## **Topology Proceedings**

Web: http://topology.auburn.edu/tp/

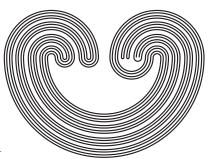
Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$ 

**ISSN:** 0146-4124

COPYRIGHT  $\bigodot$  by Topology Proceedings. All rights reserved.





# UNIVERSAL ULTRAMETRIC SPACE OF WEIGHT $\tau^{\omega}$

### JERRY E. VAUGHAN

ABSTRACT. We give an affirmative solution to a problem raised by A. J. Lemin by showing that any ultrametric space of weight at most  $\tau^{\omega}$  can be isometrically embedded into the ultrametric space  $(LW_{\tau}, \Delta)$  as constructed by A. J. Lemin and V. A. Lemin.

## 1. Introduction

A. J. Lemin and V. A. Lemin constructed for every cardinal  $\tau \geq 2$  an ultrametric space called  $(LW_{\tau}, \Delta)$  into which every ultrametric space of weight at most  $\tau$  can be isometrically embedded [2, Main Theorem] (such a space is called  $\tau$ -universal). The weight of  $(LW_{\tau}, \Delta)$  is  $\tau^{\omega}$ , and this fact raises the natural question [1, Problem 2]: Is  $(LW_{\tau}, \Delta)$  a  $\tau^{\omega}$ -universal space, i.e., can every ultrametric space of weight at most  $\tau^{\omega}$  be isometrically embedded into  $(LW_{\tau}, \Delta)$ ?

In this paper we answer this question in the affirmative by proving that  $(LW_{\tau}, \Delta)$  is indeed  $\tau^{\omega}$ -universal (Theorem 1.2).

Recall that a metric space (X,d) is called an *ultrametric space* provided the metric d satisfies the Strong Triangle Inequality: For all  $x,y,z\in X$ 

$$d(x,z) \leq \max\{d(x,y),d(y,z)\},$$

<sup>2000</sup> Mathematics Subject Classification. 03E10, 54A25, 54C25, 54E35. Key words and phrases. isometric embedding, isosceles property, ultrametric, weight.

or, equivalently, satisfies the following Isosceles Property: For all  $x,y,z\in X$ 

 $\triangle_{IP}(x,y,z)$ : Among the numbers  $\{d(x,y),d(y,z),d(x,z)\}$  two are equal and greater than or equal to the third.

**Definition 1.1** ([2]). The underlying set of  $(LW_{\tau}, \Delta)$  is the set of all functions f from the set  $\mathbb{Q}_+$  of positive rational numbers into  $\tau$ , which are eventually zero (i.e.,there exists a real number r such that f(x) = 0 for all x > r). The ultrametric  $\Delta$  is defined by  $\Delta(f,g) = \sup\{x \in \mathbb{Q}_+ : f(x) \neq g(x)\}.$ 

**Theorem 1.2.** Let  $\tau \geq 2$ . Then  $LW_{\tau}$  is  $\tau^{\omega}$ -universal.

We give a complete proof of Theorem 1.2 in this paper. Our proof of Theorem 1.2 follows the two cases used by the Lemins in their proof [2, Main Theorem] and differs from the Lemins' proof mainly in Case 1 where we use a new construction of certain functions in  $LW_{\tau}$  (see Lemma 1.3 below). Our proof also differs from the Lemins' proof in that we define the isometry directly on all of X as in [3], rather than first defining it on a dense subset as in [2], and we employ a different presentation of the use of the Isosceles Property.

**Lemma 1.3.** If  $b \geq 0, h \in LW_{\tau}$  and  $Y \subset LW_{\tau}$  with  $|Y| < \tau^{\omega}$ , then there exists  $f \in LW_{\tau}$  such that  $\Delta(f,h) = b$ , and for all  $y \in Y$ ,  $\Delta(h,y) \geq b$ .

Proof: If b=0 then f=h works; so we assume b>0. Put  $d_0=0$  and for  $n\geq 1$  pick an increasing sequence of positive irrational numbers  $(d_n)$  converging up to b. Let  $I_n$  denote the interval of rational numbers  $(d_n, d_n+1)\cap \mathbb{Q}_+$ . Since there are  $\tau^\omega$  functions with domain  $I_n$  and range  $\tau$ , and  $|Y|<\tau^\omega$ , we may pick a function  $g_n$  with domain  $I_n$  and range  $\tau$  such that  $g_n\neq y\!\upharpoonright\! I_n$  for all  $y\in Y\cup\{h\}$ . We define

$$f = \bigcup \{g_n : n \in \omega\} \cup h \upharpoonright [b, \infty).$$

Clearly,  $f \in LW_{\tau}$ , and  $\Delta(f,h) \leq b$ . Moreover,  $\Delta(f,y) \geq b$  for all  $y \in Y \cup \{h\}$  because f and g differ below g arbitrarily close to g. In particular,  $\Delta(f,h) = b$ .

