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DENSE R
n’S IN n-MANIFOLDS

ALEXANDER SHIBAKOV

Abstract. We prove that every separable connected n-manifold
has a dense subspace homeomorphic to Rn, answering a ques-
tion asked by P. Nyikos during the 1998 Spring Topology Con-
ference in Fairfax, Virginia. We also prove a stronger version
of this fact for the case of compact manifolds.

In 1998, P. Nyikos asked whether every compact connected n-
manifold contained a dense subspace homeomorphic to Rn. The
purpose of this short note is to prove that this is indeed the case
even in the more general class of separable connected manifolds.
We also consider the question of whether it is possible to construct
this imbedding in such a way that it could be extended to the
boundary of the unit n-ball (where Bn ∼= R

n is a natural subspace)
in the case of compact connected manifolds. The latter question
was suggested by Jeff Norden.

We use standard topological notation and facts (see [4]). Bn will
denote the open unit ball {x ∈ Rn : ‖x‖ < 1 }. If X is a topological
space, X(n) will stand for the set of points of X with euclidean
neighborhoods of dimension n; A will denote the closure of A. All
manifolds are topological (i.e., carry no extra structure), possibly
with boundary; for a manifold M , the submanifold of its boundary
points is denoted by ∂M . We do not assume any separation axioms
in section 1. Elsewhere all spaces are metrizable.

This research was supported in part by the 2001–2002 TTU Faculty Research
Grant.

291



292 A. SHIBAKOV

1. Noncompact case

In this section we provide a simple answer to Nyikos’s question.
The following simple lemma is part of mathematical folklore, but
we give its proof here for the reader’s convenience.

Lemma 1. Let M be an n-manifold, let V ⊆M be homeomorphic
to Bn, and let x, y ∈ V . Then there exists a homeomorphism sx,y :
M →M such that sx,y(y) = x, and sx,y|M\V = id |M\V .

Proof: By the invariance of domain (see [4, Theorem 4.8.16]), V
is an open subset of M . By shrinking V we may assume that V is
homeomorphic to the closed unit ball. Now use the geometrically
obvious fact that any two points in the interior of the closed unit
ball can be swapped by a homeomorphism which does not move
the boundary. �

Lemma 2. Let M be a connected n-manifold without boundary,
and let i : Bn →M be an imbedding. Then for any 0 < ε < 1, any
x ∈ M there exists an imbedding ji,ε,x : Bn → M such that x ∈
ji,ε,x(Bn) and ji,ε,x|Bε = i|Bε, where Bε = {x ∈ Bn : ‖x‖ ≤ 1− ε }.

Proof: Consider the set

S = { y ∈M : there exists a ji,ε,y as above }.
Obviously, S is open. We will show that S is closed, thus finishing
the proof. Indeed, let x ∈ S. If x ∈ i(Bε), then there is nothing
to prove; otherwise, choose a x ∈ V ⊆ M homeomorphic to Bn

such that V ∩ i(Bε) = ∅. Pick a y ∈ IntV ∩ S and consider ji,ε,x =
sx,y ◦ ji,ε,y, where sx,y is as in Lemma 1. It is easy to check that
ji,ε,x is as desired. �

Theorem 1. Let X be a topological space such that X(n) is dense
in X, and is separable and connected. Then there exists a dense
open D ⊆ X such that D is homeomorphic to Rn.

Proof: By passing to X(n), it is enough to prove the theorem
in the case of X being a separable connected n-manifold without
boundary. Let 〈 rn : n ∈ ω 〉 be a countable dense subset of X. By
induction, one can build sequences 〈 jn : n ∈ ω 〉 and εn → 0 such
that the following properties hold (we use the notation introduced
in Lemma 2):
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(1) j0 : Bn → X is an imbedding such that r0 ∈ j0(Bε0);
(2) jn = jjn−1,εn,rn ; and
(3) rn ∈ jn(Bεn+1).

Now define i(x) = jn(x) provided x ∈ Bεn+1 . The properties of
jj,ε,x and (2) imply that i is 1–1 and continuous. Now (3) implies
that i : Bn → X is a dense imbedding. The fact that i(Bn) is open
follows from the invariance of domain. �

Corollary 1. A connected n-manifold M is separable iff it contains
a dense subspace homeomorphic to Rn.

2. Compact case

Let us now consider the following stronger version of the question
discussed in the previous section.

Question 1. Let M be a compact connected n-manifold. Is it
possible to find a mapping f : Bn → M such that f is onto, and
f | Bn is 1–1?

First, one should note that the construction in the previous sec-
tion does not necessarily lead to such a mapping. Indeed, the sub-
space of S2 obtained by throwing out a space homeomorphic to
the graph of sin 1/x, x ∈ (0, 1], together with the “limit segment”
{0} × [0, 1], is homeomorphic to B2. But no such homeomorphism
can be extended to B2, since otherwise the boundary of B2 (= S1)
would be mapped on a space which is not pathwise connected.

Below, we present a proof that the answer is yes. The proof
remains somewhat unsatisfactory in that it relies on several high-
powered results in manifold theory and lacks the simplicity of the
construction in section 1.

