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ON THE NON-NORMALITY OF βX \ {p} FOR
NON-DISCRETE SPACES X

JUN TERASAWA

Abstract. For a non-compact metrizable space X without
isolated points and a point p ∈ βX \X, βX \ {p} is shown to
be non-normal in the following cases: (1) dimX = 0; (2) p is
a remote point.

As is pointed out in [4, Question 13, p. 105], it is difficult to
determine whether βω\{p} is normal or not for a point p ∈ βω\ω =
ω∗ (obviously, βω\{p} is normal for any p ∈ ω∗ iff ω∗\{p} is normal
for any p ∈ ω∗). Under CH, it is known to be non-normal [9], [12],
but, without CH or under the negation of CH, we seem to know
only very little.

Here, deviating a bit from this central interest, we study βX \
{p} for non-discrete spaces X in ZFC and show the following two
theorems. These extend S. Logunov’s recent results [5], [6], which
have an additional assumption that X is separable.

Theorem 1. If X is a non-compact, metrizable, strongly zero-
dimensional space without isolated points and p ∈ βX \ X is an
arbitrary point, then βX \ {p} is not normal.

Theorem 2. If X is a non-compact metrizable space without iso-
lated points and p ∈ βX \ X is an arbitrary remote point, then
βX \ {p} is not normal.

2000 Mathematics Subject Classification. 54D15, 54D40, 54E35, 54G05.
Key words and phrases. butterfly point, metrizable, normal, order, π-base,

regular base, remainder, remote point, Stone-Čech compactification, strongly
zero-dimensional.

335



336 J. TERASAWA

A point p ∈ βX \X is called a remote point of X if it does not
belong to the closure of any nowhere dense subset of X. It is known
[2] that every non-compact metrizable space has at least 2c remote
points.

B. E. Šapirovskĭı [10, p. 1060] called a point x ∈ X a butterfly
point (or b-point) of X if there are two closed sets of X such that
(a) each of them accumulates at x, and (b) they meet at exactly
the point x.

Obviously, if X is not compact and x ∈ βX \ X is a butterfly
point of βX, then βX \ {x} is not normal. Conversely, if Z is
normal and Z \ {x} is not normal, then x is a butterfly point of
Z. Therefore, the point p in each of our theorems is a butterfly
point of βX. Actually, we will show that p is also a butterfly point
of βX \ X. However, we do not know whether βX \ (X ∪ {p}) is
non-normal or not, even under the additional assumption that X
is locally compact.

1. Proof of Theorem 1

Throughout, we will use the symbol A∗ =
⋃
{S : S ∈ A} for

a family A of subsets of X. Also the closure operation Cl will be
always taken in βX unless otherwise specified.

LetX be any non-compact, metrizable, strongly-zero-dimensional
space without isolated points. Then we note that X has a base
B = {B,C, . . . } consisting of nonempty clopen sets, each B being
associated with three sets B(i) ∈ B, i = 1, 2, 3, such that

(1) B ⊃ B(i) and B(i) ∩B(j) = ∅ for i 6= j;
(2) if B  C, then either B ⊂ C(i) for some i or B∩

⋃
iC

(i) = ∅;
(3) for each B,C, either B ∩ C = ∅, B ⊂ C, or B ⊃ C;
(4) each B is contained in only finitely many members of B.

In fact, first take any disjoint open cover B1 of diameter ≤ 1.
Since X has no isolated points, each B ∈ B1 is covered by infinitely
many disjoint open sets of diameter ≤ 1/2. They form, with B

running over B1, a cover B2 of X. The sets B(i) are taken arbitrarily
from the cover of B. And each B ∈ B2 is covered by infinitely many
disjoint open sets of diameter ≤ 1/3. Proceeding in this way, we
obtain a base B =

⋃
n Bn which satisfies the conditions (1) through

(4).
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Let us take and fix any point p ∈ βX \X. We will show that p
is a butterfly point of βX.

Now consider the collection U of all disjoint open covers σ ⊂ B
of X.

We may suppose that ClB 63 p for any B ∈ B, since B \ {B ∈
B : ClB 3 p} is also a base of X and satisfies (1) through (4).

