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STRONGLY RIGID EVEN COXETER GROUPS

PATRICK BAHLS

Abstract. A Coxeter group W is said to be strongly rigid if
any two fundamental generating sets for W are conjugate to
one another. We characterize all strongly rigid even Coxeter
groups W with Coxeter diagram V of one of the following
forms:

1. V has no edges labeled 2,
2. V has no simple circuits of length less than 5.
Further, we indicate how the method of proof can be used

to compute the automorphism group Aut(W ) for certain Cox-
eter groups W and to show rigidity and strong rigidity of other
classes of Coxeter groups.

1. Introduction

A Coxeter system (W,S) is a pair consisting of a group W with
a distinguished generating set S = {si}i∈I for which there is a
presentation of the form 〈S|R〉, where

R = {(sisj)mij | mij ∈ {1, 2, ...,∞},mij = 1 ⇔ i = j, mij = mji}.
If W possesses a generating set S for which (W,S) is a Coxeter
system, then W is called a Coxeter group. If one can choose a set
S as above so that all of the exponents mij (for i 6= j) are either
even or infinite, W is said to be even, and (W,S) is called an even
system. In this paper we will be concerned almost entirely with
even systems.
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20 P. BAHLS

We will frequently omit the word “Coxeter” when it is clear that
we are speaking of a Coxeter group or Coxeter system.

Coxeter groups have a geometric genesis, arising in the 1930s
in H. S. M. Coxeter’s work on groups of reflections and crystallo-
graphic groups. More recently, these groups have proven useful in
a number of geometric topological settings, including the theory
of buildings [7] and the classification of 3-manifolds ([9], [11], for
instance).

It is possible that a single group W corresponds to more than
one system. For instance, one may easily show that for k odd, the
dihedral group D2k of order 4k has two Coxeter presentations:

〈a, b|a2, b2, (ab)2k〉
and

〈x, y, z|x2, y2, z2, (xy)2, (xz)2, (yz)k〉.
Therefore, we may ask when a given Coxeter group possesses a
“unique” representation in some sense. Before making this notion of
“uniqueness” precise, we introduce a convenient way of representing
graphically all of the information contained in a Coxeter system.

We define the Coxeter diagram (or simply diagram) V corre-
sponding to the Coxeter system (W,S) to be an edge-labeled graph
whose vertices are in one-to-one correspondence with the set S and
for which there is an edge in V between the vertices si and sj with
label m if and only if m = mij < ∞. For instance, it is clear
that the first system for D2k given above corresponds to a single
edge with label 2k, and the second corresponds to a triangle, with
edges labeled 2,2, and k. This definition differs slightly from the
definition of a Coxeter graph, which is used heavily in the litera-
ture. In a Coxeter graph, an edge (labeled ∞) is included between
vertices si and sj if sisj has infinite order, and no edge is included
between vertices corresponding to generators which commute with
one another. We will not again refer to Coxeter graphs.

We call a Coxeter group rigid if, given any two systems (W,S)
and (W,S′), the corresponding diagrams V and V ′ are isomorphic
as edge-labeled graphs. This is equivalent to the existence of an
automorphism α of W which satisfies α(S) = S′. We call a Coxeter
group strongly rigid if, given any two systems as above, the funda-
mental generating sets S and S′ are conjugate to one another (that
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is, α can be taken to lie in Inn(W )). Clearly, if W is strongly rigid
then it is rigid.

We will also be concerned with a kind of “uniqueness” of a
slightly different nature. We call an element w of the system (W,S)
a reflection if it is a conjugate of some s ∈ S. (This terminology
stems from the action of a given Coxeter group on a vector space,
in which all elements of the set S correspond to reflections in a
given hyperplane.) A Coxeter group W is said to be reflection in-
dependent if any two systems (W,S) and (W,S′) yield the same set
of reflections.

Clearly, if W is strongly rigid, then it is reflection independent.
There are a number of results concerning the notions of unique-

ness defined above. In [8], R. Charney and M. Davis show that the
Coxeter groups of types HMn and PMn are strongly rigid by con-
sidering the group action upon a particular CAT(0) simplicial com-
plex. In [10], A. Kaul considers a related sort of Coxeter group and
realizes another class, Kn, of rigid Coxeter groups. In [16], D. Rad-
cliffe demonstrates the rigidity of all right-angled Coxeter groups.
(A Coxeter system is called right-angled if for every si, sj ∈ S, either
mij is equal to 2 or sisj has infinite order.) He further shows that
any Coxeter group for which every exponent is either 2 or divisible
by 4 is rigid. P. Bahls obtains similar results in [2]. Recently, (in
[15]) B. Mühlherr and R. Weidmann have obtained a number of
results concerning rigidity and strong rigidity of large-type Coxeter
groups, those groups whose diagrams have no edges labeled 2.

In [4], Bahls and M. Mihalik provide a complete classification
of all even reflection independent Coxeter systems and summarize
Mihalik’s result from [13] which characterizes all even rigid Coxeter
groups. In [6], N. Brady, J. P. McCammond, Mühlherr, and W. D.
Neumann obtain a classification of all right-angled strongly rigid
groups. These three classifications will be introduced in the next
section as they are of prime importance in this paper.

The main result of this paper (Theorem 2.2) will provide a clas-
sification of a large number of strongly rigid even Coxeter groups.
Similar methods, applied with a bit more ingenuity, should provide
a solution to the strong rigidity problem for all even Coxeter groups.
Furthermore, the method introduced in order to prove Theorem 2.2
is a powerful one which lends itself to further applications. Specif-
ically, one may use the regular circuits defined in Section 5 of this
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paper, coupled with the understanding of centralizers of parabolic
subgroups of Coxeter groups developed in [3], in order to address
questions concerning more general types of Coxeter groups. In a
forthcoming paper these methods will be used to understand the
structure of Aut(W ) for certain even Coxeter groups. Furthermore,
some of the rigidity results recently obtained by Mühlherr and Wei-
dmann can be recovered using this method. We will return to these
points briefly in the conclusion of this paper.

2. The main theorem and similar classifications

In the case of even Coxeter groups, the notions of rigidity and
reflecton independence are closely related. The following theorem
is proven in [1] and in [4].

Theorem 2.1. Suppose that W is even. If W is reflection inde-
pendent, then W is rigid.

Suppose that (W,S) is a Coxeter system, and let T ⊆ S. Denote
by WT the subgroup of W generated by T . Such a subgroup of W
is called a standard parabolic subgroup, and any conjugate of such
a subgroup is called simply a parabolic subgroup. It is well-known
(see [5]) that (WT , T ) is a Coxeter system, for any T ⊆ S.

Let G ≤ W be a subgroup of W . We denote by C(G) the
centralizer of G in W , and by Z(G) the center of G. If T ⊆ S
as above, we let C(T ) = C(WT ) and Z(T ) = Z(WT ). If T consists
of a single element t ∈ S, we write C(t) for C({t}) and Z(t) for
Z({t}). It is clear that C(T ) = ∩t∈T C(t) and Z(T ) = C(T )∩WT .

The following theorem is this paper’s main result.

Theorem 2.2. Suppose that (W,S) is an even Coxeter system with
connected Coxeter diagram V. If W is strongly rigid, then it is
reflection independent (and therefore rigid) and V contains no set
of vertices J so that the following are true:

1. The full subgraph Γ on the vertices S \ J has at least 2
connected components, and

2. there are vertices s1 and s2 in different connected components
of Γ and an element w in Z(J) such that ws1 6= s1w and ws2 6=
s2w.

Moreover, if W is an even reflection independent Coxeter group
whose diagram V has no such set of vertices, then W is strongly
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rigid provided V has more than two vertices and satisfies one of the
following two conditions:

3. All edges in the even diagram V have labels greater than 2.
4. The even diagram V contains no simple circuits of length 3

or 4.
If either one of these conditions holds and V has more than 2

vertices, then conditions (1) and (2) imply that W is strongly rigid
if and only if V contains no edge or vertex whose removal separates
the diagram into more than one connected component, if and only
if W is 1-ended.

