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UNIVERSAL ULTRAMETRIC SPACE OF
WEIGHT τω

JERRY E. VAUGHAN

Abstract. We give an affirmative solution to a problem raised
by A. J. Lemin by showing that any ultrametric space of
weight at most τω can be isometrically embedded into the
ultrametric space (LWτ ,∆) as constructed by A. J. Lemin
and V. A. Lemin.

1. Introduction

A. J. Lemin and V. A. Lemin constructed for every cardinal
τ ≥ 2 an ultrametric space called (LWτ ,∆) into which every ul-
trametric space of weight at most τ can be isometrically embedded
[2, Main Theorem] (such a space is called τ -universal). The weight
of (LWτ ,∆) is τω, and this fact raises the natural question [1,
Problem 2]: Is (LWτ ,∆) a τω-universal space, i.e., can every ultra-
metric space of weight at most τω be isometrically embedded into
(LWτ ,∆)?

In this paper we answer this question in the affirmative by prov-
ing that (LWτ ,∆) is indeed τω-universal (Theorem 1.2).

Recall that a metric space (X, d) is called an ultrametric space
provided the metric d satisfies the Strong Triangle Inequality: For
all x, y, z ∈ X

d(x, z) ≤ max{d(x, y), d(y, z)},
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or, equivalently, satisfies the following Isosceles Property: For all
x, y, z ∈ X

4IP (x, y, z): Among the numbers {d(x, y), d(y, z), d(x, z)} two are
equal and greater than or equal to the third.

Definition 1.1 ([2]). The underlying set of (LWτ ,∆) is the set of
all functions f from the set Q+ of positive rational numbers into
τ , which are eventually zero (i.e.,there exists a real number r such
that f(x) = 0 for all x > r). The ultrametric ∆ is defined by
∆(f, g) = sup{x ∈ Q+ : f(x) 6= g(x)}.

Theorem 1.2. Let τ ≥ 2. Then LWτ is τω-universal.

We give a complete proof of Theorem 1.2 in this paper. Our
proof of Theorem 1.2 follows the two cases used by the Lemins
in their proof [2, Main Theorem] and differs from the Lemins’
proof mainly in Case 1 where we use a new construction of certain
functions in LWτ (see Lemma 1.3 below). Our proof also differs
from the Lemins’ proof in that we define the isometry directly on
all of X as in [3], rather than first defining it on a dense subset
as in [2], and we employ a different presentation of the use of the
Isosceles Property.

Lemma 1.3. If b ≥ 0, h ∈ LWτ and Y ⊂ LWτ with |Y | < τω,
then there exists f ∈ LWτ such that ∆(f, h) = b, and for all y ∈ Y ,
∆(h, y) ≥ b.

Proof: If b = 0 then f = h works; so we assume b > 0. Put d0 =
0 and for n ≥ 1 pick an increasing sequence of positive irrational
numbers (dn) converging up to b. Let In denote the interval of
rational numbers (dn, dn+1)∩Q+. Since there are τω functions with
domain In and range τ , and |Y | < τω, we may pick a function gn
with domain In and range τ such that gn 6= y�In for all y ∈ Y ∪{h}.
We define

f = ∪{gn : n ∈ ω} ∪ h�[b,∞).

Clearly, f ∈ LWτ , and ∆(f, h) ≤ b. Moreover, ∆(f, y) ≥ b for all
y ∈ Y ∪ {h} because f and y differ below b arbitrarily close to b.
In particular, ∆(f, h) = b. �
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2. Proof of the Theorem

Let (X, d) be an ultrametric space with weight not more that
τω. It follows that the cardinality of X is no more that τω; so
we may assume |X| = τω and in a one-one fashion, well-order
X = {xα : α < τω}. We want to isometrically embed X into
(LWτ ,∆).

Assume we have defined fα ∈ LWτ for α < γ such that the map
xα 7→ fα satisfies d(xα, xβ) = ∆(fα, fβ) for α < β < γ. We define
fγ and show that the assignment xγ 7→ fγ extends the isometry.
First, (as in [2]), define

dγ = inf{d(xα, xγ) : α < γ}.

