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EXISTENCE OF INDECOMPOSABLE CONTINUA
FOR UNSTABLE EXPONENTIALS

MÓNICA MORENO ROCHA

Abstract. In the parameter plane for the complex expo-
nential family Eλ(z) = λez there exist parameters for which
the orbit of zero lies on dynamical curves which are invari-
ant under a fixed power of Eλ. At the same time, the orbit
of zero tends to infinity and in these cases, the Julia set for
Eλ is the whole complex plane. We construct fundamental
regions based on these dynamical curves. Inside each region,
we show the existence of an invariant set that, once properly
compactified, becomes an indecomposable continuum.

1. Introduction

In this paper, we work with complex parameters for which the
orbit of λ under the exponential map lies on n dynamical curves and
tends to infinity. For those parameters, it is known that the Julia set
of Eλ is the whole complex plane (see [9] and [6]). Moreover, λ will
lie on regions of the parameter plane for which a small perturbation
can produce an attracting cycle. For these parameters, Eλ is called
an unstable exponential (see [3]).

In Figure 1, we partially depict the composant of zero for the
invariant set of the map 0.6 exp(z), previously described by R. L.
Devaney. Our goal is to generalize the results presented in [4] for
certain complex parameters. We do so by describing the construc-
tion of fundamental regions in the dynamical plane and showing
the existence of invariant sets under Enλ inside each region. The
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Figure 1. A partial picture of the invariant set Λλ
for λ = 0.6. All curves extend toward infinity to
the right without intersecting among themselves and
wind around the repelling fixed point.

compactification of these invariant sets will result in continua with
the same properties as the one described in [4].

In Section 2, we review some results related to the dynamical
curves for the complex exponential and describe the setup for our
construction. The analysis of the fundamental regions, their topol-
ogy and dynamics are given in Section 3, where we restrict our
attention to the case n = 2 for clarity. The general case is pre-
sented in Section 4. A brief analysis of the dynamics restricted to
each invariant set and some additional remarks are found in Section
5.

2. Hairs in the Dynamical Plane

Let λ ∈ C and consider a partition of the complex plane minus
the nonpositive real numbers (denoted by C∗) by horizontal strips

Rk = {z ∈ C | (2k − 1)π − argλ < Imz < (2k + 1)π − argλ}

with arg λ taking values between ±π and k ∈ Z. The strips are
indexed so that k increases with increasing imaginary part. Define
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the itinerary of z ∈ C∗ under Eλ in the usual way: s = s0s1s2 . . .
is the itinerary of z if and only if

sj = k when Ejλ(z) ∈ Rk.

When all sj are nonzero integers, the itinerary is called regular;
otherwise, it is called irregular. Let σ represent the one-sided shift
map. An itinerary is periodic of period n if it is a fixed point for σn

and σj(s) 6= s for j = 1, 2, . . . , n − 1. We indicate the periodicity
of an itinerary by writing s = s0s1 . . . sn−1.

Notice that Eλ maps the boundary of Rk onto the negative real
axis, so Eλ(Rk) is sent onto C∗. No itinerary is defined for points
whose orbit lands in the boundary of any Rk strip.

We recall some standard definitions found in [1]. A hair is a con-
tinuous curve extending from a particular point zλ towards infinity
in the right half plane. All points in a hair have the same itinerary.
We call zλ the dynamical endpoint of the hair. When restricted to
periodic itineraries, it is the unique point in the hair with bounded
orbit. Every other point in the hair has unbounded orbit (thus,
each hair belongs to the Julia set). There exist similar objects in
the parameter plane. Let Hs represent a continuous curve in the
parameter plane for which, for every parameter λ in Hs, the orbit
of λ under Eλ follows the given itinerary s in the dynamical plane.

We are solely interested in irregular periodic itineraries, that is,
itineraries of the form s = 0s1s2 . . . sn−1 for which the singular
value, z = 0, will follow. In general, C. Bodelón and his co-authors
[1] have shown the existence of hairs for irregular itineraries in both
the dynamical and parameter plane, but their definition is restricted
to a region far to the right in the plane.