The final equivalence in the above theorem is an immediate con-
sequence of the decomposition of Coxeter groups provided by Mi-
halik and S. T. Tschantz in [14].

We note that the dihedral groups Dn, where n is divisible by 4,
are even and rigid, but they are not strongly rigid. Thus, we must
explicitly exclude these dihedral groups from consideration.

Recently, Mühlherr and Weidmann [15] have proven this charac-
terization for those groups whose diagrams contain no edges labeled
2. Their paper contains a number of other results concerning rigid-
ity and strong rigidity.

A subset J ⊆ S satisfying the first two conditions will be called
a junction. Here, a simple circuit is a path e1, e2, ..., ek (k ≥ 3) in
a graph Γ with k distinct edges ei = [vivi+1] such that v1 = vk+1

and all other vi are distinct from one another. Thus, our condition
essentially says that there are no “triangles” and “squares” in the
diagram V.

In order to understand how to apply this theorem, we must be
able to calculate the centralizer of a given parabolic subgroup. To
this end, we have the following theorem, proven in [3].

Theorem 2.3. Suppose (W,S) is an even Coxeter system with
Coxeter presentation 〈S | R〉, and T ⊆ S. Define

A = S ∩ C(T ),

B1 =
{
(bt)k | b, t ∈ T, (bt)2k ∈ R, k > 1, and
{b, t} ⊂ C(T \ {b, t})},

and
B2 =

{
(bt)k−1b | b ∈ S \ T, t ∈ T ∩ C(T ), (bt)2k ∈ R,

k > 1, and b ∈ C(T \ {t})}.
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Then C(T ) is generated by A ∪ B1 ∪ B2, and (C(T ), A ∪ B1 ∪ B2)
is an even Coxeter system.

Moreover, the inclusion map C(T ) → W preserves geodesics.
I.e. if u1 · · ·ul is a geodesic of length l in (C(T ), A∪B1∪B2), then
u1 · · ·ul is a geodesic of length |u1|+ · · ·+ |ul| in (W,S).

Notice Theorem 2.1 guarantees that, up to label-preserving iso-
morphisms, V is the unique diagram corresponding to a given even,
reflection independent group W , and therefore we need only con-
cern ourselves with this single diagram.

We need a bit more terminology to introduce some related re-
sults.

The star st(x) of a vertex x in a diagram V is the collection of
the vertices of V consisting of x, along with all vertices which are
connected to x by an edge. The 2-star st2(x) is the collection of
vertices of V which are connected to x by an edge labeled 2, plus
x. A simplex σ in a diagram V is a collection of vertices which
span a complete subgraph of V. A simplex σ is called spherical if
the group Wσ ≤ W is finite, and σ is called a maximal spherical
simplex if it is spherical and is not properly contained in another
spherical simplex.

We now compare the main theorem with known facts regarding
rigidity. First we note that the main theorem provides a partial
generalization of the corresponding result for right-angled groups
given in [6]:

Theorem 2.4. Suppose that W is a right-angled Coxeter group
with connected diagram V. Then W is strongly rigid if and only if
for every vertex s in V, the following are true:

1. The full subgraph on the set of vertices in V \ st(s) is con-
nected, and

2. the vertex s is the intersection of all maximal spherical sim-
plices of V which contain s.

The following is a corollary of the primary result in [1]; it is
frequently referred to as Even Rigidity:

Theorem 2.5. Given any Coxeter group W, there is, up to label-
preserving graph isomorphism, at most one even diagram corre-
sponding to W.
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In [13], Mihalik proves the following theorem, which, with Even
Rigidity, completely characterizes all even rigid Coxeter groups.

Theorem 2.6. Suppose (W,S) is an even Coxeter system with cor-
responding diagram V. Then W corresponds to a non-even system
if and only if there is an edge [ab] of V with label 2(2k + 1) for
k > 0, for each c 6= a, any edge [bc] of V is labeled 2, and for each
such edge [bc], there is also an edge [ac] with label 2.

We use this last theorem to identify the even groups which have
no non-even systems, and Even Rigidity then implies that these are
precisely the even groups which are rigid.

We may readily determine which even systems correspond to
reflection independent groups by examining the corresponding dia-
grams, using the following result from [4].

Theorem 2.7. Suppose (W,S) is an even Coxeter system. Then
W is reflection independent if and only if it is rigid and neither of
the following conditions applies.

1. There are distinct vertices x and y in V such that st(x) ⊆
st2(y).

2. There are distinct vertices x, y, z ∈ V and an edge [yz] in
V with label n > 2 such that y and z are both contained in the
intersection of all maximal spherical simplices containing x.

We note that as a result of various structural lemmas given in
[4], maximal spherical simplices can easily be determined from the
diagram V. Thus, both rigidity and reflection independence can
be determined from a given diagram. Notice that Theorem 2.2
characterizes strong rigidity in terms of properties of the diagram
and in terms of reflection independence. Therefore, strong rigidity
of an even Coxeter group whose diagram is of the sort described
in the statement of the theorem can be determined solely from the
presentation (or, equivalently, the diagram) corresponding to the
given Coxeter system.

It is not difficult to see that in case condition (3) holds in The-
orem 2.2, then the forbidden separating subgraphs J are precisely
those edges and vertices which separate the diagram V, if such
subgraphs exist. Therefore, we easily obtain a characterization of
“large-type” even strongly rigid Coxeter groups.
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3. The conditions are necessary

In this section we prove the necessity of the given conditions.
Let us begin by remarking that in an even Coxeter system (W,S),
no two distinct generators can be conjugate to one another. This
fact will be used frequently without mention in this section and
throughout the paper, and it can be proven by noting that the
map which forms the quotient of the even group W by the normal
closure of any subset T ⊆ S is a retraction onto WS\T (see [4]).

Proposition 3.1. The conditions given in the statement of Theo-
rem 2.2 are necessary for the given group W to be strongly rigid.

In order to prove this fact, we will need a few lemmas.
If u = a1 · · · an is a word in the letters of S, the length |u| of u is

defined to be the number n. If u is such a word, we denote by ū the
group element that this word represents. Given a group element
w ∈ W , the length |w| of w is defined to be min{|u| | ū = w}. A
geodesic word u in a Coxeter system (W,S) is a word in the letters
of S so that |u| = |ū|.

The first two lemmas are proven in [3].

Lemma 3.2. If u1 and u2 are geodesic words representing the same
element in a Coxeter system (W,S), then the generators which ap-
pear in u1 are exactly the same as those that appear in u2. More-
over, if (W,S) is even, each letter a ∈ S appears in u1 and u2 the
same number of times.

Lemma 3.3. Suppose that u is a word representing a Coxeter group
element in the system (W,S) and x ∈ S is such that xū = ūx and x
does not appear in u. Then x commutes with every generator which
appears in u.

The last lemma we require is often referred to as the Deletion
Condition. A simple geometric proof due originally to Ol’Shanskii
may be found in [3], and a more elementary one in [5].

Lemma 3.4. (Deletion Condition) Suppose that u = a1a2...an

is a word representing the element ū in the Coxeter system (W,S).
If u is not geodesic, then there are indices i < j so that if u′ =
a1a2...ai−1ai+1...aj−1aj+1...an, ū = ū′.
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This allows us to shorten any non-geodesic representation for a
given group element simply by removing two of the letters from the
representative word.

Proof of Proposition 3.1: We use the same notation as in the
statement of Theorem 2.2. Suppose that W corresponds to the
diagram V. Clearly W must be reflection independent if it is to be
strongly rigid. By Theorem 2.1, W must also be rigid. Suppose by
way of contradiction that V does contain a subset J and a group
element w ∈ W satisfying the conditions put forth in Theorem 2.2.
Let K be the connected component of the graph Γ which contains
the vertex s1. Consider the following collection of group elements:

K ′ = {s′ = wsw−1|s ∈ K}.
Let S′ = (S \ K) ∪ K ′. By the remark at the very beginning of
this section, S \ K and K ′ do not contain any group elements in
common, and |S′| = |S|. We claim that S′ is also a fundamental
generating set of W which is not conjugate to S.

