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ACTION OF CONVERGENCE GROUPS

NANDITA RATH

Abstract. This is a preliminary report on the continuous
action of convergence groups on convergence spaces. In par-
ticular, the convergence structure on the homeomorphism
group and its continuous action are investigated in this pa-
per. Also, attempts have been made to establish a one-to-one
correspondence between continuous action of a convergence
group and its homeomorphic representation on a convergence
space.

1. Introduction

In algebra, a homomorphism of a group G into the symmetric
group S(Ω) of all permutations on the phase space Ω is known as
a permutation representation of G on Ω [5]. It is also known
that there exists a one-to-one correspondence between the permu-
tation representations of G on Ω and the actions of G on Ω. If
Ω = X is a compact or a locally compact topological space and G
is a topological group, then there is a one-to-one correspondence
between continuous homomorphisms of a topological group G into
the homeomorphism group H(X) and the continuous group actions
of G on X [12]. However, for general topological spaces this one-to-
one correspondence is not available, since in such case H(X) does
not have a group topology which is admissible [11].
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So in establishing such a one-to-one correspondence between con-
tinuous representations and continuous group actions of a topolog-
ical group, the question of existence of an appropriate geometric
structure on X which induces an admissible and compatible struc-
ture on H(X) is crucial. Recently, Di Concilio [4] has proved that
a Tychonoff space X, which is also rim-compact induces an admis-
sible and compatible topological structure on H(X). This result
can be further generalized by replacing the topology by a special
type of convergence structure [10]. In Section 4 of this paper the
author tries to investigate the nature of convergence structure on
H(X) corresponding to the existing convergence structure on X. In
Section 5 attempts have been made to establish a one-to-one corre-
spondence between the homeomorphic representations and contin-
uous group actions of a special type of convergence group, called
limit group.

2. Preliminaries

For basic definitions and terminologies related to filters the reader
is referred to [14], though a few of the definitions and notations,
which are frequently used will be mentioned here. Let F(X) de-
note the collection of all filters on X and P(X) denote all the
subsets of X. If B is a base [14] of the filter F , then F is said to be
generated by B and we write F = [B]. For each x ∈ X, ẋ = [{x}]
is the fixed ultra filter containing {x} . If F and G ∈ F(X) and
F ∩ G 6= φ for all F ∈ F , G ∈ G, then F ∨ G denotes the filter
generated by {F ∩ G : F ∈ F and G ∈ G}. If ∃F ∈ F and G ∈ G
such that F ∩G = φ, then we say that F ∨G fails to exist . If (X, .)
is a group, then we can define a binary operation ‘◦’ on F(X) as
FG = [{FG : F ∈ F and G ∈ G], and F−1 = [{F−1 : F ∈ F}].
However, in general, (F(X) , ◦) is a monoid, not a group , since
ė ≥ FF−1, where e is the identity element in (X, .).

For a setX, consider q ⊆ F(X) ×X. Conventionally, for (F , x) ∈
F(X)×X, we write F →q x, and say that F ‘q − converges to
x ’, whenever (F , x) ∈ q.
Definition 2.1. Let X and q be as above. For F , G ∈ F(X) and
x ∈ X, consider the following conditions.

(c1) ẋ→q x for each x ∈ X.
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(c2) F ≤ G and F →q x =⇒ G →q x.
(c3) F →q x =⇒ F ∩ ẋ→q x.

(c4) F →q x,G→q x =⇒ F ∩ G →q x.
(c5) If for each ultrafilter G ≥ F , G →q x, then F →q x.
(c6) For each x ∈ X, νq(x) →q x, where νq(x) = ∩{F : F →q x}.
(c7) For each x ∈ X, and for each V ∈ νq(x), ∃ W ∈ νq(x) such

that W ⊆ V and y ∈W ⇒ V ∈ νq(y) .
The function q is called a preconvergence structure (respect-

ively, convergence, limit, pseudotopology, pretopology, topology) if
it satisfies (c1) − (c2) (respectively, (c1) − (c3), (c1) − (c4), (c1) −
(c5), (c1) − (c6), (c1) − (c7)). It should be noted that all these ax-
ioms are not independent. For example, (c1)and (c4) imply (c3)
and (c2)and (c6) imply (c5).Convergence space, limit space, pseu-
dotopological space, pretopological space and topological space are
defined likewise. More details on convergence spaces and related
topics can be found in [9]. Note that limit spaces used to be called
convergence spaces by Binz [2], Park [10] and several contemporary
topologists.

