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ACTION OF CONVERGENCE GROUPS

NANDITA RATH

ABSTRACT. This is a preliminary report on the continuous
action of convergence groups on convergence spaces. In par-
ticular, the convergence structure on the homeomorphism
group and its continuous action are investigated in this pa-
per. Also, attempts have been made to establish a one-to-one
correspondence between continuous action of a convergence
group and its homeomorphic representation on a convergence
space.

1. INTRODUCTION

In algebra, a homomorphism of a group G into the symmetric
group S(2) of all permutations on the phase space €2 is known as
a permutation representation of G on Q [5]. It is also known
that there exists a one-to-one correspondence between the permu-
tation representations of G on €2 and the actions of G on . If
Q) = X is a compact or a locally compact topological space and G
is a topological group, then there is a one-to-one correspondence
between continuous homomorphisms of a topological group G into
the homeomorphism group H(X) and the continuous group actions
of G on X [12]. However, for general topological spaces this one-to-
one correspondence is not available, since in such case H(X) does
not have a group topology which is admissible [11].
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So in establishing such a one-to-one correspondence between con-
tinuous representations and continuous group actions of a topolog-
ical group, the question of existence of an appropriate geometric
structure on X which induces an admissible and compatible struc-
ture on H(X) is crucial. Recently, Di Concilio [4] has proved that
a Tychonoff space X, which is also rim-compact induces an admis-
sible and compatible topological structure on H(X). This result
can be further generalized by replacing the topology by a special
type of convergence structure [10]. In Section 4 of this paper the
author tries to investigate the nature of convergence structure on
H(X) corresponding to the existing convergence structure on X. In
Section 5 attempts have been made to establish a one-to-one corre-
spondence between the homeomorphic representations and contin-
uous group actions of a special type of convergence group, called
limit group.

2. PRELIMINARIES

For basic definitions and terminologies related to filters the reader
is referred to [14], though a few of the definitions and notations,
which are frequently used will be mentioned here. Let F(X) de-
note the collection of all filters on X and P(X) denote all the
subsets of X. If B is a base [14] of the filter F, then F is said to be
generated by B and we write F = [B]. For each x € X, & = [{z}]
is the fixed ultra filter containing {z} . If 7 and G € F(X) and
FNG +# ¢forall FeF,GeG, then FV G denotes the filter
generated by {FNG: Fe€ Fand Ge G}. fIF € Fand G€ G
such that FFNG = ¢, then we say that F VG fails to exist . If (X, .)
is a group, then we can define a binary operation ‘o’ on F(X) as
FG=[{FG: FeFandGeg],and F ! =[{F1:FeF}.
However, in general, (F(X) , o) is a monoid, not a group , since
¢ > FF~! where e is the identity element in (X .).

For aset X, consider ¢ C F(X) xX. Conventionally, for (F,x) €
F(X)xX, we write F —% z, and say that F ‘q — converges to
x 7, whenever (F,z) € gq.

Definition 2.1. Let X and ¢ be as above. For F, G € F(X) and
x € X, consider the following conditions.
(c1) @ =7 x for each z € X.



ACTION OF CONVERGENCE GROUPS 603

(c2) F<Gand F -2 = G -9 x.

(c3) F=lo = Fni—9zx.

(ch) F=92,G—-lz= FNG -1z

(c5) If for each ultrafilter G > F, G —9 z, then F —1 x.

(ce) For each =z € X, vy(x) —9 x, where v () = {F : F =9 x}.

(c7) For each z € X, and for each V' € v (x), 3 W € yy(x) such
that W CVandyeW =V eyy(y) .

The function ¢ is called a preconvergence structure (respect-
ively, convergence,limit, pseudotopology, pretopology, topology) if
it satisfies (c1) — (c2) (respectively, (c1) — (e3),(c1) — (ca), (c1) —
(c5), (e1) = (¢6),(c1) — (c7)). It should be noted that all these ax-
ioms are not independent. For example, (cj)and (cq) imply (c3)
and (cz)and (cg) imply (c5).Convergence space, limit space, pseu-
dotopological space, pretopological space and topological space are
defined likewise. More details on convergence spaces and related
topics can be found in [9]. Note that limit spaces used to be called
convergence spaces by Binz [2], Park [10] and several contemporary
topologists.

For any z € X, let ¢(z) ={F e F(X) : F -7 x}.

A convergence space (X, q) is said to be

- Ty or Hausdor ff iff x =y, whenever any filter F —9 x,y.