It is easy to see that S′ is a fundamental generating set for a
group isomorphic to W . Indeed, one may show (by considering the
presentation corresponding to the system (W,S) and using the fact
that J separates the diagram V) that the map α which takes s ∈ K
to wsw−1 and which fixes s 6∈ K is a homomorphism with an in-
verse taking s ∈ K to w−1sw. Thus, α is an automorphism of W ,
and α takes S to S′. Because the automorphic image of a funda-
mental generating set is another such set, S′ is also a fundamental
generating set.

Now suppose in order to derive a contradiction that w1Sw−1
1 = S′

for some w1 ∈ W .
Consider any vertex a ∈ S \ K. Then w1aw−1

1 = a, so that
w1 ∈ C(a). Therefore, w1 ∈ C(S \K). Denote this subgroup by C.
Clearly, w1 6= 1. Thus, C 6= {1}.

Let u be a geodesic word such that 1 6= ū ∈ C. In order to
understand what u may be, we consider the following cases.

Case 1. First suppose that a letter a appears in u so that [ab]
is an edge in S \ K with label n > 2. Because ū ∈ C(a) ∩ C(b),
Theorem 2.3 shows that ū may be represented by a product of
(ab)n/2 and of elements x ∈ S so that x commutes with both a and
b. Moreover, from Theorem 2.3 we see that if ū is represented by
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such a product v with a minimal number of terms, then v is geodesic
in W . Therefore, both a and b must appear in u, by Lemma 3.2.

Suppose that x is any vertex in S \ (K ∪ {a, b}). If x appears
in u, then [ax] and [bx] are edges labeled 2. If x does not appear
in u, then by Lemma 3.3 it must commute with every letter which
appears in u, and thus with a and b. Therefore, [ax] and [bx] are
edges labeled 2 in any case.

Suppose that both a and b lie in J . Since S\(J∪K) is not empty
(by the choice of J as a junction), there is some x ∈ S \ (J ∪K).
Because [ay] and [by] are edges labeled 2 for every vertex y ∈ S\(K∪
{a, b}), [ab] must lie in every maximal spherical simplex containing
x. This contradicts the reflection independence of W , by Theorem
2.7. Therefore, either one or both of a, b lie in S \ (J ∪K). The last
paragraph shows that there are no other vertices in S \ (J ∪K).

Returning to u, suppose x is any letter of S \ (K ∪ {a, b}) which
appears in u. (Note that x ∈ J .) If there were an edge [xy] in
S \ K with label m > 2, applying precisely the same argument
as given above (with x and y replacing a and b, respectively), we
would arrive at a contradiction. (At least one of x or y would lie
in S \ (J ∪ K), so without loss of generality x = a or x = b, a
contradiction.)

Therefore, if x is any other generator appearing in u, x must not
lie on any edge in S \K with label m > 2. Suppose x does appear
in u. Then ū ∈ C(x). If y is any vertex of S \ (K ∪ {x, a, b}),
then either y does not appear in u, in which case xy = yx by
Lemma 3.3, or y does appear in u and, therefore, xy = yx because
of the observation which begins this paragraph. In any case, x is
connected to every other vertex in S \K by an edge labeled 2. But
as x ∈ J , this contradicts the fact that W is reflection independent,
by Theorem 2.7. Thus, u contains no letters besides a and b, and
u = (ab)n/2.

Case 2. Now suppose no letter a appears in u so that there is
an edge [ab] ⊆ S \K with label n > 2. Since ū 6= 1, there is some
letter a appearing in u. Choose such an a. Arguing almost exactly
as before, one may show that S \ (J ∪K) = {a}, and that ū = a.

Therefore, either w1 = (ab)n/2 or w1 = a for the appropriate
choice of a and b, as explained above.
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Because wxw−1 = w1xw−1
1 for all x ∈ J ∪ K, w−1w1 = w2 ∈

∩x∈J∪KC(x). Arguments similar to those given above show that
either w2 = (cd)m/2 or w2 = c for some choice of c ∈ K and
d ∈ J ∪K as explained above.

Now w = w1w
−1
2 , and it is clear that no matter the form of w1

and w2 (as described above), w will not lie in the center of J , as
was assumed. This contradiction completes the proof. ¤

4. An easy case

In this section we will prove a special case of Theorem 2.2, in
which the diagram V corresponding to a given group W is a simple
circuit Ck of length k ≥ 5, all of whose edges bear even labels.
We claim that all such diagrams represent strongly rigid groups.
Indeed, this can be shown as a consequence of [8]; however, we will
derive a new proof which will serve as the basis for the proof in more
general settings, as will be seen in later sections. Moreover, as was
mentioned in the introduction, the general method developed here
will prove useful in answering questions concerning different sorts
of Coxeter groups.

One may show rather easily that the diagrams Ck satisfy the
conditions given in the statement of Theorem 2.2. Indeed, there
are no vertices x 6= y so that st(x) ⊆ st2(y), and for no vertices
x 6= y does y lie in every maximal spherical simplex containing x;
therefore, by Theorem 2.7, W is reflection independent. It is just as
easy to show that there is no separating subgraph J as demanded
in the statement of Theorem 2.2.

Suppose that V corresponds to the system (W,S), and consider
any other fundamental generating set S′ for W . Denote the diagram
corresponding to this system by V ′. Of course, V and V ′ are isomor-
phic as labeled graphs. We know by reflection independence that
every generator a ∈ S is conjugate to a unique generator a′ ∈ S′.
By the main theorem in [1], we may assume that this conjugacy
relation respects the isomorphism of the diagrams V and V ′. That
is, we may choose an edge-labeled graph isomorphism α : V → V ′
so that for every a ∈ S, a and α(a) are conjugate.

Now we consider the conjugating elements very carefully. All
arithmetic done below will be modulo k.
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Let S = {a1, a2, ..., ak} and S′ = {a′1, a′2, ..., a′k}, where ai and a′i
are conjugate to one another for all i = 1, ..., k, and [aiai+1] is an
edge with label ni.

We require the following fact, which is proven in [4].

Theorem 4.1. Let (W,S) and (W,S′) be even systems correspond-
ing to the same Coxeter group, with corresponding diagrams V and
V ′. If σ is a maximal spherical simplex in V, then there is some
maximal spherical simplex σ′ ⊆ V ′ so that σ and σ′ are isomorphic
as edge-labeled graphs, and so that the subgroups W generated by
these simplices are conjugate by some element w ∈ W . That is,
wWσw−1 = Wσ′.

For any i = 1, ..., k, [aiai+1] is an edge with even label ni. In
this case each edge [aiai+1] is itself a maximal spherical simplex.
Therefore Theorem 4.1 tells us that for every i = 1, ..., k there is an
element wi ∈ W so that wi conjugates the generators ai and ai+1

to generators of the group W{a′i,a′i+1}, one of which is a conjugate
of a′i, the other a conjugate of a′i+1. We may assume, modifying
wi if necessary, that wiaiw

−1
i = a′i. Since wiaiw

−1
i and wiai+1w

−1
i

generate W{a′i,a′i+1}, wiαi+1ai+1α
−1
i+1w

−1
i = a′i+1 for some word αi+1

in the letters ai and ai+1. In fact, αi+1 is either trivial or can be
written as (ai+1ai)ki or ai(ai+1ai)ki , where 0 ≤ ki ≤ ni

4 − 1. (In
particular, αi+1 = 1 when ni = 2.)

Therefore,
wiaiw

−1
i = wi−1αiaiα

−1
i w−1

i−1 ⇒ w−1
i−1wi = αiâi,

where αi is described above and âi ∈ C(ai) for all i = 1, ..., k.
Now note that

α1â1α2â2 · · ·αkâk = w−1
k w1w

−1
1 w2 · · ·w−1

k−1wk = 1.

We first show that we can “eliminate” the words αi. We then
consider the most general form for the words âi and describe the
free cancellation that can occur in the product of such words. This
will enable us to construct van Kampen diagrams which further
reduce the number of possibilities for the form of the words âi.
Once we have obtained simple enough forms for these words, we
will be able to describe a single group element w which conjugates
ai to a′i for any i = 1, ..., k.