The general setup is as follows: given the itinerary s1 . . . sn−10
with s1 6= 0, let h1 denote the dynamical curve on which λ lies.
Then λ and any other point in h1 have this itinerary. Then, there
must exist a curve inside the strip R0 that is the image of h1 under
En−1
λ . Pulling back by Eλ the piece of h1 between λ and Enλ (λ),

we can uniquely extend the curve inside the strip R0 to a curve on
which the singular value lies. Denote this curve by h0. Then all
points in h0 will follow the itinerary s = 0s1s2 . . . sn−1.

We require that for the parameter λ that lies on Hs1s2...0
,

Ekλ(0) −→∞ when k −→∞.
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For k = 1, . . . , n − 1, let hk = Ekλ(h0) denote the dynamical
curve associated with the itinerary σk(s). Notice that each hk is
forward invariant under Enλ , so each Ejλ(0) belongs to hk if and only
if k ≡ j (mod n). We call each Ekλ(0) an endpoint of the curve hk
(k = 0, . . . , n− 1) in the strict topological sense.

As an example of this setup, notice that the results obtained in
[4] apply to every λ in the parametrical curve H0 which is directly
attached to the cusp of the cardioid in the parameter plane. H0

corresponds to the segment of the real line λ ≥ 1/e. Clearly Ekλ(0)
grows without bound. The itinerary of zero is s = 0 and the seg-
ment of the positive real line acts as the forward invariant curve
h0.

If λ belongs to the parametric hair Hs for our setup, as the orbit
of zero tends to infinity, the Julia set for Eλ is the whole complex
plane. By construction, each hk and its endpoint Ekλ(0) are sent
respectively onto the tail hk+1 and Ek+1

λ (0) for k = 0, . . . , n − 2.
Since Enλ (0) ∈ h0, the tail hn−1 is mapped into h0.

3. Fundamental Regions

In this section, we describe the construction of the fundamental
regions that will contain our indecomposable continua. For clarity,
we restrict ourselves to the case n = 2, that is, for an itinerary of
the form s = 0s1. Thus, we assume the existence of two dynamical
curves, h0 and h1 where zero and λ lie respectively on each curve.
The general case will be discussed in Section 4.

To define our fundamental regions we will take sucessive preim-
ages of a piece of h0. Notice that since h1 is sent into (but not onto)
h0, the preimage of the piece of h0 from 0 to E2

λ(0) consists of in-
finitely many curves that extend without bound toward infinity in
the left half plane. Each preimage has an endpoint at Eλ(0) + i2kπ
with k ∈ Z. Let α represent the unique component of the preimage
directly attached to Eλ(0). We call α an extension to the hair h1

and ĥ1 represents the hair with its extension.
Define by β0 the curve among the preimage curves of α under

Eλ such that β0 is the extension to the hair h0. This curve extends
from 0 to infinity in the right half plane. In particular, there are
two ways in which the extension β0 may tend to infinity: far to the
right, either Im β0 > Im h0 or Im β0 < Im h0.
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Either of two orientations (the upper or lower orientation, re-
spectively) may occur and they are completely determined by λ.
To show this, we first need several definitions.

Definition 3.1. The extended curve ĥ1 separates the complex
plane into two open half planes. Let H+ be the half plane above
ĥ1 and denote by H− the half plane below ĥ1.

Also ĥ0 separates the complex plane into two open and simply
connected regions. Denote by Ru0 the region relative to ĥ0 with
unbounded real part, and let Rb0 denote the region with bounded
negative real part.

Proposition 3.2. Given ĥ0 and ĥ1 as described above, λ deter-
mines the orientation of β0 as follows: if Im λ > 0 then β0 has
the upper orientation. Otherwise, β0 has the lower orientation if
Im λ < 0.