For any x ∈ X, let q(x) = {F ∈ F(X) : F →q x}.
A convergence space (X, q) is said to be
· T2 or Hausdorff iff x = y, whenever any filter F →q x, y.
· Compact iff each ultrafilter on X converges to at least one point

in X.
A mapping f : (X, q) → (Y, p) is continuous iff whenever

F →q x, f(F) →p f(x). Furthermore, a continuous mapping f
is a homeomorphism, if it is bijective and f−1 is also continuous.
The set H(X) (respectively, C(X)) denotes the set of all self home-
omorphisms (respectively, continuous functions) on X. H(X) forms
a group with respect to composition of maps.

Next, another important category of spaces is introduced which
exists in literature mostly as a means to generalize the comple-
tion theory for uniform spaces [13]. For a detailed information on
Cauchy spaces the reader is referred to [9].

Definition 2.2. Let C be a set of filters on a set X. The pair
(X,C) is called a Cauchy space, if

(1) ẋ ∈ C, for each x ∈ X.
(2) F ∈ C and F ≤ G implies G ∈ C.
(3) F , G ∈ C and F ∨G exists imply F ∩ G ∈ C.
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Associated with each Cauchy structure C on X, there is a
convergence structure qc, which is defined as F →qc x, iff
F ∩ ẋ ∈ C. A Cauchy space is said to be complete, if every
F ∈ C is qc-convergent. Note that every convergence space is
not a Cauchy space. A convergence structure q on X is said to be
Cauchy compatible, if there exists a Cauchy structure on X such
that q = qc.
Lemma 2.3. [9] A convergence space (X, q) is Cauchy compatible
if and only if it is a limit space and for any x 6= y ∈ X, either
q(x) = q(y) or q(x) ∩ q(y) = φ.(∗)

3. Convergence Groups

Convergence groups, especially limit groups have been studied
in detail in the last half century. For clarity of notations and ter-
minologies the reader is referred to [6, 8, 10].
Definition 3.1. A triplet (X, q, ·) is a pre− convergence group, if

(cg1) (X, q) is a pre-convergence space
(cg2) (X, ·) is a group
(cg3) F →q x and G →q y implies that FG−1 →q xy−1.
Note that the binary operation ‘.’ and the inverse operation in

the group (X, .) are continuous with respect to the pre-convergence
structure q. A pre-convergence group is a convergence group (re-
spectively, limit group, pseudotopological group, pretopological
group, topological group), iff (X, q) is a convergence space (respec-
tively, limit space, pseudotopological space, pretopological space,
topological space).
Lemma 3.2. [8] If e denotes the identity element in this group,
then xνq(e) = νq(e)x = νq(x),∀x ∈ X.
Lemma 3.3. [8] The left translation x → ax, for a fixed a ∈ G
(respectively, the right translation x→ xa), the map x→ x−1 and
the inner automorphisms x→ axa−1are all homeomorphisms of X
onto X.

The proof of the lemma follows from (cg3). Note that every pre-
convergence group is homogeneous. So some of the local properties
can be proved at a single point.
Lemma 3.4. The property (∗) in Lemma 2.3. always holds in a
pre-convergence group (X, q, ·).
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Proof. Suppose q(x)∩q(y) 6= φ and let F be such that F →q x and
F →q y. Let G ∈ q(x). Then, F−1G →q e, where e is the identity
in X. This implies that FF−1G →q y, since F →q y. Therefore
G = ėG →q y. Similarly, we can show that q(y) ⊆ q(x). �

Lemma 3.5. Let F , G ∈ F(X), where (X, ·) is a group. Then
F ∨ G exists implies that F ∩ G ≥ FG−1G.
Proof. Let F ∈ F and G1, G2 ∈ G. Since G1 ∩ G2 6= φ,
F ⊂ FG−1

1 G2. Also, F ∨ G exists implies that G2 ⊂ FG−1
1 G2.

This proves the lemma. �

Lemma 3.6. [14] L is an ultrafilter on X if and only if A∪B ∈ L
implies either A or B is in L.