To understand âi, consider C(ai). By Theorem 2.3, C(ai) is the
subgroup of W generated by the set {ai, (ai−1ai)ni−1/2, (aiai+1)ni/2}.
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Since ai is central in this subgroup, any element of C(ai) may be
written geodesically as a product of either 1 or ai and an alternating
product of the words of the form vi−1,i = (ai−1ai)

ni−1
2
−1ai−1 and

vi+1,i = (ai+1ai)
ni
2
−1ai+1. For now let us agree to write ai at the

end of the word âi if this letter appears outside of one of the words
vi−1,i or vi+1,i. Such an occurrence will be called a loose occurrence
of ai.

Consider the homomorphism ν which identifies all generators but
ai and ai+1 to 1 (we identify both ai and ai+1 with their images
under ν). Then by considering the form of âi given above,

ν(âi−1) ∈ {1, ai},
ν(αi) ∈ {1, ai},
ν(âi) ∈ {1, ai, vi+1,i, aivi+1,i},
ν(âi+1) ∈ {1, ai+1, vi,i+1, ai+1vi,i+1},
ν(αi+2) ∈ {1, ai+1}.

Therefore,
ν(âi−1αiâi) ∈ {1, ai, vi+1,i, aivi+1,i}

and
ν(âi+1αi+2) ∈ {1, ai+1, vi,i+1, ai+1vi,i+1}.

Note also that ν(αi+1) = αi+1, and ν(αj âj) = 1 for all j 6∈ {i −
1, i, i+1, i+2}. Now ν(α1â1 · · ·αkâk) = 1, because α1â1 · · ·αkâk =
1. However, it is straightforward to show using the above computa-
tions that if αi+1 has length greater than 1 (so αi+1 6∈ {1, ai}), this
cannot be true. Thus, αi+1 ∈ {1, ai}. If αi+1 = ai, we can “push it
back” into âi, cancelling, if necessary, with the loose occurrence of
ai which may occur there already.

Therefore, we may assume from now on that αi = 1 for all i.
Now we ask what free cancellation can occur when we multiply

the elements âi with one another. Note that a given letter ai can
occur only in the three words âi−1, âi, or âi+1; therefore, we need
only consider cancellation between these words.

First consider the product âi−1 · âi. The following possibilities
involve non-trivial free cancellation:

1. âi−1 = ui−1vi−2,i−1ai−1, âi = vi−1,iui (2 letters cancel);
2. âi−1 = ui−1vi−2,i−1, âi = ai (2 letters cancel);
3. âi−1 = ui−1vi,i−1ai−1, âi = vi−1,iui (2ni−1−2 letters cancel);
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4. âi−1 = ui−1vi,i−1ai−1, âi = vi−1,iai (2ni−1 letters cancel).

Here it is assumed that ui either contains vi+1,i as a subword or
does not contain a loose occurrence of ai. Each of these formulas
always obtains, whether ni−1 > 2 or ni−1 = 2.

Similar formulas obtain for the cancellation which occurs be-
tween âi and âi+1. Additionally, we note that the only time there
is cancellation between âi−1 and âi+1 is when âi = 1, in which case
we may have

âi−1 = ui−1vi,i−1, âi+1 = vi,i+1ui+1

which allows cancellation of the single letter ai.
Now let us construct a van Kampen diagram ∆ whose boundary

∂∆ is labeled by the product of the words âi, and assume that the
free reduction described above has been performed. (We assume
knowledge of such diagrams; see [12] for example.)

We now show that both vi−i,i and vi+1,i can occur at most once
in âi. Were this not true, either vi−1,ivi+1,ivi−1,i or vi+1,ivi−1,ivi+1,i

would appear as a subword of âi.
In the first case, after performing free cancellation in the product

âi−1âi as described above, at least vi+1,ivi−1,i remains, and this sub-
word cannot be affected by further free cancellation in the product
âi−1âiâi+1. Therefore, we may draw a diagram as shown in Figure
1.

We now construct “bands” within the diagram ∆. Consider any
edge labeled ai−1 inside of the occurrence of the subword vi−1,i in
âi described above. This edge lies on the boundary of a unique
relator cell Π in ∆, and there is a unique edge (also labeled ai−1)
in Π directly opposite from our initial edge. This opposite edge lies
either on the boundary of ∆ or inside of a unique cell Π′ 6= Π. This
cell Π′ will be the next cell in the band. We continue this process
until we have reached the boundary of ∆ once again.

We construct a similar band, beginning at any occurrence of the
letter ai+1 in the subword vi+1,i in âi described above. Because we
have assumed that the words âj are all geodesic, neither of these
bands terminates at any letter lying in âi. (Otherwise the Deletion
Condition is exhibited in âi, contradicting geodesity.)

Therefore, the ai−1-band must terminate in either âi−1 or âi−2,
and the ai+1-band must terminate in either âi+1 or âi+2. This
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Figure 1. The first case, after cancellation

implies, as shown in Figure 2, that some pair of bands as described
above cross each other.

However, since ai−1 and ai+1 are unrelated elements of the group,
this cannot occur. A completely symmetric argument shows that
vi+1,ivi−1,ivi+1,i cannot appear as a subword of âi.

Therefore, each vi−1,i and vi+1,i occurs at most once as a sub-
word of âi, and (in light of the preceding argument) if both occur,
vi−1,ivi+1,i is a subword of âi. (That is, vi−1,i occurs “first.”)

Let us for the moment fix i = 2 and consider the possibilities for
the words â1, â2, and â3. Any occurrence of the letter a2 in the
product of the words âi must lie in one of these three words. Since
the product of all of the words âi is trivial, the occurrences of a2 in
â1â2â3 must somehow “cancel” each other.

Consider, for instance, if we were to have â1 = vk,1v2,1, â2 =
v1,2v3,2a2, and â3 = v2,3v4,3. After reduction in the group W ,
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Figure 2. Crossing of bands

â1â2â3 = vk,1a1a2a3v4,3 (1).
Under the quotient homomorphism ν which sends every element of
S\{a2} to 1, the product of all of the words âi must be taken to the
identity. However, it is clear from (1) that the image of this product
is represented by the word ν(a2), implying that the generator a2 is
sent to 1 as well, which is clearly not the case because W is even.
Therefore, the words â1, â2, and â3 could not have had the forms
described above, and this product is not admissible.

We may apply a similar argument to the finitely many other
choices for these three words. Namely, we know that

â1 ∈ {u, uv2,1, uv2,1a1}
â2 ∈ {1, v1,2, v3,2, a2, v1,2v3,2, v1,2a2, v3,2a2, v1,2v3,2a2}

â3 ∈ {v, v2,3v}
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where u and v do not contain a2. By considering each of these
choices in turn, we prove the following lemma by direct computa-
tion.

Lemma 4.2. Let u and v retain the meanings given above. The
following statements are true of the reduced word α representing
any of the admissible products â1â2â3 described above.

1. α does not contain the letter a2.
2. α is of one of the forms uv, ua1v, ua3v, or ua1a3v. (Thus,

there exist words α1 ∈ W{a1,ak} ∩ C(a1) and α2 ∈ W{a3,a4} ∩ C(a3)
such that α = α1α2.)

We can now compute all possibilities for the word v, as well as
the possibilities for the portion of the word â4 which contains a3.

We first write â4 as β1β2, where β2 does not contain a3. Assum-
ing that â1â2â3 reduces to one of the forms uv or ua1v (where u
and v are as above), quotient arguments similar to that given above
show that

n3 > 2 ⇒ (v, β1) ∈ {(1, 1), (v4,3a3, v3,4)}
and

n3 = 2 ⇒ (v, β1) ∈ {(1, 1), (a4, 1), (a3, a3), (a4a3, a3)}.
Assuming that the reduced form of the product â1â2â3â4 is either
ua3v or ua1a3v, we may show

n3 > 2 ⇒ (v, β1) ∈ {(a3, 1), (v4,3, v3,4)}
and

n3 = 2 ⇒ (v, β1) ∈ {(1, a3), (a3, 1), (a4, a3), (a4a3, 1)}.
With these choices for v and β1, we now observe that the word
â1â2â3â4 can be written as a reduced word which contains neither
a2 nor a3. In fact, â1â2â3â4 is equal to a word of one of the forms
uβ2, ua1β2, ua4β2, ua1a4β2, where u is the same word as before
and β2 is a word in the letters a4 and a5 which commutes with a4.