The first simple observation one can make is that the answer to
Question 1 is positive if M is triangulable. We will generalize this
observation in Lemma 3 below. Before we prove the lemma, let
us recall the definition of handlebody decomposition (see [2] for a
more general definition).

Definition 1. Let M be an n-manifold, M0 be a clean submanifold
of M . A handlebody decomposition of M on M0 is a representation
of M as a finite union

M0 ⊂M1 ⊂ · · · ⊂Mm = M
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by clean submanifolds such that, for each i, Hi = Mi \Mi−1

is a clean compact submanifold of Mi, and (Hi,Hi ∩ Mi−1) ∼=
(Bk, ∂Bk) × Bm−k for some k, 0 ≤ k ≤ m. Hi is called a han-
dle.

In the definition above, clean means that the manifold in ques-
tion is bi-collared in the larger manifold (i.e., an imbedding of the
smaller manifold can be extended to an imbedding of its product
with the reals).

Lemma 3. Let M be an n-manifold such that there exists a han-
dlebody decomposition of M on M0, where M0 is homeomorphic
to Bn. Then there exists an f that satisfies the requirements of
Question 1.

Proof: We prove the lemma by induction on the number of han-
dles. Suppose that whenever there is a handlebody decomposition

M0 ⊂M1 ⊂ · · · ⊂Mm−1 = M ′

we can find an f : Bn → M ′ as required by Question 1. As will
be seen from the proof below, we can require that f be 1–1 on
any given small T ⊂ Sn−1 = Bn \ Bn, where T is homeomorphic
to Bn−1 and its boundary is bi-collared (the latter can always be
achieved by shrinking T ). Now let M = M ′ ∪ H, where H is a
handle. By Lemma 4, we can assume that f maps the cone CBn−1

onto M ′, that f is 1–1 on the “base” (∼= Bn−1) of the cone, and
that the image of the base is in ∂H. Again, by shrinking T we
can assume that the boundary of T is bi-collared in ∂H; therefore,
Lemma 4 allows us to assume that there exists a 1–1 mapping
g : CBn−1 → H such that the image of the base under g is exactly
T . Since any homeomorphism of the base of the cone onto itself can
be extended to the whole cone, we can also assume, by changing
g, that f and g are the same on the base. Now “gluing together”
f and g provides the desired map f ∪ g : SBn−1 → M , where
SBn−1 ∼= Bn denotes the suspension of Bn−1. �

The proof above uses the following simple lemma, which shows
that a “hole in the skin of Bn” can be “straightened out” if the
hole is bi-collared in the skin.

Lemma 4. Let T be a subset of Sn−1 = Bn \Bn homeomorphic to
Bn−1 whose boundary is bi-collared in Sn−1. Then there exists a
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homeomorphism h : CBn−1 → Bn such that the image of the base
of the cone under h is T .

Proof: It is easy to see that it is enough to prove the existence
of a homeomorphism h : Bn → Bn such that the image of the
“upper hemisphere,” { (x1, . . . , xn) ∈ Sn−1 : xi ≥ 0 } is T . But the
existence of such h on Sn−1 follows from the generalized Schoenflies
Theorem (see [1, Theorem 19.11]), and the desired homeomorphism
can be obtained by extending h radially to the whole Bn. �

Lemma 3 will be used to handle the majority of cases for which
Question 1 has an affirmative answer. In the case of dimension 4,
however, we need a different approach (since the general handle-
body decomposition results of [2] fail in dimension 4). The following
proposition will be used to handle this case.

Lemma 5. Let X be a compact space and S ⊂ X be a closed
subspace of X such that S is countable, and X \ S is a connected
n-manifold, n ≥ 3 which is also a simplicial complex. Then there
is an f as in Question 1.

Proof: We will sketch a proof only for the case of S being a single
point. The general proof is similar but it requires an induction on
the Cantor-Bendixson index of S and is not used in the sequel.

From now on assume that S = {z}. Then it is easy to see that
all the conditions of Lemma 6 are satisfied for M = X \ {z} so
there exists an f : Bn × [0, 1) → X \ {z} such that f is onto
and f | Bn × (0, 1) is 1–1. Since the “tubes” of Lemma 6 form a
locally finite collection, it is possible to extend f to a one point
compactification of its domain. �

Lemma 6. Let a triangulation K = {σi : i ∈ ω } of a connected
n-manifold M , n ≥ 3, have the following property: for any k ∈ ω
there exists a connected open set U ⊂ M such that all but finitely
many simplices of K are in U and

⋃
{σi : i ≤ k } ⊂ M \ U .

Then there exists an f : Bn × [0, 1) → M such that f is onto and
f | Bn × (0, 1) is 1–1.

Proof: It will be more convenient to build an f : Bn×[0,∞)→M
with similar properties. The construction below also ensures that
the family { f(Bn × [k, k + 1] }∞k=0 is locally finite (this is used in
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Lemma 5). The idea is to build the “centerline” of the cylinder
first.