The point p helps us introduce a linear order in U (see [5], [6]).
That is, two elements σ and τ are considered equivalent, written
σ ∼ τ , if p ∈ Cl(σ ∩ τ)∗. And define

σ ≤ τ iff p ∈ Cl(σ | τ)∗,

where we let σ | τ = {B ∈ σ : B ⊂ C for some C ∈ τ}. The fact
that this order is well-defined on equivalence classes follows from
the facts that each σ ∈ U is a disjoint open cover of X, and that
Cl δ∗ ∩ Cl(σ \ δ)∗ = ∅ for any δ ⊂ σ. The linearity of the order
(that is, either σ ≤ τ or σ ≥ τ occurs for any σ, τ) follows from
condition (3). The details are as follows.

Lemma 1. (i) σ ∼ τ ∧ τ ∼ π =⇒ σ ∼ π,
(ii) σ ≤ τ ∧ τ ∼ π =⇒ σ ≤ π,
(iii) σ ∼ υ ∧ σ ≤ τ =⇒ υ ≤ τ ,
(iv) σ ≤ τ ∧ τ ≤ π =⇒ σ ≤ π,
(v) σ ≤ τ ∧ τ ≤ σ =⇒ σ ∼ τ ,
(vi) σ 6≤ τ =⇒ τ ≤ σ.

Proof: (i). Since p ∈ Cl(σ∩τ)∗ and p ∈ Cl(τ∩π)∗, it follows that
p ∈ Cl

(
(σ∩τ)∗∩(τ∩π)∗

)
. Note that (σ∩τ)∗∩(τ∩π)∗ = (σ∩τ∩π)∗

because τ is a disjoint cover. Now (σ ∩ τ ∩ π)∗ ⊂ (σ ∩ π)∗ implies
p ∈ Cl(σ ∩ π)∗.

(ii). Let τ ′ = {C ∈ τ : C contains some B ∈ σ | τ}. Then (τ ′)∗ ⊃
(σ | τ)∗ implies p ∈ Cl(τ ′)∗. This further implies p ∈ Cl

(
(τ ′)∗ ∩ (τ ∩

π)∗
)

= Cl(τ ′ ∩ τ ∩π)∗ = Cl(τ ′ ∩π)∗ and p ∈ Cl
(
(σ | τ)∗ ∩ (τ ′ ∩π)∗

)
.

Since τ is disjoint, it follows that (σ | τ)∗ ∩ (τ ′ ∩ π)∗ ⊂ {B ∈ σ | τ :
B is contained in some C ∈ τ ′ ∩ π}∗. The latter set is included
in {B ∈ σ : B is contained in some C ∈ τ ∩ π}∗ ⊂ {B ∈ σ :
B is contained in some C ∈ π}∗ = (σ |π)∗.

(iii). Since p ∈ Cl(σ ∩ υ)∗, it follows that p ∈ Cl
(
(σ | τ)∗ ∩ (σ ∩

υ)∗
)

= Cl((σ | τ) ∩ υ)∗. It is obvious that (σ | τ) ∩ υ ⊂ υ | τ .
(iv). Let τ ′ = {C ∈ τ : C contains some B ∈ σ | τ}. Then since

p ∈ Cl(σ | τ)∗ and p ∈ Cl(τ |π)∗, it follows that p ∈ Cl
(
(σ | τ)∗ ∩



338 J. TERASAWA

(τ ′)∗ ∩ (τ |π)∗
)

= Cl
(
(σ | τ)∗ ∩ (τ ′ ∩ (τ |π))∗

)
. Since τ is disjoint,

the latter set is included in {B ∈ σ | τ : B is contained in some C ∈
τ ′∩(τ |π)}∗ ⊂ {B ∈ σ : B is contained in some C ∈ τ |π}∗ ⊂ {B ∈
σ : B is contained in some D ∈ π}∗ = (σ |π)∗.

(v). This is seen by noting (σ | τ)∗ ∩ (τ |σ)∗ ⊂ (σ ∩ τ)∗.
(vi). Since p 6∈ Cl(σ | τ)∗, it follows that p ∈ Cl(σ \ σ | τ)∗. Take

any neighborhood O of p and suppose that B ∈ σ \ σ | τ meets O.
The open set B ∩ O meets some C ∈ τ . This means C meets B.
Since the inclusion B ⊂ C cannot happen, condition (3) implies
C ⊂ B and hence, C ∈ τ |σ. Thus, p ∈ Cl(τ |σ)∗. �

In the sequel, we will let symbols σ, τ, . . . denote both covers
and their equivalence classes. There won’t be any confusion.