Lemma 3.7. [3] If (X, q, ·) is a convergence group such that q is
pretopological, then (X, q, ·) is a topological group.

4. Homeomorphism Groups

If (X, q) is a pre-convergence space, then the set of all self-homeo-
morphisms on X is denoted by H(X). Under the composition of
maps H(X) forms a group, called the homeomorphism group of
X. We can define a function σ on the filters on H(X) as follows:

For any filter Φ on H(X) and f ∈ H(X), we define f ∈ σ(Φ) or
equivalently, Φ→σ f, iff

(1) ∀x ∈ X, F →q x in X implies that Φ(F)→q f(x) in X,
(2) F →q x in X implies that Φ−1(F)→q f−1(x) in X,

where Φ−1 = [{P−1 : P ∈ Φ}], and Φ(F) = w(Φ × F) with w
as the evaluation map, w : H(X) × X → X. A pre-convergence
structure on H(X) is said to be admissible, if the evaluation map
is continuous. Note that if X is a locally compact (respectively,
compact topological space), then σ coincides with the g− topology
[1] (respectively, γ−topology [1]) .

In 1972, Park [10] has shown that if q is a limit structure on
X, then (H(X), σ) is a limit group and σ is the coarsest admissible
limit structure on H(X). We intend to study the convergence struc-
tures on X which induce a suitable admissible convergence struc-
ture on the homeomorphism group H(X). The following corollary
can be derived from the proof of Theorem 5 [10].
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Corollary 4.1. If q is a pre-convergence structure on X, then
H(X) is a pre-convergence group and σ is the coarsest admissible
preconvergence structure on H(X).

Proposition 4.2. If (X, q, ·) is a convergence group, then σ is the
coarsest admissible group convergence structure on H(X).

Proof of Proposition 4.2 follows from Lemma 3.5.
Proposition 4.3. If q is a pseudotopology on X, then σ is the
coarsest admissible pseudotopology on H(X).

Proof. Since (X, q) is also a preconvergence space, it follows from
Corollary 4.1 that H(X) satisfies (c1), (c2) of Definition 2.1 and
(cg3) of Definition 3.1. So (H(X), σ, ◦) is a preconvergence group.
So it is enough to show that σ is a pseudotopology on H(X), when-
ever q is a pseudotopology on X. Let Φ be a filter on H(X) such
that Φ is not σ -convergent, but for any ultrafilter Ψ ≥ Φ, Ψ→σ f
for some f ∈ H(X). Since Φ 9

σ f, there exists a filter F →q x
in X such that Φ(F) 9q f(x). Since q is a pseudotopology, there
exists an ultrafilter < ≥ Φ(F) such that <9q f(x).
Claim: If < is an ultrafilter on X such that < ≥ Φ(F), then ∃ an
ultrafilter L ≥ Φ such that < ≥ L(F).
Proof of the claim: Let Θ = {Λ : Λ is a filter on H(X) with Λ ≥ Φ
and < ≥ Λ(F)}. A standard Zorn’s lemma argument shows that Θ
has a maximal element. Let L be the maximal element in Θ. So it
is enough to show that L is an ultrafilter. Let A ∪B ∈ L, we need
to show that either A or B is in L. If neither A nor B is in L, then
LA = [{A ∩M : M ∈ L}] � L,LB = [{B ∩M : M ∈ L}] � L.

Since L is maximal in Θ, LA, LB both fail to be in Θ. So
there exist M1, M2 ∈ L and there exist F1, F2 ∈ F such that
(M1 ∩ A)(F1), (M2 ∩ B)(F2) /∈ <. Let M = M1∩ M2 and F =
F1∩ F2. Since A ∪ B ∈ L, (M ∩ (A ∪ B))(F ) ∈ L(F), which
implies that (M ∩ (A∪B))(F ) ∈ <. However, (M ∩ (A∪B))(F ) ⊆
(M1 ∩ A)(F1)∪ (M2 ∩ B)(F2) /∈ <, since < is an ultrafilter. So
(M ∩ (A∪B))(F ) /∈ <, which leads to a contradiction. This proves
the claim.