- Compact iff each ultrafilter on X converges to at least one point
in X.

A mapping f : (X,q) — (Y,p) is continuous iff whenever
F —9 z, f(F) =P f(z). Furthermore, a continuous mapping f
is a homeomorphism, if it is bijective and f~! is also continuous.
The set H(X) (respectively, C(X)) denotes the set of all self home-
omorphisms (respectively, continuous functions) on X. H(X) forms
a group with respect to composition of maps.

Next, another important category of spaces is introduced which
exists in literature mostly as a means to generalize the comple-
tion theory for uniform spaces [13]. For a detailed information on
Cauchy spaces the reader is referred to [9].

Definition 2.2. Let C be a set of filters on a set X. The pair
(X, 0) is called a Cauchy space, if

(1) ¢ € C, for each x € X.

(2) FeC and F <G implies G € C.

(3) F, G € C and F VG exists imply F NG € C.
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Associated with each Cauchy structure C on X, there is a
convergence structure g¢., which is defined as F —% gz, iff
FnNniz e C. A Cauchy space is said to be complete, if every
F € C is ge.-convergent. Note that every convergence space is
not a Cauchy space. A convergence structure ¢ on X is said to be
Cauchy compatible, if there exists a Cauchy structure on X such
that ¢ = q..

Lemma 2.3. [9] A convergence space (X, q) is Cauchy compatible
if and only if it is a limit space and for any x # y € X, either
q(x) = q(y) or q(z) Nq(y) = ¢.(+)

3. CONVERGENCE GROUPS

Convergence groups, especially limit groups have been studied
in detail in the last half century. For clarity of notations and ter-
minologies the reader is referred to [6, 8, 10].

Definition 3.1. A triplet (X, ¢, -) is a pre — convergence group, if

(cg1) (X,q) is a pre-convergence space

(cg2) (X, ) is a group

(cg3) F —4 x and G —? gy implies that FG~! —4 xy~1.

Note that the binary operation ‘.” and the inverse operation in
the group (X, .) are continuous with respect to the pre-convergence
structure gq. A pre-convergence group is a convergence group (re-
spectively, limit group, pseudotopological group, pretopological
group, topological group), iff (X, q) is a convergence space (respec-
tively, limit space, pseudotopological space, pretopological space,
topological space).
Lemma 3.2. [8] If e denotes the identity element in this group,
then zvg(e) = vy(e)x = vy(x), Vo € X.
Lemma 3.3. [8] The left translation x — ax, for a fized a € G
(respectively, the right translation x — xa), the map x — x~' and
the inner automorphisms x — axa™'are all homeomorphisms of X
onto X.

The proof of the lemma follows from (cgs). Note that every pre-
convergence group is homogeneous. So some of the local properties
can be proved at a single point.

Lemma 3.4. The property (x) in Lemma 2.3. always holds in a
pre-convergence group (X, q,-).
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Proof. Suppose q(x)Nq(y) # ¢ and let F be such that F —? x and
F —9y. Let G € q(x). Then, F~1G —7 e, where e is the identity
in X. This implies that FF G — y, since F —9 y. Therefore
G = éG —17 y. Similarly, we can show that ¢(y) C ¢(x). O

Lemma 3.5. Let F, G € F(X), where (X,-) is a group. Then
F VG exists implies that FNG > FG™1G.

Proof. Let FF € F and G1,G2 € G. Since Gy N Gy # o,
F C FGl_lGQ. Also, F V G exists implies that Gy C FGl_ng.
This proves the lemma. ]

Lemma 3.6. [14] £ is an ultrafilter on X if and only if AUB € L
implies either A or B is in L.

Lemma 3.7. [3] If (X,q,-) is a convergence group such that q is
pretopological, then (X, q,-) is a topological group.

4. HOMEOMORPHISM GROUPS

If (X, q) is a pre-convergence space, then the set of all self-homeo-
morphisms on X is denoted by H(X). Under the composition of
maps H(X) forms a group, called the homeomorphism group of
X. We can define a function o on the filters on H(X) as follows:

For any filter ® on H(X) and f € H(X), we define f € o(®) or
equivalently, ® —7 f, iff

(1) Vx € X, F —9 2z in X implies that ®(F) —9 f(z) in X,

(2) F -9z in X implies that ®~1(F) —? f~1(x) in X,
where =1 = [{P7! : P € ®}], and ®(F) = w(® x F) with w
as the evaluation map, w : H(X) x X — X. A pre-convergence
structure on H(X) is said to be admissible, if the evaluation map
is continuous. Note that if X is a locally compact (respectively,
compact topological space), then ¢ coincides with the g— topology
[1] (respectively, y—topology [1]) .