Proof: Consider the sign of Imλ. If positive, this implies that
0 ∈ H−. Since ĥ0 is the preimage of ĥ1, and E−1

λ sends any small
neighborhood of zero far to the left half plane, the region Ru0 with
unbounded real part must be the preimage of H−. This implies that
β0 has the upper orientation. If Imλ < 0, then 0 ∈ H+ and by a
similar argument, it follows that β0 has the lower orientation. �

Let γ be a curve in the preimage of β0 such that
(1) γ ⊂ H+

(2) γ is the closest curve to ĥ1 among all curves in the preimage
of β0.

Notice that γ and ĥ1 extend towards infinity in the left and right
half planes. In general, any preimage of a horizontal strip under the
exponential is a horseshoe shaped region with its ends extending to
the right half plane. Choose δ0 to be the closest curve to ĥ0 among
all other preimage curves of γ (see Figure 2). Then, δ0 and ĥ0 will
represent the boundary of a horseshoe shaped region. Therefore,
we have

Definition 3.3. (Fundamental Regions) Let S1 denote the
closed strip that is bounded above by γ and below by ĥ1. Also,
let S0 denote the closed horseshoe shaped region bounded by δ0

and ĥ0. Thus, S0 represents the preimage of S1.
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Figure 2. Tails and several preimages of α. Since
Im λ < 0, β0 has the lower orientation.

By construction, if β0 has the lower orientation, then δ0 will be
in the unbounded region Ru0 . If β0 has the upper orientation, δ0 will
then lie on Rb0. Since the following construction is independent of
the orientation, we will assume through the rest of the paper that
β0 has the lower orientation.

By construction, a non-empty intersection of two fundamental
regions can only happen if one region lies completely inside the
other. The following proposition excludes the possibility of nested
fundamental regions. The relevance of this result will become ap-
parent in the next section.

Clearly S1 cannot be in the interior of S0 as the first region
extends without bound toward the left and right half planes of the
complex plane. For the case n = 2, there is only one case left to
consider.

Proposition 3.4. Given λ, let S0 and S1 be the regions defined as
above. Then S0 cannot be contained in the interior of S1.

Proof: We proceed by contradiction. Assume S0 ⊂ S1. Then
E−1
λ maps S1 onto a horseshoe region, and so the preimage has

bounded negative real part. Since S0 contains the omitted value,
the preimage of S0 is a connected region with unbounded real part
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and must be contained inside the preimage of S1. Thus, we have a
contradiction. �

3.1. Invariant Sets and Compactification

We first introduce a new partition of the complex plane in order
to define itineraries for the orbits of points in which we are inter-
ested. Using these itineraries, we characterize the invariant sets
under E2

λ inside S0 and S1.
We have previously selected a preimage of β0, namely γ , lying

in H+. But there exist infinitely many preimages of β0 that are
no more than translations of γ+ by 2πi. We denote these curves
by γj with j ∈ Z. We index γj so that j increases with increasing
imaginary part, so γj+1 = γj + 2πi for each j. In particular, we
choose γ0 so that the origin lies in the region bounded by γ0 and
γ1. Also define Tj , j ∈ Z, to be the open region bounded by γj and
γj+1. Since γj is mapped onto β0 by Eλ, then every Tj is mapped
into C− 0 injectively by Eλ. Thus, Eλ is an expansion inside each
Tj and there must exist a repelling fixed point inside each Tj . This
new partition allows us to define a new itinerary for almost any
point in C. We will use the same notation for these new itineraries.

Definition 3.5. Given z ∈ C, we define its itinerary with respect
to the partition Tj to be the sequence s = s0s1s2 . . . where

sk = j if and only if Ekλ(z) ∈ Tj .

Although there is not a well defined itinerary for points that
belong to any γj or any of its preimages, these points are eventu-
ally mapped into the hairs, and their dynamics are already known.
Since neither the hairs nor any of its preimages intersect among
themselves, this guarantees that S0 is properly contained inside
the region T0.