Note that smaller σ’s are more important in the present argu-
ment. Obviously, if σ refines τ , then σ ≤ τ . Conversely, if σ ≤ τ ,
then there are ρ, ϕ ∈ U such that ρ ∼ σ, τ ∼ ϕ, ρ refines τ , and σ
refines ϕ.

For each σ ∈ U , take a closed subset

Hσ =
⋂
{Cl δ∗ : δ ⊂ σ and p ∈ Cl δ∗}

of βX \X. Note that Hσ is well-defined on the equivalence class of
σ; more precisely,

Lemma 2. If σ ≤ τ , then Hσ ⊂ Hτ .

Proof: Suppose σ ≤ τ , let x ∈ Hσ and take any ε ⊂ τ such that
p ∈ Cl ε∗. Let τ ′ be the set of C ∈ τ which contains some B ∈ σ | τ ,
and δ be the set of B ∈ σ | τ which is contained in some C ∈ ε∩ τ ′.
Note that p ∈ Cl

(
(ε ∩ τ ′)∗ ∩ (σ | τ)∗

)
. Since τ is disjoint, it follows

that (ε∩ τ ′)∗ ∩ (σ | τ)∗ ⊂ δ∗, and hence, that p ∈ Cl δ∗. This means
x ∈ Cl δ∗ because x ∈ Hσ, and x ∈ Cl ε∗ because ε∗ ⊃ δ∗, and
finally x ∈ Hτ because ε ⊂ τ is arbitrary. �

Lemma 3. Any neighborhood O of p in βX contains some Hσ.

Proof: Since dimβX = 0, we may suppose that the neighborhood
O is clopen. Then for any point x ∈ X, choose a neighborhood
B(x) ∈ B such that either B(x) ⊂ O or B(x) ∩ O = ∅, depending
on whether x belongs to O ∩X or not. By conditions (3) and (4),
the family {B(x) : x ∈ X} contains a disjoint open cover. Let σ
denote it. Then p ∈ Cl({B(x) : x ∈ O})∗ = Cl({B ∈ σ : B ⊂ O})∗.
Let δ = {B : B ⊂ O}. Obviously, Hσ ⊂ Cl δ∗ ⊂ O. �
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Lemma 4. For each equivalence class σ and i = 1, 2, 3, there is a
point rσ,i ∈ Hσ such that rσ,i ∈ Cl{B(i) : B ∈ τ}∗ for any τ ≤ σ.

Proof: It suffices to see that the collection

δ∗ δ ⊂ σ and p ∈ Cl δ∗

{B(i) : B ∈ τ}∗ τ ≤ σ
has the finite intersection property, that is, for each δ ⊂ σ satisfying
p ∈ Cl δ∗ and τ1, . . . , τn ≤ σ,

δ∗ ∩
n⋂
j=1

{B(i) : B ∈ τj}∗ 6= ∅.

Take any δ and τ1, . . . , τn, and, for each j, let σj be the subfamily
of σ consisting of sets each of which contains a member of τj |σ.
Since p ∈ Cl(τj |σ)∗, it follows that p ∈ Cl(σj)∗ and that p ∈
Cl
(
δ∗ ∩

⋂
j(σj)

∗) = Cl
(
δ ∩

⋂
j σj)

∗.
Take any S ∈ δ ∩

⋂
j σj . For each j, S contains a member of τj ,

and hence, by (3), is expressed as the union of some members of τj .
If S ∈ τj for all j, then there is nothing more to do because

S(i) ⊂ δ∗∩
⋂n
j=1{B(i) : B ∈ τj}∗. Otherwise, for each j with S 6∈ τj ,

since S(i) ⊂ S, τj contains a member which meets S(i). By (4), find
a maximal B1 ∈

⋃
{τj : S 6∈ τj} that meets S(i) (“maximal” in the

sense of set-inclusion). Since B1 ⊂ S, it follows from condition (2)
that B1 ⊂ S(i).

Next, if S or B1 ∈ τj for all j, then there is nothing more to do.
Otherwise, find a maximal B2 ∈

⋃
{τj : S,B1 /∈ τj} which meets

B
(i)
1 . Since B2∩B1 6= ∅, it follows from condition (3) that B2 ⊂ B1.

Hence, by (2), B2 ⊂ B(i)
1 .

Next consider B2 and proceed similarly. Then eventually this
process terminates because we are dealing with only finitely many
τj ’s. �

Now we are ready to complete the proof of Theorem 1.
For each i = 1, 2, 3, let

Ki = {rσ,i : σ ∈ U}.
Then, by our lemmas 3 and 4, p ∈ ClKi.