In 1972, Park [10] has shown that if ¢ is a limit structure on
X, then (H(X),0) is a limit group and o is the coarsest admissible
limit structure on H(X'). We intend to study the convergence struc-
tures on X which induce a suitable admissible convergence struc-
ture on the homeomorphism group H(X). The following corollary
can be derived from the proof of Theorem 5 [10].
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Corollary 4.1. If q is a pre-convergence structure on X, then
H(X) is a pre-convergence group and o is the coarsest admissible
preconvergence structure on H(X).

Proposition 4.2. If (X, q,-) is a convergence group, then o is the
coarsest admissible group convergence structure on H(X).

Proof of Proposition 4.2 follows from Lemma 3.5.

Proposition 4.3. If q is a pseudotopology on X, then o is the
coarsest admissible pseudotopology on H(X).

Proof. Since (X, q) is also a preconvergence space, it follows from
Corollary 4.1 that H(X) satisfies (c1), (c2) of Definition 2.1 and
(cgs) of Definition 3.1. So (H(X), o,0) is a preconvergence group.
So it is enough to show that o is a pseudotopology on H(X), when-
ever ¢ is a pseudotopology on X. Let ® be a filter on H(X) such
that ® is not o -convergent, but for any ultrafilter ¥ > &, ¥ —7 f
for some f € H(X). Since ® -7 f, there exists a filter F —9 x
in X such that ®(F) »? f(x). Since ¢ is a pseudotopology, there
exists an ultrafilter R > ®(F) such that £ »17 f(z).

Claim: If R is an ultrafilter on X such that R > ®(F), then 3 an
ultrafilter £ > & such that ® > L(F).

Proof of the claim: Let © = {A : A is a filter on H(X) with A > ®
and R > A(F)}. A standard Zorn’s lemma argument shows that ©
has a maximal element. Let £ be the maximal element in ©. So it
is enough to show that £ is an ultrafilter. Let AU B € L, we need
to show that either A or B is in L. If neither A nor B is in £, then

La={ANM: - MeLl}|zLLg={BNM:MeclL}zL
Since £ is maximal in ©, L4, Lp both fail to be in ©. So
there exist My, My € L and there exist Fy, F» € F such that
(M1 N A)(Fl), (M2 N B)(FQ) ¢ R. Let M = MiNn My and F =
Fin F;. Since AUB € L, (M N (AU B))(F) € L(F), which
implies that (M N (AU B))(F) € R. However, (M N(AUB))(F) C
(My N A)(F1)U (M2 N B)(Fy) ¢ R, since R is an ultrafilter. So
(MN(AUB))(F) ¢ R, which leads to a contradiction. This proves
the claim.

Since L is an ultrafilter > &, £ —° f and therefore
L(F) —? f(z). This implies that ® —¢ f(x), which leads to a
contradiction.

This proves Proposition 4.3. O
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Note that in the special case when X is a locally compact 15
topological space, H(X) is a topological group and o coincides with
the g—topology [1].

The proof of the following proposition follows immediately from
Theorem 5 [10], Lemma 2.3, Lemma 3.4 and Corollary 4.1.

Proposition 4.4. If (X,q,-) is a limit group, then H(X) is a
complete Cauchy space.

The Cauchy structure on H(X) can be explicitly given as C7 =
all o—convergent filters on H(X).

5. CONTINUOUS GROUP ACTION

Consider a function on X x G into X, denoted by (z,g) — 9. For
any FCX ,g€G, FI={f9:fcF}andforany AC G, FA =
U{F9:9g€ A}.If F e F(X)and g € G, then F9 = [{F9: F € F}|,
and for any subset A C G, FA = [{FA: F € F}]. If s € F(G),then
Fr=[{FA:FcF, Ack}].

Definition 5.1. Let (G, A,.) be a convergence group and (X, q)
be a convergence space. G is said to act continuously on X, if the
function X x G — X, denoted by (z,g) — 29, Vo € Xand Vg € G,
satisfies the following conditions :

(al) V F =9z and V k —" g, F® —9 29, where F € F(X) and
k € F(G).

(a2) z¢ =z, Vo e X.

(a3) (z9)" =29"Vxc X andV g,hcG.

