric, so it is Lindelöf). Note that inside
every ball from the covering each point that does satisfy the right
part of the above property belongs to A2ε. Inside every ball from
the covering there is only a set of measure zero of points that do not
satisfy the right part of the above property, so X\A2ε is contained
in a countable union of sets of measure zero. �

Lemma 2.8. For a given ε and x, define

Bn = {y ∈ B(x, ε) : Φ([n,∞), y) ∩B(x, ε) = ∅}.

Then Bn are measurable, and it is enough to show that µ(Bn) = 0.

Proof: To prove that the sets Bn are measurable, we will prove
that they are closed. Suppose y 6∈ Bn. In this case, for some
t ≥ n we have Φ(t, y) ∈ B(x, ε). By continuity of Φ, there is a
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neighborhood of y that also enters B(x, ε) after time t, proving
that the complement of Bn is open.

Let B denote the set of points y in the ball B(x, ε) for which
the right part of the condition in Lemma 2.7 is not satisfied. Then
B =

⋃∞
n=1Bn, and we are done. �

Lemma 2.9. For a fixed ε, x, and n, define

Bj
n = {y ∈ Bn : Φ(R, y) ⊂ B(x, j)}.

Then Bj
n are measurable, and it is enough to show that µ(Bj

n) = 0.

Proof: To prove that the sets Bj
n are measurable, we will prove

that they are closed. The proof is analogous to the one from Lemma
2.8: If y 6∈ Bj

n, then either y 6∈ Bn (and the same is true for some
neighborhood of y), or for some t we have Φ(t, y) 6∈ B(x, j). By
continuity of Φ, we get a neighborhood of y that also leaves B(x, j).
This proves that Bj

n are closed.
By our assumption that every orbit is bounded, we have Bn =⋃∞
j=1B

j
n. This finishes the proof of this lemma. �

Lemma 2.10. The measure of every set Bj
n is zero.

Proof: Consider the sets Φ(p · (n + 1), Bj
n) where p ranges over

the natural numbers. All of these sets are subsets of B(x, j). We
claim that they are pairwise disjoint (so essentially, we are proving
that the set Bj

n is a weakly wandering set).
It is easy to see that the first set (p = 0) is disjoint from any

other set in the collection. Indeed, Bj
n is a subset of B(x, ε), while

Φ(p · (n+ 1), Bj
n) does not intersect that set when p > 0.

Now if y belonged to both Φ(p · (n+1), Bj
n) and Φ(q · (n+1), Bj

n)
where p < q, then Φ(−p · (n + 1), y) would be an element of both
Bj
n and Φ((q − p) · (n+ 1), Bj

n), contradicting the above.
At the same time, each of these sets has the measure equal to

µ(Bj
n). Since the measure ofB(x, j) is finite, it follows that µ(Bj

n) =
0. �

With the chain of all five lemmas proven, so is our main theorem.
�
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Remark 2.11. The assumption that Φ is measure preserving is
too strong and can be replaced with the following technicality: If
Y is a measurable subset of X then for any t > 0, the set Φ(t, Y )
contains some measurable set Y ′ such that µ(Y ) ≤ µ(Y ′).

Remark 2.12. Theorem 2.5 is presented here in terms of contin-
uous time dynamical systems because of its connections with the
results mentioned in the Introduction. The same proof is also valid
for the discrete case.

Remark 2.13 Another way of proving Theorem 2.5 is to use the
following proposition:

If a dynamical system Φ on a separable metric space X with an
invariant complete Borel measure µ has no minimal sets, then the
measure of X is either zero or infinity.

Proof: (Sketch). Using the concepts from the proof of Theorem
2.5, we obtain around every point in X an open ball that is mapped
out of itself for all times greater than certain time T0. If the measure
of X is finite, then each such ball has to be of measure zero. Then
by the Lindelöf property the measure of the whole space is also
zero.

To obtain Theorem 2.5, we first remove the set A, and then we
divide whatever is left into countably many balls of radius 1. Each
such ball in turn can be expressed as a union of collections of points
that stay within distance n of it. Each such collection is contained
in some ball, so its measure is finite. Using the above proposition
for every collection separately, we obtain the desired result. �
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