Since L is an ultrafilter ≥ Φ, L →σ f and therefore
L(F) →q f(x). This implies that < →q f(x), which leads to a
contradiction.

This proves Proposition 4.3. �
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Note that in the special case when X is a locally compact T2

topological space, H(X) is a topological group and σ coincides with
the g−topology [1].

The proof of the following proposition follows immediately from
Theorem 5 [10], Lemma 2.3, Lemma 3.4 and Corollary 4.1.

Proposition 4.4. If (X, q, ·) is a limit group, then H(X) is a
complete Cauchy space.

The Cauchy structure on H(X) can be explicitly given as Cσ =
all σ−convergent filters on H(X).

5. Continuous Group Action

Consider a function on X×G into X, denoted by (x, g)→ xg. For
any F ⊆ X , g ∈ G, F g = {fg : f ∈ F} and for any A ⊆ G, FA =
∪{F g : g ∈ A}. If F ∈ F(X) and g ∈ G, then Fg = [{F g : F ∈ F}],
and for any subset A ⊆ G, FA = [{FA : F ∈ F}]. If κ ∈ F(G),then
Fκ = [{FA : F ∈ F , A ∈ κ}].

Definition 5.1. Let (G,Λ, .) be a convergence group and (X, q)
be a convergence space. G is said to act continuously on X, if the
function X ×G→ X, denoted by (x, g)→ xg, ∀x ∈ Xand ∀g ∈ G,
satisfies the following conditions :

(a1) ∀ F →q x and ∀ κ →Λ g, Fκ →q xg, where F ∈ F(X) and
κ ∈ F(G).

(a2) xe = x, ∀x ∈ X.
(a3) (xg)h = xgh,∀x ∈ X and ∀ g, h ∈ G.
Note that condition (a1) implies the continuity of the group ac-

tion at each x ∈ X and g ∈ G. The action is said to be effective, if
xg = x,∀ x ∈ X implies that g = e. The action is free, if for some
x, xg = x,⇔ g = e. An action of a group G is transitive on X, if
for any x, y ∈ X, ∃g ∈ G such that xg = y.

Lemma 5.2. The conditions (a2) and (a3) are equivalent to (a2′)
Fe = F and (a3′) (Fg)h = Fgh, ∀F ∈ F(X) and ∀ g, h ∈ G.

This can be verified by substituting ẋ for F in (a2′) and (a3′).
So it follows that if group G algebraically acts on a set X, then G
algebraically acts on the set F(X) of all filters on X, the action
being defined as (F , g) 7−→ Fg on F(X).
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Example 5.3. The homeomorphism group H(X) acts continu-
ously on (X, q), the action being defined by the map (x, f) 7→ xf =
f−1(x), for all x ∈ X and f ∈ H(X).

Example 5.4. Any convergence group (G,Λ, .) acts on itself con-
tinuously, the action being defined by the right multiplication,
(a, x) 7→ ax = ax, ∀a, x ∈ G. This follows from (cg3) and (a1).
The left multiplication (a, x) = xa, ∀a, x ∈ G is not an action, but
(a, x) 7→ ax = x−1a, ∀a, x ∈ G is an action of G on itself. In case
of right regular representation, if a1, a2 ∈ G, then there exists x =
a−1

1 a2 ∈ G such that ax1 = a2 . Similarly, in the latter action
ay1 = a2, by choosing y = a1 a

−1
2 . So both these actions are tran-

sitive. G also acts on itself by conjugation, i.e., ax = x−1ax. But
this is not transitive in general.

Next, we try to construct new group actions from a given group
action of a convergence group G on a convergence space X.

Example 5.5. If G acts continuously on X then G acts contin-
uously on Y = X ×X, where the action is defined by (x1, x2)g =
(xg1, x

g
2), ∀ g ∈ G and x1, x2 ∈ X. Here it is assumed that Y has

the product convergence structure [8].