Note that condition (al) implies the continuity of the group ac-
tion at each z € X and g € G. The action is said to be effective, if
9 = z,V x € X implies that ¢ = e. The action is free, if for some
z, 29 = x,& g = e. An action of a group G is transitive on X, if
for any =,y € X, dg € G such that 9 = y.

Lemma 5.2. The conditions (a2) and (a3) are equivalent to (a2')

Fe=F and (a3') (FI)h =F9 VFeF(X) and V g,h€QG.
This can be verified by substituting # for F in (a2’) and (a3’).

So it follows that if group G algebraically acts on a set X, then G

algebraically acts on the set F(X) of all filters on X, the action
being defined as (F, g) — F9 on F(X).
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Example 5.3. The homeomorphism group H(X) acts continu-
ously on (X, ¢), the action being defined by the map (z, f) — zf =
f~Y=), for all z € X and f € H(X).

Example 5.4. Any convergence group (G, A,.) acts on itself con-
tinuously, the action being defined by the right multiplication,
(a,z) — a® = ax, Ya,x € G. This follows from (cgz) and (ap).
The left multiplication (a,x) = za, Ya,x € G is not an action, but
(a,x) — a® = r71a, Ya,z € G is an action of G on itself. In case
of right regular representation, if ai, as € G, then there exists x =
a,l_1 az € G such that a] = ap . Similarly, in the latter action

aj = ag, by choosing y = a1 a;l. So both these actions are tran-

sitive. G also acts on itself by conjugation, i.e., a® = 2 'az. But

this is not transitive in general.

Next, we try to construct new group actions from a given group
action of a convergence group G on a convergence space X.

Example 5.5. If G acts continuously on X then G acts contin-
uously on Y = X x X, where the action is defined by (z1,z2)? =
(29,29),V g € G and x1,22 € X. Here it is assumed that Y has
the product convergence structure [8].

Proposition 5.6. Let (X,q) and (Y,p) be two limit spaces. If G
acts continuously on (X, q) then G acts continuously on C'(X,Y) =
{f:f:X =Y, fis continuous}, with respect to the continuous
convergence structure A [2] on C(X,Y).

Proof. Define the action as (f,g) — f9, where f9(x) = f(x9 1)
VmGXandgEG Since for any F —? z in X, f(F) =P f(x
and f9(F) = f(F9 '), it follows from (al) that f9(F) —P f(x9 '),
which shows f9 € C(X, ) Since f¢(z) = f(z°) = f(z), Va: € X,
fe = fand (f)(z) = foa") = f((@")) = flalh ) =
9 (z)Va € X = (f9)" = f9". This proves (a2) and (a3). To prove
(al)let ® =" fin C(X,Y)and R -7 gin G. Then R~! =7 g~ 'in
G and by the continuous action of G on X, for any F —? z in X,
FR 4 297" in X, So, by definition of A, ®(FR ') =P f(zd),
in Y, which implies that ®®(F) —P f9(z),VF —9 x and therefore,
d® A £9. This proves Proposition 5.6. O

In particular, G acts continuously on C(X), the space of self-
continuous maps on X,whenever G acts continuously on (X, q).
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Proposition 5.7. Let (X,q) and (Y,p) be two limit spaces. If G
acts continuously on (Y, p) then G acts continuously on C(X,Y) =
{f :f:X =Y, fis continuous}, with respect to the continuous
convergence structure A [2] on C(X,Y).

Proof. Define the action as (f,g) — f9, where f9(x) = (f(x))9,
Vz € X and g € G. Since f¢(z) = (f(2))¢ = f(x) and (f9)"(z) =
(f(x))9", Vo € X, (a2),(a3) are satisfied. Also for any F —9
since f(F) —P f(x) and f9(F) = (f(F))Y, it follows from (al) that
fI(F) =P (f(z))Y, which shows f9 € C(X,Y). The continuity of
the action follows from the admissibility of the continuous conver-
gence structure and (al) in Definition 5.1 by arguments similar to
those of Proposition 5.6. O

Proposition 5.8. If (G , v, -)acts on the limit space (X, q), then G
acts on (H(X), o), the group of self-homeomorphisms with respect
to the double convergence o.