Our goal is to study the set of points inside each Sk for k = 0, 1
and with an itinerary of the form s = 0s1, where S0 ⊂ T0 and
Eλ(S0) ⊂ Ts1 . Proposition 3.4 implies that s1 6= 0 and, for the
general case, new itineraries associated with our construction will
consist of non-repeating entries. This condition provides a better
understanding of the parameters for which our construction is valid.

Since we have assumed β0 has the lower orientation, E2
λ(S0) is

sent onto Ru0 . Therefore, there are points in S0 that will leave
this region under the action of E2

λ. Let Λ0 be the set of points in
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S0 whose orbits under E2
λ never leave. Then any point in Λ0 has

itinerary s = 0s1 with S0 ⊂ T0 and S1 ⊂ Ts1 .
Also, define

Ln = {z ∈ S0|E2k
λ (z) ∈ S0, for k = 1, 2, . . . , n−1 but E2n

λ (z) /∈ S0}

that is, Ln represents the set of points inside S0 whose first n − 1
iterations under E2

λ remain inside S0 but its nth iteration leaves
the region.

The next results follow from [4]:

(1) Each Ln is an open simply connected subset of S0 that
extends to infinity toward the right of S0. Moreover, far
to the right, each region Ln is bounded above by Ln−1 and
below by ĥ0;

(2) Λ0 = S0 − ∪n∈NLn;
(3) ∪∂Ln is dense in Λ0;
(4) Λ0 is a closed and connected subset of S0.

In order to make Λ0 a continuum, we first need to compactify
the set in the plane by adding the backward orbit of zero under
E2
λ. To do so, we first compactify each curve ĥ0, ĥ1, the boundary

curves of S0, and all the curves ∂Lk by adding their endpoints at
infinity. Then, we identify the endpoints at infinity with E−2

λ (0),
E−4
λ (0), and so on.
Let Γ0 represent the compactification of Λ0. Γ0 is then a curve

obtained by joining the boundary of S0 and all the boundaries of
Ln by the endpoints at infinity. The density of ∪∂Ln allows us to
show that Γ0 will accumulate everywhere upon itself. By Montel’s
theorem, it follows that Γ0 does not separate the plane. To show
that Γ0 is indecomposable, we make use of the next theorem due
to S. B. Curry (see [2]).

Theorem 3.6. Suppose X is a one-dimensional nonseparating con-
tinuum which is the closure of a ray that limits upon itself. Then
X is indecomposable.

Similar arguments show that S1 yields an invariant set Λ1 whose
points have itinerary s10. Its compactification Γ1 is obtained after
adding the backward orbit of λ under E2

λ.
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4. General Case

After describing the construction of the case n = 2, the general
case follows after certain remarks on the orientation of the βk curves
and nested regions are made.

Notice that hn−1 is the only curve sent into h0, while all other
curves hk are sent onto hk+1 for k = 0, . . . , n − 2. Then let α be
the curve in the preimage of the piece of h0 from 0 to Enλ (0) that
is directly attached to the point En−1

λ (0).
Define βk as the curve among the preimage curves of α un-

der Ek+1−n
λ such that βk is the extension to the curve hk, k =

0, 1, . . . , n − 2. Each curve extends from Ek+1−n
λ (0) to infinity in

the right half plane. As before, ĥn−1 separates the complex plane
into H+ and H−.

Definition 4.1. For each k = 0, 1, . . . , n − 2, ĥk separates the
complex plane into two open and simply connected regions. Denote
by Ruk the region relative to ĥk with unbounded real part, and let
Rbk denote the region with bounded negative real part.

The orientation of each βk is given by the next proposition.

Proposition 4.2. Given λ and ĥ0, . . . , ĥn−1 as described above, λ
determines the orientation of every βk curve as follows:

(1) If Im En−1
λ (0) > 0, then βn−2 has the upper orientation.