In fact, we now know more is true: if â1â2â3 ∈ {uv, ua1v} with u
and v as above, then our computations have shown that v commutes
with both a3 and with a4. Similarly, if â1â2â3 ∈ {ua3v, ua1a3v},
a3v must commute with both a3 and a4.

We may clearly continue this procedure by considering the prod-
uct â1â2â3â4â5, and so on. The number of possible forms which
must be considered at each step does not increase: the form of
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â1 · · · âk depends only on the number of occurrences (either 0 or 1)
of âk−1 in the “known” portion of â1 · · · âk−1.

Inducting, we obtain the following result.

Proposition 4.3. Suppose that the words âi are defined as above
and let 3 ≤ i ≤ k − 1. Then the group element represented by the
product â1â2 · · · âi may also be represented by a word of the form
ûvi, where

1. û is a word in the letters a1 and ak, ûa1 = a1û and ûak = akû,
2. vi is a word in the letters ai and ai+1, viai = aivi and viai+1 =

ai+1vi.

We emphasize that û does not depend on i; it is either ua1 or u
in the above arguments, depending on whether a1 did or did not
appear outside of u, in the reduced form for â1â2â3.

Proof: The process described above can clearly be generalized to
determine â1 · · · âi given the form of â1 · · · âi−1. It is also clear that
u remains unaffected in this procedure.

The only claim not yet proven is that ûak = akû. However, we
can apply the argument given above to determine the form of the
word âkâ1â2â3 given the form of â1â2â3, and just as the previous
argument showed that either a3v or v (depending on whether or not
a3 appeared outside of v) commutes with a4, the slightly modified
argument shows that û must commute with ak. ¤

Set w = wkû, where û is the word described in Proposition 4.3.
We claim that w conjugates S to S′.

First,
wakw

−1 = wkûakû
−1w−1

k = wkakûû−1w−1
k = wkakw

−1
k = a′k

because akû = ûak. Also, since wk = w1â
−1
1 ,

wa1w
−1 = w1â

−1
1 ûa1û

−1â1w1 = w1a1w
−1
1 = a′1

because both â1 and û commute with a1.
More generally,

wk = w1â
−1
1 = w2â

−1
2 â−1

1 = · · · = wk−1â
−1
k−1â

−1
k−2 · · · â−1

1 .

Combining this with Proposition 4.3,
w = wkû = wiv

−1
i û−1û = wiv

−1
i

for every i = 3, ..., k − 1, where vi commutes with ai. Therefore,
waiw

−1 = wiv
−1
i aiviw

−1
i = wiaiv

−1
i viw

−1
i = wiaiw

−1
i = a′i,
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as desired.

5. Regular circuits and the structure of V
In this section we prove a couple of “structural” lemmas concern-

ing the graph which underlies V and introduce a definition which
will be of great importance in proving the main theorem in general.
Recall that the degree of a vertex x in an undirected graph without
loops is the number of edges for which x is an endpoint.

Lemma 5.1. Suppose that (W,S) is a reflection independent even
Coxeter system whose diagram V does not contain a junction J (see
Theorem 2.2). Then either W is a dihedral group or V contains no
vertices of degree 1.

Proof: Suppose on the contrary that x is a vertex in V of degree
1; it is therefore incident a single edge [xy]. If the label on [xy] is
2, clearly st(x) ⊆ st2(y), so that W is not reflection independent,
by Theorem 2.7. If the label on [xy] is 2(2k + 1) for some k > 0,
then W is not rigid, by Theorem 2.6, and therefore not reflection
independent, by Theorem 2.1.

So [xy] must be labeled by an integer n, where 4 divides n. If
[xy] comprises the entire diagram V, we are done, as W is then
dihedral. Otherwise J = {y} is a set which separates the diagram
V into at least two components. Consider the group element y. If
there were a generator z ∈ S \ {x, y} such that yz 6= zy, J would
be a junction. Since V does not contain a junction, yz = zy for
all generators z 6∈ {x, y}, so that [yz] is an edge labeled 2 for all
such vertices. Clearly this implies that for any vertex z 6∈ {x, y},
st(z) ⊆ st2(y), again contradicting reflection independence. ¤

For the remainder of this section, consider a diagram V which
has no simple circuits of length less than 5.

If p is a path in V and x,y are vertices on p, we denote by
distp(x, y) the length (i.e., number of edges) of the subpath of p
between these vertices. Let C be a circuit in V consisting of edges
{[a1a2], ..., [ana1]}. We define distC(ai, aj) to be the minimum of
the lengths of the two paths between ai and aj defined by the
circuit.

A collection of edges {[a1a2], [a2a3], ..., [ana1]} is said to define a
regular circuit C in V if the vertices ai are all distinct, if whenever
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distC(ai, aj) > 1, there is no edge [aiaj ] and there is no path of
length 2 lying outside the given collection which connects ai to aj .
(The fact that there are no simple circuits of length less than 5
forces |i− j| ≥ 3 if there is to be such a path of length 2 connecting
ai and aj , for any circuit.) Examples of regular and non-regular
circuits are shown in Figure 3; note that the circuit

{[a1a2], [a2a3], [a3a4], [a4a5], [a5a6], [a6a1]}
is regular, while the circuit

{[a1a2], [a2a3], [a3a4], [a4b1], [b1b2], [b2a6], [a6a1]}
is not.

Figure 3. Regular and non-regular circuits

Lemma 5.2. Suppose that (W,S) is an even reflection independent
Coxeter system with corresponding diagram V, and that V contains
neither simple circuits of length less than 5 nor junctions. Then
either W is dihedral or every vertex in V is contained in some
regular circuit.

Proof: We may assume that |S| > 2. Let us first show that every
vertex is contained in a circuit, regular or non-regular.

Consider a vertex x ∈ V. First suppose that removal of x and
all edges incident x separates the graph underlying V. In this case,
since V does not contain a junction, x must commute with every
generator in some component of the graph that results from re-
moving x. However, this contradicts the assumption that (W,S) is
reflection independent, as in the proof of the previous lemma.
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Therefore, removal of x and all edges incident x does not separate
the graph underlying V. Consider any two vertices y, z so that
there are edges [xy], [xz] (this is possible, by Lemma 5.1). Because
removal of x and all incident edges does not disconnect the graph
underlying V, there is a reduced path from y to z which does not
contain the vertex x, and in fact does not contain the edges [xy]
and [xz]. Concatenating this path with these edges gives the desired
circuit.

Now suppose we have found a circuit C = {[a1a2], ..., [ana1]}
which contains the vertex x, where a1 = x. If C is regular, we are
done. Otherwise, there are indices i < j such that distC(ai, aj) > 1
and either there is an edge [aiaj ] in the graph underlying V or there
is a path of length 2 from ai to aj lying outside of C. In either case,
we can find a strictly shorter circuit which contains x. In the first
case, where 1 ≤ i < j, the circuit

C ′ = {[a1a2], ..., [ai−1ai], [aiaj ], [ajaj+1], ..., [ana1]}
is such a circuit. In the second case, where again 1 ≤ i < j, given
that [aib], [baj ] is a path lying outside of C,

C ′ = {[a1a2], ..., [ai−1ai], [aib], [baj ], [ajaj+1], ..., [ana1]}
is the desired circuit. An obvious induction completes the proof.

¤

6. No triangles, no squares

Let us now prove the main theorem under the assumption that
the diagram V and the isomorphic diagram V ′ contain neither “tri-
angles” nor “squares,” i.e., neither simple circuits of length 3 nor
of length 4.

Consider any regular circuit C = {[a1a2], ..., [aka1]}. Since V
contains neither triangles nor squares, the length of this circuit is at
least 5. This circuit corresponds to a circuit C ′ = {[a′1a′2], ..., [a′ka′1]}
in V ′ so that for every i = 1, ..., k, the generators ai and a′i are
conjugate to one another.