#### 2. Proof of the Theorem

Let (X,d) be an ultrametric space with weight not more that  $\tau^{\omega}$ . It follows that the cardinality of X is no more that  $\tau^{\omega}$ ; so we may assume  $|X| = \tau^{\omega}$  and in a one-one fashion, well-order  $X = \{x_{\alpha} : \alpha < \tau^{\omega}\}$ . We want to isometrically embed X into  $(LW_{\tau}, \Delta)$ .

Assume we have defined  $f_{\alpha} \in LW_{\tau}$  for  $\alpha < \gamma$  such that the map  $x_{\alpha} \mapsto f_{\alpha}$  satisfies  $d(x_{\alpha}, x_{\beta}) = \Delta(f_{\alpha}, f_{\beta})$  for  $\alpha < \beta < \gamma$ . We define  $f_{\gamma}$  and show that the assignment  $x_{\gamma} \mapsto f_{\gamma}$  extends the isometry. First, (as in [2]), define

$$d_{\gamma} = \inf\{d(x_{\alpha}, x_{\gamma}) : \alpha < \gamma\}.$$

Case 1:  $d(x_{\gamma}, x_{\beta}) = d_{\gamma}$  for some  $\beta < \gamma$ . Let  $Y = \{f_{\alpha} : \alpha < \gamma\}$ . Thus,  $|Y| < \tau^{\omega}$ . So by Lemma 1.3, there exists  $f_{\gamma} \in LW_{\tau}$  such that  $\Delta(f_{\gamma}, f_{\beta}) = d_{\gamma}$ , and  $\Delta(f_{\gamma}, f_{\alpha}) \geq d_{\gamma}$  for all  $\alpha < \gamma$ . To see that the assignment  $x_{\gamma} \mapsto f_{\gamma}$  extends the isometry, we fix  $\alpha < \gamma$  and show that  $d(x_{\gamma}, x_{\alpha}) = \Delta(f_{\gamma}, f_{\alpha})$ . We may rename the following two sets of distances as indicated

$$\{d(x_{\gamma}, x_{\beta}), d(x_{\beta}, x_{\alpha}), d(x_{\gamma}, x_{\alpha})\} = \{d_{\gamma}, a, b\}$$

$$\{\Delta(f_{\gamma}, f_{\beta}), \Delta(f_{\beta}, f_{\alpha}), \Delta(f_{\gamma}, f_{\alpha})\} = \{d_{\gamma}, a, b'\}$$

because the first number in each set equals  $d_{\gamma}$  and the two middle numbers are equal by the Induction Hypothesis. We want to show that b=b'. If  $a< d_{\gamma}$  then by  $\triangle_{IP}(x_{\gamma},x_{\beta},x_{\alpha}),\ b=d_{\gamma}$ , and by  $\triangle_{IP}(f_{\gamma},f_{\beta},f_{\alpha}),\ b'=d_{\gamma}$ ; so b=b'. Similarly, if  $d_{\gamma}< a$  then a=b and a=b'; so b=b'. Finally, if  $d_{\gamma}=a$ , it does not follow in general that b=b', but in our case we also know that  $d_{\gamma}\leq b$  by definition of  $d_{\gamma}$ , and  $d_{\gamma}\leq b'$  by Lemma 1.3. Thus, by the isosceles property, we have  $d_{\gamma}=a=b$  and  $d_{\gamma}=a=b'$ ; so b=b'. Hence,  $d(x_{\gamma},x_{\alpha})=\Delta(f_{\gamma},f_{\alpha})$ .