Take any σ. Then Ki \Hσ ⊂ {rτ,i : τ > σ} because rτ,i ∈ Hτ ⊂
Hσ for τ ≤ σ. Since rτ,i ∈ Cl{B(i) : B ∈ σ}∗ for σ < τ , it follows
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that Ki ⊂ Hσ∪Cl{B(i) : B ∈ σ}∗. This implies ClKi∩ClKj ⊂ Hσ

for i 6= j because Cl{B(i) : B ∈ σ}∗ ∩ Cl{B(i) : B ∈ σ}∗ = ∅ for
i 6= j by (2). Thus, ClKi ∩ ClKj =

⋂
σHσ = {p} by Lemma 3,

and p is a butterfly point of both βX and βX \X.
It might happen that, for some i, rσ,i = p for sufficiently small

σ such that p is not an accumulation point of Ki. But, by Lemma
4, there is at most one such i, so it does not matter; in fact, this
is the reason why we have constructed three sequences {rσ,i : σ},
i = 1, 2, 3.

2. Proof of Theorem 2

We prove Theorem 2 by modifiying the proof of the previous
section. But first we must clarify what the family B is in this case.

Let us begin with Arhangel’skii’s regular base for metrizable spa-
ces (see [3, 5.4.6]). A base G of a space X is called regular if, for any
point x ∈ X and any of its neighborhood U , there is a neighborhood
V ⊂ U of x such that only finitely many members of G meet both
V and X \U . If X is metrizable, then it has a regular base, defined
as the union of locally finite refinements of the open covers of X
consisting of all 1/(n+ 1)-neighborhoods, n = 0, 1, 2, . . . , of points.
Arhangel’skii shows that the converse to this is true, that is, every
T1-space having a regular base is metrizable, but we do not need it
here.

The following seems well-known (see [3, Lemma 5.4.3]).

Proposition 1. A metrizable space X has a σ-locally finite base
G =

⋃
Gi, called a regular base, such that every cover W ⊂ G has a

locally finite subcover.

Another of our devices is the following (see [6]). Here a family
A of subsets of a set E is said to densely cover E when ClX A∗ =
ClX E. Also note that we will call here the family A locally finite
if it is locally finite in the whole space X (that is, not just in the
union

⋃
A).

Proposition 2. For every locally finite familyW of nonempty open
sets, there is a locally finite family µ(W) of disjoint nonempty open
sets such that

(a) for every W ∈ W and U ∈ µ(W), either W ∩ U = ∅ or
W ⊃ U holds;
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(b) every W ∈ W is densely covered by a subfamily of µ(W).

Proof: For each finite subfamily ϕ ⊂ W, consider

Kϕ =
(⋂

ϕ
)
\ ClX

(⋃
(W \ ϕ)

)
,

and let µ(W) be the family of all nonempty Kϕ. µ(W) consists of
disjoint sets, because, for W ∈ ϕ \ ϕ′, Kϕ ⊂ W and Kϕ′ ∩W = ∅.
Also µ(W) is locally finite, because an open set which meets Kϕ

meets every W ∈ ϕ.
To see that µ(W) densely covers each member of W, take any

U ∈ W and x ∈ U . Further, take any open neighborhood (in X)
O ⊂ U of the point x. We may suppose that {W ∈ W : O∩W 6= ∅}
is a finite set. Let ϕ denote it. Obviously, ϕ 3 U . Note that
O∩ClXW = ∅ for every W /∈ ϕ. If O∩

⋂
ϕ 6= ∅, then O∩Kϕ 6= ∅.

If O ∩
⋂
ϕ = ∅, then find a set ϕ′ ⊂ ϕ such that U ∈ ϕ′ and

O ∩
⋂
ϕ′ 6= ∅, and O ∩

⋂
ϕ′ ∩W = ∅ for any W ∈ ϕ \ ϕ′. Then

Kϕ′ ⊂ U and O ∩Kϕ′ 6= ∅. �

Now we are ready to define the family B.
B is going to be a π-base of X and satisfy the conditions (1)

through (4), although now the following condition (1′) replaces (1):
(1′) B ⊃ ClX B(i) and ClX B(i) ∩ ClX B(j) = ∅ for i 6= j.
First of all, fix a regular base G =

⋃∞
n=0 Gn of X as in Proposition

1, and let B1 = µ(G0).
Since X contains no isolated points, each B ∈ B1 contains three

nonempty open sets B̃(1), B̃(2), B̃(3) such that B ⊃ ClX B̃(i) for each
i = 1, 2, 3, and ClX B̃(i) ∩ ClX B̃(j) = ∅ for i 6= j. Let C1 be the
family of all B̃(i). Then C1 is locally finite in X.