Our argument proceeds much as in Section 4. For each edge
[aiai+1] (addition modulo k) there is an element wi ∈ W such that
both wiaiw

−1
i = a′i and wiαi+1ai+1w

−1
i = a′i+1 hold, where αi+1

is some word in the letters ai and ai+1. As in Section 4 we define
geodesic words âi ∈ w−1

i−1wi ∈ C(ai) and note that
∏k

i=1 αiâi = 1.
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Now it is conceivable that âi could contain letters which do not
appear in the circuit C. (For instance, if [aib] is an edge labeled m,
where b does not lie on the circuit C, then (aib)m/2 ∈ C(ai), and
thus this word could occur as a subword of âi.)

Suppose that the letter b occurs in âi, where b does not lie on
C. Because C is assumed to be regular, b cannot be adjacent to
any vertex aj where |j − i| > 2. But since V contains neither
triangles nor squares, b cannot be adjacent to any of ai−2, ai−1, ai+1,
or ai+2. Thus, b may appear only in âi. Under free cancellation
in the product of the words αiâi, any occurrence of this generator
must remain. Therefore, we are able to construct a van Kampen
diagram ∆ for the relation α1â1 · · ·αkâk = 1 which has at least one
edge labeled b on its boundary, and every such edge lies within the
portion of the boundary corresponding to âi. If we now construct
a b-band which begins at such an occurrence of b, it must end
at another occurrence of b inside âi, allowing us to construct a
new (and shorter) word representing the same group element as âi,
contradicting the geodesity of âi.

Therefore, no âi contains letters which do not lie on the circuit C,
and the structure of the words âi may be determined in exactly the
same manner as was done in Section 4. Therefore, we may construct
a group element wC so that wCaiw

−1
C = a′i for all i = 1, ..., k.

Since every vertex x in V lies on some regular circuit, the union
of all of the regular circuits in V contains every vertex of V. We now
show that whenever any two regular circuits C1 and C2 intersect,
wC1 = wC2 . This will imply the desired result.

Consider two regular circuits C1 and C2 in V which intersect.
Let C ′

1 and C ′
2 be the corresponding circuits in V ′. Let w1 and w2

be elements of W which conjugate the vertices of C1 and C2 to the
vertices of C ′

1 and C ′
2, respectively. Define Γ to be the set of vertices

in the intersection C1 ∩ C2. For any vertex x ∈ Γ, w−1
1 w2 ∈ C(x).

Therefore, if K =
⋂

x∈Γ C(x) is trivial, we are done.
When is K not trivial? It is easy to show (using Theorem 2.3

and assuming that C1 and C2 are regular and that the diagram
V has no triangles and squares) that if the word u represents an
element of K, then every letter which appears in u lies in Γ. For a
generator in Γ to appear in a geodesic word representing an element
of K requires that Γ consist of consecutive vertices of C1, no more
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than 3 in number: 1 ≤ |Γ| ≤ 3. We consider the three cases for |Γ|
below.

The argument will be similar in all three cases. We will con-
struct a “chain” of regular circuits which connects C1 to C2, each
of which shares at least a single edge with the previous one. We
then consider the product of the corresponding conjugating words
for these circuits, indicating how this product forces the triviality
of w−1

1 w2.

Case 1. |Γ = 2|. Suppose Γ = {a, b}. There are two possibilities:
[ab] has label n > 2, and [ab] has label 2. The proof is almost iden-
tical in both of these cases. Although the second of these cases is
used in proving the first, the first is slightly easier to formulate and
visualize than the second, so that case will be considered initially.

Subcase 1.a. The edge [ab] has label n > 2. Here K = C(Γ) =
{1, (ab)n/2}. We need to show that w−1

1 w2 6= (ab)n/2.
Because we assume that V has no junctions, removal of the ver-

tices a and b and any edges incident either of these vertices (includ-
ing [ab]) does not disconnect the graph underlying V. Therefore,
there is a path p from C1\{a, b} to C2\{a, b} which contains neither
a nor b.

Suppose this path begins at c1 ∈ C1 \ {a, b} and ends at c2 ∈
C2\{a, b}, and let q be a geodesic path in C1∪C2 connecting c1 and
c2. Then concatenating p and q yields a circuit, D = pq. We may
choose this circuit to be “almost regular” in the following manner.

For any path p = {[p0p1], [p1p2], ..., [pk−1pk]} directed from C1 \
{a, b} to C2\{a, b}, there is a first point at which p “leaves” C1 (i.e.,
pi ∈ C1 \ {a, b}, pi+1 6∈ C1 \ {a, b}). Similarly there is a final point
pj at which p “enters” C2 (i.e., pj−1 6∈ C2 \ {a, b}, pj ∈ C2 \ {a, b}).
The path {[pipi+1], ..., [pj−1pj ]} is also a path connecting C1 \{a, b}
and C2 \{a, b}, and we may therefore assume that i = 0 and j = k.

First consider pairs (c1, c2) where c1 ∈ C1 \ {a, b} and c2 ∈ C2 \
{a, b} for which there is a path p as above satisfying p0 = c1 and
pk = c2 so that distC1∪C2(c1, c2) is minimal among all such c1, c2.
Among all paths p as above between such pairs of vertices, select a
pair (c1, c2) connected by a path p as above of minimal length.

Having chosen c1, c2, and p, let q be a geodesic path in C1 ∪ C2

from c2 to c1. Then D = pq is a circuit. It is easily seen to be
a simple circuit, as otherwise we would contradict the choice of
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either (c1, c2) or p. (As in Figure 4, p may intersect C1 ∪ C2 in
many places.)

Figure 4

Moreover, if pi and pj are vertices in p and |i − j| > 1, the
minimality of p shows that there is no edge [pipj ] in V, and no path
{[pix], [xpj ]} of length 2 for x 6∈ p. If pi is a vertex of p and d is a
vertex in q, d 6∈ {a, b, c1, c2}, the choice of (c1, c2) shows that there
is no edge [dpi] in V, and no path {[pix], [xd]} of length 2 for x 6∈ D.
Finally, if d1 and d2 are vertices in q (and d1, d2 6∈ {a, b, c1, c2}), the
regularity of C1 and C2 and the choice of (c1, c2) shows that there
is no edge [d1d2], and no path {[d1x], [xd2]} of length 2, x 6∈ D.

Therefore, D = pq is “almost regular.” Because C1 and C2 are
both regular, the only way in which D may fail to be regular is if
there is a vertex pi ∈ p so that either [pia] or [pib] is an edge, or
there is some path {[pix], [xa]} or {[pix], [xb]} of length 2, where
x 6∈ D. (This is the point at which the present case is easier to
visualize than the case in which [ab] has label 2.)

Unfortunately, as Figure 5 demonstrates, this failure of regularity
may be enough to allow a D to be very “non-regular.”
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Figure 5. Trouble with D

However, we still have some control over D; it can be subdivided
into regular circuits, each of which shares at least an edge with
some other circuit in the subdivision.

For now let us assume that q contains a and not b, and that
q = q2q1, where q2 connects c2 to a and q1 connects a to c1. (The
arguments below are almost identical in case both a and b lie on q,
and symmetric in case b lies on q and a does not.)

Let us begin with D = pq as above. If D is regular, we are
finished. If D is not regular, there are vertices d1, d2 in D so that
distD(d1, d2) ≥ 1 and either [d1d2] is an edge or {[d1x], [xd2]} is
a path of length 2, x 6∈ D. We may suppose that d1 = a and
d2 = pi. Let q′ be a path of length ≤ 2 from pi to a. From
D we create 2 circuits, D1 = {q2, [p0p1], ..., [pi−1pi], q′} and D2 =
{q−1

1 , [pkpk−1], ..., [pi+1pi], q′}. (For a path α, α−1 represents the
path obtained by traversing α in the opposite direction.) Both of
these circuits are strictly shorter than D.

If both of these circuits are regular, we are done. Otherwise,
we subdivide again. For instance, if D1 is not regular, we may
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find x1, x2 on D1 so that distD1(x1, x2) > 1 and there is some
path q′ of length ≤ 2 from x1 to x2 which does not lie inside D1.
Concatenating the appropriate subpaths of D1 with this path yields
two new circuits, D11 and D12, say, of length strictly shorter than
D1. If these circuits are both regular, we are done. Otherwise, we
subdivide again.

