Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

A PRODUCT THEOREM IN COHOMOLOGICAL DIMENSION FOR CYCLIC GROUPS AND METRIZABLE SPACES

LEONARD R. RUBIN AND PHILIP J. SCHAPIRO

ABSTRACT. Our main result is a product theorem in cohomological dimension for arbitrary metrizable spaces and groups that are direct sums of cyclic groups.

Theorem. Let $F = \bigoplus_{i \in R} F_i$ where for each $i \in R$, either $F_i = \mathbb{Z}$ or there exist $p_i \in \mathbb{P}$ and $k_i \in \mathbb{P}$ such that $F_i = \mathbb{Z}/p_i^{k_i}$. Then, $\dim_F X \times Y \leq \dim_F X + \dim_F Y$.

1. INTRODUCTION

For covering dimension, dim, it is a classical result [3, 4.1.21 and 4.1.3], that dim $X \times Y \leq \dim X + \dim Y$ for metrizable spaces X and Y. This logarithmic formula does not hold in general for cohomological dimension, dim_F, even when X and Y are compact and metrizable. (See Theorem 7 of [5].) So it is interesting to determine whether the logarithmic law,

 $\dim_F X \times Y \le \dim_F X + \dim_F Y$

holds for some groups F where X and Y are arbitrary metrizable spaces.

In this work we shall prove the following product theorem in cohomological dimension for metrizable spaces. Let \mathbb{P} designate the set of all primes.

²⁰⁰⁰ Mathematics Subject Classification. 54F45, 55M15.

Key words and phrases. cell-like map, cohomological dimension, cyclic group, G-acyclic resolution, logarithmic law, metrizable space, product theorem.

Theorem 1.1 (Product Theorem). Let $F = \bigoplus_{i \in R} F_i$ where for each $i \in R$, either $F_i = \mathbb{Z}$ or there exist $p_i \in \mathbb{P}$ and $k_i \in \mathbb{N}$ such that $F_i = \mathbb{Z}/p_i^{k_i}$. Suppose that $n \ge 0$, $m \ge 0$, X, Y are metrizable spaces, $\dim_F X \le n$, and $\dim_F Y \le m$. Then $\dim_F X \times Y \le n+m$.

2. Proof of Theorem

Recall that for a given abelian group F and metrizable space X, one says that X is F-acyclic if all the reduced Čech cohomology groups $\widetilde{H}^k(X; F)$ are trivial and that a map is called F-acyclic if each of its fibers is F-acyclic. We begin with Theorem 1.2 of [4].

Theorem 2.1. Let X be a metrizable space, $n \in \mathbb{N}$, and $p \in \mathbb{P}$. If $\dim_{\mathbb{Z}/p} X \leq n$, then there exists a metrizable space Z with $\dim Z \leq n$ and a proper surjective \mathbb{Z}/p -acyclic map of Z onto X.

Since the product of two cell-like sets is cell-like and hence acyclic with respect to any (abelian) coefficient group, the next result follows from the main theorem of [6].

Theorem 2.2. Let X be a metrizable space, $n \in \mathbb{N}$, and $p \in \mathbb{P}$. If $\dim_Z X \leq n$, then there exists a metrizable space Z with $\dim Z \leq n$ and a proper surjective \mathbb{Z} -acyclic map of Z onto X.

Lemma 2.3. Let A and B be metrizable continua.

- (a) If A and B are \mathbb{Z} -acyclic, then so is $A \times B$.
- (b) Let $p \in \mathbb{P}$. If A and B are \mathbb{Z}/p -acyclic, then so is $A \times B$.

Proof: From [7, Example 5.2.3, p. 220], one sees that the torsion product $\mathbb{Z} * \mathbb{Z} = 0$. That $\mathbb{Z}/p * \mathbb{Z}/p = 0$ can be found also in [7] (on page 221 near the bottom of the page). One then applies Exercise 6.E.5 [7, p. 360] to complete the proof.

Using theorems 2.1 and 2.2, Lemma 2.3, and the Vietoris-Begle mapping theorem, we get the next result.

Corollary 2.4. Let X and Y be metrizable spaces, $p \in \mathbb{P}$, and $F \in \{\mathbb{Z}, \mathbb{Z}/p\}$. Then $\dim_F X \times Y \leq \dim_F X + \dim_F Y$.

Let us mention that this result for $F = \mathbb{Z}$ originally was observed by R. Millspaugh and the first author. It also has come to the attention of others, e.g., [2, p. 1649].

For the next lemma, see the bottom of page 32 of [5].

288

Lemma 2.5. Let X be a metrizable space, $p \in \mathbb{P}$, and $k \in \mathbb{N}$. Then $\dim_{\mathbb{Z}/p^k} X = \dim_{\mathbb{Z}/p} X$.

We recall Corollary 2.7 of [1].

Lemma 2.6. Suppose X is a metrizable space and $F = \bigoplus_{i \in R} F_i$ is the direct sum of abelian groups F_i . Then

$$\dim_F X = \sup\{\dim_{F_i} X \mid i \in R\}.$$

Using the short exact sequence $0 \longrightarrow \mathbb{Z} \xrightarrow{\times p} \mathbb{Z} \longrightarrow \mathbb{Z}/p^k \longrightarrow 0$, one may readily obtain a proof of the following.

Lemma 2.7. For each $p \in \mathbb{P}$, $n \in \mathbb{N}$, and metrizable space X, $\dim_{\mathbb{Z}/p} X \leq \dim_{\mathbb{Z}} X$.

Proof of Theorem 1.1: If \mathbb{Z} is one of the summands, then apply lemmas 2.6 and 2.7 and Corollary 2.4 with $F = \mathbb{Z}$. Otherwise, apply lemmas 2.6 and 2.5, and then Corollary 2.4 with $F = \mathbb{Z}/p$ for an appropriate value of p.

Acknowledgment. The authors thank the referee for suggestions that helped improve the exposition of this paper.

References

- J. Dydak, Cohomological dimension and metrizable spaces, Trans. Amer. Math. Soc. 337 (1993), 219–234.
- [2] J. Dydak, Cohomological dimension and metrizable spaces II, Trans. Amer. Math. Soc. 348 (1996), 1647–1661.
- [3] R. Engelking, *Theory of Dimensions Finite and Infinite*. Lemgo, Germany: Heldermann Verlag, 1995.
- [4] A. Koyama and K. Yokoi, A unified approach of characterizations and resolutions for cohomological dimension modulo p, Tsukuba J. Math. 18 (1994), 247–282.
- [5] V. Kuzminov, Homological dimension theory, (Russian) Uspehi Mat. Nauk 23 (1968), no. 5 (143), 3–49. Russian Math. Surveys 23 (1968), no. 5, 1–45.
- [6] L. Rubin and P. Schapiro, Cell-like maps onto noncompact spaces of finite cohomological dimension, Topology Appl. 27 (1987), 177–186.
- [7] E. Spanier, Algebraic Topology. New York: McGraw-Hill, 1966.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OKLAHOMA, 601 ELM AVE., RM. 423, NORMAN, OK 73019

E-mail address: lrubin@ou.edu

Department of Mathematics, Langston University, Langston, OK 73050

E-mail address: pjschapiro@lunet.edu