Begin by constructing a path p : [0,∞)→ M with the property
that p([k+ 1,∞))∩ σk = ∅ and p(mk) = “the baricenter of σk” for
some mk ∈ [0,∞). This can be done by induction on k, using the
property of K stated in the lemma and path-connectedness of M .
Now one can easily find a piecewise linear q : [0,∞) → M with
the same properties as p. (It is enough to observe that for any
k ∈ ω there exists a piecewise linear qk : [k, k + 1]→ M which lies
inside the simplices hit by p([k, k+ 1]), hits the baricenter of every
simplex hit by p([k, k+1]), and starts and ends at p(k) and p(k+1),
respectively.) Using the fact that M is a manifold, we can modify q
in an arbitrarily small way to assume that q does not intersect the
(n − 2)-skeleton of K. A similar modification, together with the
fact that dimM ≥ 3, will ensure that no whole “segment” of q lies
inside the (n− 1)-skeleton of K and that q is 1-1 and goes through
(the interior of) every n-simplex of K at least once. Finally, we
can assume that for every σ ∈ K the set q−1(σ) is a collection of
finitely many nondegenerate intervals. (Finiteness follows from the
piecewise linearity of q and the fact that K forms a locally finite
cover; nondegeneracy can be achieved by “tweaking” q.)

The construction outlined above leads to a piecewise linear path
q : [0,∞)→M and a strictly increasing sequence rk ∈ [0,∞) such
that for any σ ∈ K the set q−1(σ) is a disjoint union of finitely
many intervals of the form [ri, ri+1]. Note also that every q(ri) lies
in the interior of an (n− 1)-simplex of K and that q(ri) 6= q(rj) for
i 6= j.

Now fix an arbitrary n-simplex σ ∈ K and let rk1 , . . . , rkm list
all the points ri such that q((ri, ri+1)) ⊂ σ. Let fkj : Bn → σ

denote the imbeddings built in Lemma 7 where we put q0
i = q(rki),

q1
i = q(rki+1). The collection of fk’s has the following properties:

(1) each fk : Bn →M is an imbedding and
⋃∞
k=0 fk(Bn) = M ;

(2) fi(Bn) ∩ fj(Bn) = ∅ for i 6= j;
(3) for any k ∈ ω there exists a T ⊂M homeomorphic to Bn−1

which is bicollared in both fk(Sn−1) and fk+1(Sn−1); the
existence of such T follows from the fact that fk(Sn−1) ∩
fk+1(Sn−1) contains a neighborhood of q(rk+1), which is
open in the (n− 1)-skeleton of K.
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Finally, using a construction identical to that of Lemma 3, we
can build the required f : Bn × [0,∞) → M by induction so that
f |Bn× [0, k] is obtained by “gluing” the appropriate modifications
of f0, . . . , fk−1.

Note that the images of fk’s form a locally finite decomposition
of M into n-balls. Such decomposition is also, of course, provided
by K. The reason for the somewhat tedious construction above lies
in the need for an infinite “string” of touching n-balls (see property
(3) above) which K may not contain (see also Question 2). �

The next lemma shows that every n-simplex can be represented
as a finite union of tubes with prescribed “entrance” and “exit”
points.

Lemma 7. Let σ be an n-dimensional simplex, n ≥ 3, qνi , i =
1, . . . , k, and ν = 0, 1 be disjoint points in ∂σ. Then there exist
imbeddings fi : Bn → σ, i = 1, . . . , k such that

⋃
i fi(Bn) = σ,

fi(Bn)∩ fj(Bn) = ∅ for i 6= j, and fi(Bn) contains an open (in σ)
neighborhood of {q0

i , q
1
i } for every i = 1, . . . , k.

Proof: It is not difficult to come up with a homeomorphism of σ
onto an n-dimensional cube in such a way that q0

i lies “directly be-
neath” q1

i . Cutting the cube into “prisms” and taking their preim-
ages under the homeomorphism finishes the construction. �

Theorem 2. Let M be a compact connected n-manifold. Then
there exists a mapping f : Bn →M such that f is onto and f | Bn

is 1–1.

Proof: It follows from [2, Theorem III.2.1] that in case of dimM ≤
3 or dimM ≥ 6, M has a handlebody decomposition. The results
of [3] imply the existence of such a decomposition in dimension 5.
Lemma 3 then finishes the proof. When dimM = 4, Theorem 2.2.3
of [3] implies that M \ {z} is smoothable (and thus triangulable).
Now an application of Lemma 5 completes the proof. �

It is natural to ask for a more combinatorial proof of Lemma 6
which leads to the following question. Let X be a traingulated
connected n-manifold. For the question below, define the graph of
the triangulation by taking the n-simplices of the triangulation as
vertices and adding an edge connecting every pair of n-simplices
that have a common (n− 1)-face.



298 A. SHIBAKOV

Question 2. In the situation of Lemma 6, does there exist a sub-
division K ′ of K whose graph is Hamiltonian, i.e., it admits a path
that goes through every vertex (of the graph) exactly once?

The author does not know the answer to the question above for
dimensions higher than 3.
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