We continue this process until every circuit so obtained is regular.
Clearly this is possible: every circuit of length 5 is regular, and it is
easy to show that the average length of the circuits present after r
subdivisions have been performed is a strictly decreasing function
of r.

Suppose that this process of subdivision yields regular circuits
{D1, ..., Dm}, and let ui be the conjugating word associated with
the circuit Di.

For any subset {Di1 , ..., Dir} of the collection {Di},

w−1
1 ui1 · u−1

i1
ui2 · · ·u−1

ir−1
uir · u−1

ir
w2 · w−1

2 w1 = 1 (2).

Moreover, u−1
ij−1

uij ∈ C(Γj), where Γj is the set of vertices in Dij−1∩
Dij . In order to make use of this information, we must find a
“chain” of circuits Di from C1 to C2.

Consider a vertex pi in p. Before any subdivision has been per-
formed, pi is incident two edges, e1 and e2, in D. If i 6∈ {0, k},
e1 = [pi−1pi] and e2 = [pipi+1]. If i = 0, then p0 = c1, e1 = [dc1],
and e2 = [c1p1], where d is the second-to-last vertex in q. For i = k,
then pk = c2, e1 = [pk−1c2], and e2 = [ckd], where d is the second
vertex in q. Clearly, both e1 and e2 lie in the circuit D.

Suppose that the first step in the subdivision described above
involves the vertex pi: we create two new circuits by considering a
path q′ of length ≤ 2 from pi to either a or b. There are now three
edges in D1 ∪ D2 incident pi. If e is the first edge in the path q′,
then we may assume that e1 and e both lie on the circuit D1 and
that e and e2 both lie on the circuit D2, so we may proceed from
e1 to e2 by “stepping through” the circuits D1 and D2.

In fact, at each subdivision described above, the number of edges
incident pi may increase. Ultimately, pi may be incident a large
number of edges. However, we claim that we may still proceed
from the first edge to the last by “stepping through” the intervening
circuits. Let {e1, ..., er} denote the collection of edges in D1 ∪ · · · ∪
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Dm which are incident the vertex pi, where e1 and er are the two
edges which lie in the original circuit D.

Lemma 6.1. There exists a subset {ei1 = e1, ei2 , ..., eis−1 , eis = er}
of the edges incident pi and a subset {Di1 , ..., Dis−1} of the circuits
in the subdivision of D so that for every j, Dij contains both eij

and eij+1.

Proof: We induct on the number of steps performed in the subdi-
vision of D. The result is clearly true if no subdivision is necessary.
Suppose that the result is true in case n subdivisions have been
performed, and suppose that n + 1 subdivisions are necessary.

Clearly, the argument does not depend upon the regularity of the
circuits involved. Therefore, we may assume that after n subdivi-
sions have been performed on D, the result is true for pi, relative
to the n + 1 circuits into which D has now been divided. There-
fore, there are edges {ei1 , ..., eis} and circuits {Di1 , ..., Dis−1} as in
the statement of the lemma. Let us consider the effect of the final
subdivision, which consists of dividing a fixed circuit, D̄, say, into
two shorter circuits.

If D̄ 6= Dij for all j = 1, ..., s− 1, we may retain the collection of
edges and the collection of circuits listed above. (Note that even if
D̄ 6= Dij for all j, the vertex pi, or even an edge ei, may lie in D̄.
This does not affect our argument.)

Suppose D̄ = Dij for some j. The circuit D̄ is subdivided into
circuits D̄1 and D̄2 by adding a path q′ between vertices x1, x2 in
D̄. If neither x1 nor x2 is pi, then one or the other of the two
circuits D̄i contains both edges eij and eij+1 . Suppose D̄1 does. In
this case we retain the collection of edges given above and merely
replace D̄ with D̄1.

Finally, suppose x1 = pi. Then D̄ is subdivided into two circuits
D̄1 and D̄2, and we may assume that eij lies in D̄1 and eij+1 lies in
D̄2. Let e be the edge in q′ which contains pi. Then consider the
new collections

{ei1 , ..., eij , e, eij+1 , ..., eis}
and

{Di1 , ..., Dij−1 , D̄1, D̄2, Dij+1 , ..., Dis−1}.
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Reindex these collections, ordering them as written. These collec-
tions satisfy the statement of the lemma, since it is clear that ei1

and eis remain fixed throughout. ¤

We are ready to construct a “chain” of regular circuits from C1

to C2. To each vertex pj in p associate the collections {ej,i1 , ..., ej,is}
and {Dj,i1 , ..., Dj,is−1} as described above, where s depends on j.

Consider the sequence of circuits

(D1,i1 , D1,i2 , ..., D1,is−1 , D2,i1 , ..., Dk,i1 , ..., Dk,is−1).

It is possible that Dj,is−1 = Dj+1,i1 for some j. In this case we
merely omit repeated occurrences of this circuit in the sequence.

Reindex this sequence, denoting it merely by (Di1 , Di2 , ..., Dil).
For every j = 1, ..., l− 1, Dij and Dij+1 share at least an edge, and
therefore, Γj = Dij∩Dij+1 has a small centralizer. If uj is the group
element which conjugates each vertex of Dij to the corresponding
vertex in V ′, then u−1

j uj+1 ∈ C(Γj). Let Γ0 = Di1 ∩ C1 and Γl =
Dil ∩ C2; thus, w−1

1 u1 ∈ C(Γ0) and u−1
l w2 ∈ C(Γl).

We now apply equation (2) above to obtain

w−1
1 u1u

−1
1 u2 · · ·u−1

l−1ulu
−1
l w2w

−1
2 w1 = 1 (3).

If neither a nor b appears in any word in C(Γj) for any j, then
no quotient u−1

j uj+1 contains a or b; likewise, neither w−1
1 u1 nor

u−1
l w2 contains a or b. Therefore, from (3), the quotient w−1

2 w1

cannot contain either a or b, and w1 = w2.
Suppose Γj consists of the edge [pia] with label nj > 2, so that

C(Γj) = {1, (pia)nj/2}. Suppose u−1
j uj+1 = (pia)nj/2. Applying

the quotient map ν which identifies every vertex but pi and a to 1
to the lefthand side of (3) yields the trivial element of the group
ν(W ).

However, because of the way the circuits Dij are defined, it is
clear that the lefthand side of (3) may be written v1v2(pia)nj/2v3v4,
where neither v1 nor v4 contains pi and neither v2 nor v3 contains
a. Thus, ν(v1), ν(v4) ∈ {1, a} and ν(v2), ν(v3) ∈ {1, pi}. Since

ν(v1v2(pia)nj/2v3v4) = ν(v1)ν(v2)(pia)nj/2ν(v3)ν(v4),

we have obtained a contradiction. Thus, u−1
j uj+1 = 1, and this

quotient cannot contribute an occurrence of a to the product in
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(3). An identical argument holds for those j for which Γj = [pib] is
an edge labeled 2.

Therefore, we need only consider the case in which Γj consists of
an edge [pia] (or [pib]) labeled 2. Suppose this is so. We now make
use of Subcase 1.b to conclude that uj = uj+1. Yet again, neither
a nor b can appear in u−1

j uj+1.

Subcase 1.b. Γ = {a, b}, and the edge [ab] has label 2. Thus,
w−1

2 w1 ∈ {1, a, b, ab}.
We argue almost exactly as in the previous subcase; indeed, the

only difference is the way in which we define the initial circuit D
which is to be subdivided.

Because V contains no junctions, the removal of st2(a) and any
edges incident the vertices in this set must not disconnect the graph
underlying V. Thus, there is a path p from C1 \st2(a) to C2 \st2(a)
which does not contain any vertices from st2(a). As in the previous
subcase, we may choose p to be a path of minimal length from c1

in C1 to c2 in C2. Concatenating p with a geodesic q between c1

and c2 in C1∪C2 yields a simple circuit D which can be subdivided
exactly as before.