Case 1: d(xγ , xβ) = dγ for some β < γ. Let Y = {fα : α < γ}.
Thus, |Y | < τω. So by Lemma 1.3, there exists fγ ∈ LWτ such that
∆(fγ , fβ) = dγ , and ∆(fγ , fα) ≥ dγ for all α < γ. To see that the
assignment xγ 7→ fγ extends the isometry, we fix α < γ and show
that d(xγ , xα) = ∆(fγ , fα). We may rename the following two sets
of distances as indicated

{d(xγ , xβ), d(xβ , xα), d(xγ , xα)} = {dγ , a, b}

{∆(fγ , fβ),∆(fβ , fα),∆(fγ , fα)} = {dγ , a, b′}

because the first number in each set equals dγ and the two middle
numbers are equal by the Induction Hypothesis. We want to show
that b = b′. If a < dγ then by 4IP (xγ , xβ, xα), b = dγ , and by
4IP (fγ , fβ, fα), b′ = dγ ; so b = b′. Similarly, if dγ < a then a = b
and a = b′; so b = b′. Finally, if dγ = a, it does not follow in
general that b = b′, but in our case we also know that dγ ≤ b by
definition of dγ , and dγ ≤ b′ by Lemma 1.3. Thus, by the isosceles
property, we have dγ = a = b and dγ = a = b′; so b = b′. Hence,
d(xγ , xα) = ∆(fγ , fα).

Case 2: dγ < d(xγ , xα) for all α < γ. Thus, for every ε > 0 there
exists α < γ such that 0 < d(xγ , xα) − dγ < ε. Pick α1 < γ such
that d(xγ , xα1) < dγ + 1. Continue by induction to pick for each
i > 1 an ordinal αi < γ such that

d(xγ , xαi) < min{1
i
(dγ + 1),min{d(xγ , xαj ) : j < i}}.
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Put bi = d(xγ , xαi) for all i. Then (bi) is a strictly decreasing
sequence of real numbers converging to dγ . From xαi 7→ fαi , define

fγ = ∪{fαi�(bi,∞) : i ≥ 1} ∪ {(x, 0) : x ∈ Q+ and x ≤ dγ}.

To see that fγ is a well defined function and an element of LWτ ,
it suffices to show that i < k implies fαi(x) = fαk(x) for all x >
bi, and hence to show ∆(fαi , fαk) ≤ bi. To see this, note that
4IP (xαi , xαk , xγ) implies d(xαi , xαk) = bi; hence, by the induction
hypothesis we have, in fact, ∆(fαi , fαk) = d(xαi , xαk) = bi. Thus,
fγ is well defined, and clearly by definition, ∆(fγ , fαi) ≤ bi for all
i.

To see that the assignment xγ 7→ fγ extends the isometry, we fix
α < γ and show that d(xγ , xα) = ∆(fγ , fα). Choose i so large that
bi = d(xγ , xαi) < d(xγ , xα). We may rename the following two sets
of distances as indicated

{d(xγ , xα), d(xα, xαi), d(xγ , xαi)} = {c, a, bi}

{∆(fγ , fα),∆(fα, fαi),∆(fγ , fαi)} = {f, a, g}
because the last number in the first set equals bi, and the two
middle numbers are equal by the induction hypothesis. We chose i
so that bi < c and hence, by 4IP (xγ , xα, xαi), c = a. We also know
g ≤ bi < a; hence, by 4IP (fγ , fα, fαi), f = a. Thus, c = f , i.e.,
d(xγ , xα) = ∆(fγ , fα), and this completes the proof.

Remark 2.1. Our result that (LWτ ,∆) is τω-universal renews in-
terest in a problem raised by the Lemins [2, Problem 1]: does there
exist a τ -universal ultrametric space of weight τ? In [3], we gave
a consistent, affirmative solution to this problem (we assumed the
singular cardinal hypothesis), and in ZFC an affirmative solution
for a proper class of cardinals τ of countable cofinality. The prob-
lem, however, is not completely solved in ZFC.
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