Case 2:  $d_{\gamma} < d(x_{\gamma}, x_{\alpha})$  for all  $\alpha < \gamma$ . Thus, for every  $\epsilon > 0$  there exists  $\alpha < \gamma$  such that  $0 < d(x_{\gamma}, x_{\alpha}) - d_{\gamma} < \epsilon$ . Pick  $\alpha_1 < \gamma$  such that  $d(x_{\gamma}, x_{\alpha_1}) < d_{\gamma} + 1$ . Continue by induction to pick for each i > 1 an ordinal  $\alpha_i < \gamma$  such that

$$d(x_{\gamma}, x_{\alpha_i}) < \min\{\frac{1}{i}(d_{\gamma} + 1), \min\{d(x_{\gamma}, x_{\alpha_j}) : j < i\}\}.$$

Put  $b_i = d(x_{\gamma}, x_{\alpha_i})$  for all i. Then  $(b_i)$  is a strictly decreasing sequence of real numbers converging to  $d_{\gamma}$ . From  $x_{\alpha_i} \mapsto f_{\alpha_i}$ , define

$$f_{\gamma} = \bigcup \{ f_{\alpha_i} \upharpoonright (b_i, \infty) : i \ge 1 \} \cup \{ (x, 0) : x \in \mathbb{Q}_+ \text{ and } x \le d_{\gamma} \}.$$

To see that  $f_{\gamma}$  is a well defined function and an element of  $LW_{\tau}$ , it suffices to show that i < k implies  $f_{\alpha_i}(x) = f_{\alpha_k}(x)$  for all  $x > b_i$ , and hence to show  $\Delta(f_{\alpha_i}, f_{\alpha_k}) \leq b_i$ . To see this, note that  $\Delta_{IP}(x_{\alpha_i}, x_{\alpha_k}, x_{\gamma})$  implies  $d(x_{\alpha_i}, x_{\alpha_k}) = b_i$ ; hence, by the induction hypothesis we have, in fact,  $\Delta(f_{\alpha_i}, f_{\alpha_k}) = d(x_{\alpha_i}, x_{\alpha_k}) = b_i$ . Thus,  $f_{\gamma}$  is well defined, and clearly by definition,  $\Delta(f_{\gamma}, f_{\alpha_i}) \leq b_i$  for all i.

To see that the assignment  $x_{\gamma} \mapsto f_{\gamma}$  extends the isometry, we fix  $\alpha < \gamma$  and show that  $d(x_{\gamma}, x_{\alpha}) = \Delta(f_{\gamma}, f_{\alpha})$ . Choose i so large that  $b_i = d(x_{\gamma}, x_{\alpha_i}) < d(x_{\gamma}, x_{\alpha})$ . We may rename the following two sets of distances as indicated

$$\{d(x_{\gamma}, x_{\alpha}), d(x_{\alpha}, x_{\alpha_i}), d(x_{\gamma}, x_{\alpha_i})\} = \{c, a, b_i\}$$

$$\{\Delta(f_{\gamma}, f_{\alpha}), \Delta(f_{\alpha}, f_{\alpha_i}), \Delta(f_{\gamma}, f_{\alpha_i})\} = \{f, a, g\}$$

because the last number in the first set equals  $b_i$ , and the two middle numbers are equal by the induction hypothesis. We chose i so that  $b_i < c$  and hence, by  $\triangle_{IP}(x_\gamma, x_\alpha, x_{\alpha_i}), c = a$ . We also know  $g \le b_i < a$ ; hence, by  $\triangle_{IP}(f_\gamma, f_\alpha, f_{\alpha_i}), f = a$ . Thus, c = f, i.e.,  $d(x_\gamma, x_\alpha) = \triangle(f_\gamma, f_\alpha)$ , and this completes the proof.

Remark 2.1. Our result that  $(LW_{\tau}, \Delta)$  is  $\tau^{\omega}$ -universal renews interest in a problem raised by the Lemins [2, Problem 1]: does there exist a  $\tau$ -universal ultrametric space of weight  $\tau$ ? In [3], we gave a consistent, affirmative solution to this problem (we assumed the singular cardinal hypothesis), and in ZFC an affirmative solution for a proper class of cardinals  $\tau$  of countable cofinality. The problem, however, is not completely solved in ZFC.

#### References

- [1] A. J. Lemin, Imbedding of ultrametric spaces in Banach spaces, Lebesgue spaces, two-point products and  $\tau$ -universal spaces. Preprint.
- [2] A. J. Lemin and V. A. Lemin, On a universal ultrametric space, Topology Appl. 103 (2000), 339–345.
- [3] J. E. Vaughan, Universal ultrametric spaces of smallest weight, Topology Proc. 24 (1999), 611–619.

Department of Mathematics, University of North Carolina at Greensboro, Greensboro, NC  $27402\,$ 

 $E ext{-}mail\ address: waughanj@uncg.edu}$