Proposition 5.6. Let (X, q) and (Y, p) be two limit spaces. If G
acts continuously on (X, q) then G acts continuously on C(X,Y ) =
{f : f : X → Y, f is continuous}, with respect to the continuous
convergence structure Λ [2] on C(X,Y ).

Proof. Define the action as (f, g) 7−→ fg, where fg(x) = f(xg
−1

),
∀x ∈ X and g ∈ G. Since for any F →q x in X, f(F) →p f(x)
and fg(F) = f(Fg−1

), it follows from (a1) that fg(F)→p f(xg
−1

),
which shows fg ∈ C(X,Y ). Since fe(x) = f(xe) = f(x),∀x ∈ X,
fe = f and (fg)h(x) = fg(xh

−1
) = f((xh

−1
)g
−1

) = f(x(gh)−1
) =

fgh(x)∀x ∈ X ⇒ (fg)h = fgh. This proves (a2) and (a3). To prove
(a1) let Φ→Λ f in C(X,Y ) and < →γ g in G. Then <−1 →γ g−1 in
G and by the continuous action of G on X, for any F →q x in X,
F<−1 →q xg

−1
in X. So, by definition of Λ, Φ(F<−1

) →p f(xg
−1

),
in Y, which implies that Φ<(F) →p fg(x),∀F →q x and therefore,
Φ< →Λ fg. This proves Proposition 5.6. �

In particular, G acts continuously on C(X), the space of self-
continuous maps on X,whenever G acts continuously on (X, q).
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Proposition 5.7. Let (X, q) and (Y, p) be two limit spaces. If G
acts continuously on (Y, p) then G acts continuously on C(X,Y ) =
{f : f : X → Y, f is continuous}, with respect to the continuous
convergence structure Λ [2] on C(X,Y ).
Proof. Define the action as (f, g) 7−→ fg, where fg(x) = (f(x))g,
∀x ∈ X and g ∈ G. Since fe(x) = (f(x))e = f(x) and (fg)h(x) =
(f(x))gh,∀x ∈ X, (a2),(a3) are satisfied. Also for any F →q x,
since f(F)→p f(x) and fg(F) = (f(F))g, it follows from (a1) that
fg(F) →p (f(x))g, which shows fg ∈ C(X,Y ). The continuity of
the action follows from the admissibility of the continuous conver-
gence structure and (a1) in Definition 5.1 by arguments similar to
those of Proposition 5.6. �

Proposition 5.8. If (G , γ, ·)acts on the limit space (X, q), then G
acts on (H(X), σ), the group of self-homeomorphisms with respect
to the double convergence σ.

Proof. For any f ∈ H(X) and g ∈ G define the action as
(f, g) 7−→ fg, where fg(x) = f(xg

−1
), ∀x ∈ X . We first show

that fg ∈ H(X) for any f ∈ H(X). Let fg(x1) = fg(x2), i.e.,
f(xg

−1

1 ) = f(xg
−1

2 ). This implies that xg
−1

1 = xg
−1

2 , since f is bijec-
tive and therefore x1 = x2. Next, for any y ∈ X, ∃xg ∈ X, such that
fg(xg) = f((xg)g

−1
) = f(x) = y, this implies that fg is bijective.

The continuity of fg can be proved by following the same line of
argument as in Proposition 5.6. Define (fg)−1(x) = (f−1(x))g, for
all x ∈ X. Note that

(fg)−1(fg(x)) = (f−1(fg(x))g = (f−1(f(xg
−1

))g = x

and
fg((fg)−1(x)) = f(((f−1(x))g)g

−1
) = f(f−1(x)) = x.

To show that (fg)−1 is continuous, let F →q x in X. Then
f−1(F) →q f−1(x), which implies that (f−1(F))g →q (f−1(x))g,
since f−1 is continuous and G acts continuously on X. So,
(fg)−1(F) →q (fg)−1(x).