Otherwise, if Im En−1
λ (0) < 0, then βn−2 has the lower

orientation.
(2) Recursively, the orientation of βk is the same as βk+1 if

0 ∈ Ruk+1. Otherwise, βk has the opposite orientation to
βk+1 if 0 ∈ Rbk+1.

Proof: The first part follows from Proposition 3.2 applied to
βn−2.

To determine the orientation for the rest of the βk curves, we
need to consider the location of the singular value in terms of the
extended curves. Assume we have determined the orientation of βj
for j = n−2, n−3, . . . , k+1. We wish to find the orientation for βk.
If 0 ∈ Ruk+1, then its preimage must be a region with unbounded
real part. That is, Eλ maps

Ruk −→ Ruk+1 and Rbk −→ Rbk+1,
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Figure 3. Tails and several preimages of α. Since
Im E2

λ(0) < 0, β1 has the lower orientation. As
0 ∈ Ru1 , β0 has also the lower orientation.

implying that βk must have the same orientation as βk+1. If 0 ∈
Rbk+1, then we have

Ruk −→ Rbk+1 and Rbk −→ Ruk+1

and βk must have an opposite orientation with respect to βk+1 as
above. �

Let γ be the suitable preimage of β0 and denote by δk the suitable
preimage of γ under Ek+1−n

λ . Then, γ and ĥn−1 bound the region
Sn−1, which is homeomorphic to a horizontal strip. Similarly, δk
and ĥk bound the horseshoe shaped region Sk (see Figure 3).

As in Section 3, the orientation of βk determines where δk lies
with respect to Ruk and Rbk, but is not relevant in the construction.
To exclude the possibility of nested fundamental regions we need
the generalization of Proposition 3.4.

Proposition 4.3. Given λ, let S0, S1, . . . , Sn−1 be the regions de-
fined as above. Then no nested regions can occur, that is, for any
j, k = 0, 1, . . . , n− 1, Sk * Sj , if j 6= k.
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Proof: We proceed by contradiction. Let 0 ≤ k < j ≤ n − 1.
First, assume Sk ⊂ Sj . Then, E−kλ maps the fundamental regions
as

Sk −→ S0 and Sj −→ Sj−k.

By assumption, Sj−k is a horseshoe region. To reach a contradic-
tion, we need to take another preimage and apply Proposition 3.4.

If Sj ⊂ Sk, the contradiction is straightforward, as this case
reduces to consider two horseshoe regions, the one with larger index
nested in the second. By applying Eλ a finite number of times, we
will obtain the strip Sn−1 contained inside a horseshoe region. �

Using the new set of fundamental regions and itineraries for the
nth case, we can easily define the invariant sets Λk and their com-
pactification. We summarize our results for the general case in the
next theorem.

Theorem 4.4. Let s denote an irregular periodic itinerary

s = 0s1 . . . sn−1

with sj 6= sk. Given n dynamical curves h0, h1, . . . , hn−1 as de-
scribed before, there exists a parameter λ ∈ C such that, if Λs rep-
resents the set of points with itinerary s under Eλ, then Λs is in-
variant under Enλ . Once Λs is compactified in the plane, it contains
an indecomposable continuum that does not separate the plane. In
general, these properties hold for each Λσk(s) with k = 0, 1, . . . , n−1.

5. Further Remarks

We can extend the results in [4] to obtain a picture of the dy-
namics of points in each Λk. By construction, there is a unique
fixed point pk for the map Enλ when restricted to each invariant
set. Thus, for any point z ∈ Λk − {pk}, its α-limit set is pk and its
ω-limit set is either the point at infinity or the orbit of Ekλ(0) under
the nth iterate of Eλ plus the point at infinity.

Little is known about the conjugacy classes of the invariants sets
found in [4] or those presented here. Related results are addressed
in [5] and [8] for a semilinear family that reproduces the dynamics
of Eλ and its topology.
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