Now let B2 = µ(B1 ∪ C1 ∪ G1). For each B ∈ B1, there obviously
are B(i) ∈ B2 such that the condition (1′) is satisfied.

Next, each B ∈ B2 contains three nonempty open sets B̃(1), B̃(2),
B̃(3) such that B ⊃ ClX B̃(i) for each i = 1, 2, 3, and ClX B̃(i) ∩
ClX B̃(j) = ∅ for i 6= j. Let C2 be the family of all B̃(i), and
B3 = µ(B2 ∪ C2 ∪ G2).

Proceeding in this way, we obtain a family B =
⋃
n Bn which is

a π-base of X, and satisfies (1′), (2), (3) and (4).

Once we have taken a remote point p, the rest of the proof of
Theorem 2 is similar to that of Theorem 1. As before we remove
all B from B, if any, such that ClB 3 p.
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The collection U now consists of all locally finite disjoint families
σ ⊂ B which cover X densely, i.e., ClX σ∗ = X. The equivalence re-
lation and the order are defined in exactly the same way. Although
it is no longer true that Cl δ∗ ∩ Cl(σ \ δ)∗ = ∅ for δ ⊂ σ, we have
instead that if U and V are open sets of X and p ∈ ClU ∩ ClV ,
then p ∈ Cl(U ∩ V ) because p is a remote point. This is enough to
ensure the validity of the equivalence and the order relation.

Other modifications are equally minor. We mention only the
modified proof of Lemma 3.

Take open neighborhoods P, Q of the point p such that ClX Q ⊂
P ⊂ ClX P ⊂ O. Then for any point x ∈ X choose a neighbor-
hood G(x) ∈ G such that either G(x) ⊂ P or G(x) ∩ ClX Q = ∅,
depending on whether x belongs to ClX Q or not. We can assume
ClG(x) 63 p. The cover {G(x) : x ∈ X} has a locally finite subcover
π by Proposition 1. By conditions (3) and (4) and our construction,
a disjoint locally finite family σ ⊂ B is found such that σ refines π
and covers X densely (take σ(G) ⊂ B, for each G ∈ π, which covers
G densely, and consider maximal members of the family

⋃
{σ(G) :

G}). Then p ∈ Cl({G(x) : x ∈ ClX Q})∗ ⊂ Cl({B ∈ σ : B ⊂ P})∗.
Let δ = {B : B ⊂ P}. Obviously, Hσ ⊂ Cl δ∗ ⊂ O.

3. Remarks

Remark 1. The referee pointed out the following to the author.
A. B laszczyk and A. Szymański [1] show that every near point

p of a non-compact metrizable space X without isolated points is
a butterfly point of βX. Here p is called a near point of X if p
belongs to the closure of a closed discrete set ⊂ X.

According to the referee, suppose that p ∈ ClD for a closed dis-
crete subset D ⊂ X, and pick a discrete (in X) family {U(d) : d ∈
D} of closed neighborhoods U(d) of d. Then, for a neighborhood
base N at p,

H =
⋂
O∈N

Cl

[⋃
d∈O

U(d)

]
is a closed set of βX and accumulates at p, and moreover H∩ClD =
{p}.

A non-near point is called a far point. The referee’s point is
it would be interesting to know whether every far-but-not-remote
point is a butterfly point.
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Remark 2. Obviously, a minor modification of the foregoing es-
tablishes in ZFC that if p ∈ ClD \ D for a countable discrete set
D ⊂ ω∗, then p is a butterfly point of ω∗. And the proof yields also
that ω∗ \ {p} is not normal. This was probably what was meant by
“the best result so far” in [4, Question 13, p. 105].

Alan Dow told the author in a private communication that he
also knows of a ZFC point p with a similar property.

Remark 3. A really easy proof of the non-normality of βω \ {p}
under CH is actually given in [11, 3.30]; it shows, without recourse
to the P -points, that every p is a butterfly point of ω∗.

Remark 4. The readers should note that Logunov has published
two other papers in related topics (see [7], [8]).
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