Now, we are going to show that the action onH(X) is continuous.
Let Φ→σ f in H(X) and < →γ g in G, then by arguments similar
to those of Proposition 5.6, we can show that Φ<(F) →q fg(x)
for all F →q x in X. Also, (Φ<)−1(F) = (Φ−1(F))< and since
Φ−1(F) →q f −1(x) , (Φ−1(F))< →q (f −1(x))g. So we have
(Φ<)−1(F)→q (fg) −1(x), which implies that Φ< →σ f g. �
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Next, a one-to-one correspondence has been established between
the homeomorphic representations of a convergence group and its
continuous actions on a limit space.

Lemma 5.9. If a convergence group G acts continuously on a
convergence space X, then for each g ∈ G, the mapping ḡ : X → X,
defined by (x)ḡ = xg is a homeomorphism.

Proof. It is routine to show that ḡ is a bijection and ḡ −1 = g−1.
The fact that ḡ is continuous on X for each g ∈ G, follows from
(a1), if we substitute ġ for κ. Since (x)ḡ −1 = (x)g

−1
, ḡ −1 is also

continuous. This proves the lemma. �

We have seen that (H(X), σ) the homeomorphism group of X
acts continuously onX . But every convergence groupG acting con-
tinuously on X is not necessarily a homeomorphism group, though
it is very close to a homeomorphism group when X is a limit space.
Define a mapping ρ : G→ H(X) by ρ(g) = ḡ,∀g ∈ G. Let ρ(A) = Ā
= {ḡ : g ∈ A} and for any filter κ on G, κ̄ = ρ(κ) = [{K̄ : K ∈ κ}].

Proposition 5.10. Let (X,=) be a limit space and (G,Λ, .) be a
convergence group which acts continuously on X. Then, the map ρ
is a continuous group homomorphism.

Proof. Since gh = ḡ h̄, ρ is a group homomorphism. To prove
the continuity of ρ, we consider the limit structure σ on H(X).
Let g in G and κ →Λ g in G. We need to show that ρ(κ) →σ ḡ.
Let F →= x in X. It suffices to show that κ̄(F) →= xg, and
κ̄−1(F)→= xg−1

, because κ̄−1 = κ−1. Since F →= x and κ→Λ g,
by (a1) in Definition 5.1, κ̄(F) = Fκ →= x̄. Since κ →Λ g in
G, by (cg3), κ−1 →Λ g−1. Applying (a1) again we can show that
κ̄−1(F)→= xg−1

. This proves Proposition 5.10. �

The mapping ρ may be called the homeomorphic representa-
tion of the convergence group G on the limit space X. So every
continuous group action on X is associated with a homeomorphic
representation. If the continuous homomorphism ρ is one to one,
i.e., Kernelρ = {e}, then it can be easily checked that G ≈ ρ(G).

Next, we show that any continuous group homomorphism
θ : G→ H(X) on G induces a continuous group action of G on X.
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Proposition 5.11. Let θ : G→ H(X), be a continuous homomor-
phism. Then, G acts continuously on X.

Proof. Let us define a function on X × G → X by (x, g) 7→
xθ(g

−1), where xθ(g
−1) = x(θ(g))−1

= (θ(g))−1(x). Since θ is a ho-
momorphism, θ(e) = Id(X), and θ(gh) = θ(g)θ(h). So xθ(e

−1)

=θ(e−1)(x) = x and xθ((gh)−1) = xθ(h
−1g−1) = xθ(h

−1)θ(g−1) =
θ(h−1)θ(g−1)(x) = θ(h−1)(xθ(g

−1)) = (xθ(g
−1))θ(h

−1) which imply
that (a2), (a3) hold. So it remains to prove (a1). Let F →q x and
∀ κ →Λ g, Fκ →q xg, where F ∈ F(X) and κ ∈ F(G). Then,
Fκ = Fθ(κ−1) = (θ(κ))−1(F)→q xθ(g

−1), since θ is continuous and
the evaluation map is continuous with respect to σ on H(X). This
proves Proposition 5.11. �

In Proposition 5.10 and 5.11, a one-to-one correspondence
between homeomorphic representations of a convergence group G
and its continuous action on a limit space X has been established.
The question whether such a one-to-one correspondence exists for
topological groups acting on general topological spaces still remains
as an open question. Also, the transitive actions of a convergence
group and actions of the quotient convergence group [7] are yet to
be investigated.
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