Proof. For any f € H(X) and g € G define the action as
(f,9) — f9, where f9(x) = f(:ngfl), Ve € X . We first show
that f¢9 € H(X) for any f € H(X). Let f9(z1) = f9(x2), ie.,
f(a:gl’il) = f(xgil). This implies that xﬁfl = :Ugil, since f is bijec-
tive and therefore x1 = xs. Next, for any y € X, 329 € X, such that
f9(z9) = f((x9)9") = f(x) = y, this implies that f9 is bijective.
The continuity of f9 can be proved by following the same line of
argument as in Proposition 5.6. Define (f9)~(z) = (f~1(z))9, for
all x € X. Note that

(F)7 @) = (S @) = () =
P @) = FUF T @) ) = F(F @) = =

To show that (f9)~! is continuous, let F —9 z in X. Then
f7HF) =7 f~H(x), which implies that (f~1(F))? =7 (f~(2))?,
since f~! is continuous and G acts continuously on X. So,
() 1(F) =9 (f9) ! (a).

Now, we are going to show that the action on H (X)) is continuous.
Let ® —»¢ fin H(X) and ® —7 g in G, then by arguments similar
to those of Proposition 5.6, we can show that ®%(F) —7 f9(x)
for all F —9 z in X. Also, (®®)"(F) = (&~ 1(F))® and since
oL F) —1 [ “La) , (@ HF)R -0 (f 1)) So we have
(™) ~L(F) =9 (f9) ~}(x), which implies that &% — f 9. O

and
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Next, a one-to-one correspondence has been established between
the homeomorphic representations of a convergence group and its
continuous actions on a limit space.

Lemma 5.9. If a convergence group G acts continuously on a
convergence space X , then for each g € G, the mapping g : X — X,
defined by (x)g = 29 is a homeomorphism.

Proof. Tt is routine to show that g is a bijection and g ~! = ¢—1.
The fact that g is continuous on X for each g € G, follows from
(al), if we substitute ¢ for x. Since (z)§ ~' = ()9 ', g ~! is also
continuous. This proves the lemma. O

We have seen that (H(X), o) the homeomorphism group of X
acts continuously on X . But every convergence group G acting con-
tinuously on X is not necessarily a homeomorphism group, though
it is very close to a homeomorphism group when X is a limit space.
Define a mapping p : G — H(X) by p(g9) = ,Vg € G. Let p(A) = A
= {g:g € A} and for any filter x on G, & = p(r) = [{K : K € k}].

Proposition 5.10. Let (X,S) be a limit space and (G, A,.) be a
convergence group which acts continuously on X. Then, the map p
1 a continuous group homomorphism.

Proof. Since gh = g h,p is a group homomorphism. To prove
the continuity of p, we consider the limit structure ¢ on H(X).
Let g in G and k —* g in G. We need to show that p(k) —7 §.
Let F —% x in X. It suffices to show that KL(F) —S 29, and
R Y(F) =% 297" because k! = k1. Since F —% z and /i —h g

y (al) in Deﬁnltlon 5.1, B(F) = F* —°3 z. Since k —» g in
G, by (cg3) 1 A g~1 Applying (al) again we can show that
7~1(F) =% 297" This proves Proposition 5.10. O

The mapping p may be called the homeomorphic representa-
tion of the convergence group G on the limit space X. So every
continuous group action on X is associated with a homeomorphic
representation. If the continuous homomorphism p is one to one,
i.e., Kernel, = {e}, then it can be easily checked that G ~ p(G).

Next, we show that any continuous group homomorphism
0 : G — H(X) on G induces a continuous group action of G on X.
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Proposition 5.11. Let 6 : G — H(X), be a continuous homomor-
phism. Then, G acts continuously on X.

Proof. Let us define a function on X x G — X by (z,g9) —
2997 where 29007 = 200@)"" = (4(¢))~(x). Since 6 is a ho-
momorphism, #(e) = I;(X), and 6(gh) = 6(g)0(h). So 2"
=0(e 1) (z) = 2 and 200gh)™Y) — L0t 0(R N0

O(h"1)0(g 1) (z) = O(h )20 ) = (299 )0 which imply
that (a2), (as) hold. So it remains to prove (a;). Let F —7 z and
V k=N g, Ff —9 29 where F € F(X) and x € F(G). Then,
Fro=FE = (0(k))H(F) =9 2% since 6 is continuous and
the evaluation map is continuous with respect to o on H(X). This
proves Proposition 5.11. O

In Proposition 5.10 and 5.11, a one-to-one correspondence
between homeomorphic representations of a convergence group G
and its continuous action on a limit space X has been established.
The question whether such a one-to-one correspondence exists for
topological groups acting on general topological spaces still remains
as an open question. Also, the transitive actions of a convergence
group and actions of the quotient convergence group [7] are yet to
be investigated.
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