Lemma 6.1 still allows us to construct a sequence (Di1 , ..., Dil) of
regular circuits from C1 to C2 with the same properties as before.
Moreover, since no vertex pi in p is contained in the 2-star of a,
there is no edge [pia] labeled 2, for any pi, and the final possibility
in the previous subcase cannot occur. The other possibilities are
handled as in Subcase 1.a.

Thus, a does not appear in any of the quotients w−1
1 u1, u−1

l w2, or
u−1

j uj+1, j = 1, ..., l− 1. From equation (3), w−1
2 w1 cannot contain

an occurrence of the generator a, and w−1
2 w1 ∈ {1, b}.

A completely symmetric argument, removing st2(b) instead of
st2(a), shows that w−1

2 w1 ∈ {1, a}, so w−1
2 w1 = 1, and w1 = w2.

Note that we do not use Subcase 1.a at any step in this proof!

Case 2. |Γ| = 3. Suppose Γ = {a, b, c}, where [ab] and [bc]
are edges labeled 2. Thus, C(Γ) = {1, b}, and we need only show
w−1

2 w1 6= b.
Because V contains no junctions, the removal of st2(b) and any

edges incident any vertex in this set does not disconnect the graph
underlying V. As in Case 1, we may construct a simple circuit D
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which can be subdivided into regular circuits Di, some sequence
(Di1 , ..., Dil) of which gives a “chain” from C1 to C2. Exactly as in
Case 1.b, we may show that w−1

2 w1 cannot contain the generator
b, and therefore, w1 = w2.

Case 3. |Γ| = 1. Suppose Γ = {a}. Since V has no junctions,
removing st2(a) and any edges incident any vertex in this set does
not disconnect the graph underlying V. As before, we construct
a simple circuit D which may be subdivided into regular circuits
Di, some sequence (Di1 , ..., Dil) of which creates a “chain” from C1

to C2. Here, the most important property of this sequence is that
for every j, Dij and Dij+1 share an edge. Therefore, from cases 1
and 2, uj = uj+1 for every j = 1, ..., l − 1. Also, since C1 and Di1

share an edge and C2 and Dil share an edge, w1 = u1 and w2 = ul.
Therefore,

w1 = u1 = u2 = · · · = ul−1 = ul = w2

and we are done.

7. No edges labeled 2

The proof of the theorem in this case will be very similar to the
proof given in Section 6. We again begin with regular circuits in
V, slightly modifying what we mean for a circuit to be regular.
We then prove, as before, that to each such regular circuit C there
corresponds a group element wC ∈ W conjugating every vertex of
C to the corresponding vertex in V ′. Then, as before, we piece
together regular circuits in order to find a single group element w
which “works” for every generator.

Suppose that V contains no edges with label 2. We now define a
circuit C = {[a1a2, ..., [aka1]} to be regular if whenever |i− j| ≥ 2,
then there is no edge connecting ai and aj . (Thus, the circuit is
“chord-free.”)

Now suppose that V is an even diagram which contains no junc-
tions so that every edge has label greater than 2. It is easy to show,
almost exactly as was done in Section 5, that every vertex in V lies
on some regular circuit. Let C = {[a1a2], ..., [aka1]} be a regular cir-
cuit in V. As was done in Section 4, we may find words âi ∈ C(ai)
and αi ∈ Wai,ai+1 (for i = 1, ..., k) so that w−1

i−1wi = αiâi, where wi
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is a word which conjugates the group Wai,ai+1 to the corresponding
parabolic subgroup Wa′i,a

′
i+1

of (W,S′). Thus,

α1â1α2â2 · · ·αkâk = 1 (4)

once more. As in Section 4, we can show that αi can be assumed to
be trivial. (The argument given in that section requires only minor
modification, accounting for the presence of external vertices, as
defined below.)

Note that because V may now contain triangles and squares,
it is possible that for some i any or all of the vertices ai, ai+1,
and ai+2 may be adjacent to some vertex x which does not lie on
C. That is, there could be geodesic words containing the letter x
which represent elements of any one of the groups C(ai), C(ai+1),
or C(ai+2).

Consider âi as defined above. We call a vertex x ∈ V external if
it does not lie on the circuit C but appears in at least one of the
words âi (i = 1, ..., k). It is clear that regularity of C implies that
x can occur in at most three such words. Our first goal is to show
that equation (4) implies that no external vertex can appear in any
âi.

Lemma 7.1. Let C be as above. Let ui be a geodesic word repre-
senting an element of C(ai), for i = 1, ..., k. Suppose u1u2 · · ·uk =
1. For i = 1, ..., k, no ui contains an external vertex.

Proof: Suppose by way of contradiction that there is some choice
of words ui for which an external vertex x appears in some ui and
so that u1u2 · · ·uk = 1. Choose such a collection of words for which
the sum

∑k
i=1 |ui| is minimal.

We will show that the presence of external vertices prevents
the product from being trivial. We revive the notation from Sec-
tion 4: ni will denote the label on the edge [aiai+1], vi,i+1 =
(aiai+1)ni/2−1ai, and vi+1,i = (ai+1ai)ni/2−1ai+1.

First, assume
ui ∈ {uvi+1,i, uvi+1,iai}, ui+1 ∈ {vi,i+1v, vi,i+1ai+1v}

for some i, where u and v are any words representing elements of
C(ai) and C(ai+1), respectively. (Note that any loose occurrence
of the letter ai in ui may be pulled to the end of that word, and any
loose occurrence of ai+1 in ui+1 may be pulled to the beginning of
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that word, without changing the length of the words ui and ui+1.
Therefore, we may assume that u and v contain no loose occurrences
of ai and ai+1, respectively.)

In this case, we may reduce the product of ui and ui+1. Indeed,
uiui+1 ∈ {uv, uaiv, uai+1v, uaiai+1v}. Therefore, replacing ui by
either u or uai and ui+1 by either v or ai+1v will yield a collection
of words the sum of whose lengths is less than before, and for which
some word still contains an external vertex. This contradicts the
minimality of the choice of the words ui; thus, no such reduction is
possible, and the words ui cannot have the forms described above.

Now suppose for a given i that ui ∈ {uvi+1,i, uvi+1,iai} where ū ∈
C(ai), and ui+1 does not begin with vi,i+1. If ui+1 contains a loose
occurrence of ai+1, we may pull this occurrence to the beginning of
ui+1. In this case the product uiui+1 allows free cancellation of the
single letter ai+1, and no further cancellation or reduction. (There
could be cancellation between ui and ui+2: suppose ui+1 = ai+1

and the length of the circuit C is 3. If ui+2 begins with vi,i+2, we
may freely cancel one more letter, ai, from each of the words ui and
ui+2. There is no further reduction.) Suppose ui+1 does not contain
a loose occurrence of ai+1. If ui+1 = (xai+1)mx for some external
vertex x and some integer m > 2, and ui+2 begins with vi+1,i+2,
then we may reduce the product uiui+1ui+2 by removing the last
letter of ui and the first letter of ui+2. Otherwise, no reduction
is possible. (If ui+1 = 1, then cancellation between ui and ui+2

is possible: if ui+2 begins with vi+1,i+2, a single occurrence of the
letter ai+1 may be freely cancelled from each of the words ui and
ui+2. There is no further reduction.)

If ui does not end in vi+1,i and ui+1 ∈ {vi,i+1v, vi,i+1ai+1v} where
v̄ ∈ C(ai+1), a symmetric argument shows that, at most, one letter
from each word may be cancelled.

Finally, suppose that ui does not end with vi+1,i and ui+1 does
not begin with vi,i+1. If ui ends with a subword (xai)m1x and ui+1

begins with a subword (xai+1)m2x for the same external vertex x,
then we may freely cancel a single occurrence of the letter x. No
further cancellation is possible. (As above, if ui+1 is trivial, there
may instead be free cancellation between ui and ui+2.)

After performing all cancellations that are possible between ad-
jacent words, we are left with a new word which represents the
trivial element of W . However, this new word will not contain as
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a subword more than half of one of the relator words (xy)m which
appears in the presentation corresponding to the system (W,S). It
is a well-known fact from small cancellation theory that this is not
possible (see [9], for instance), since the symmetrized presentation
for (W,S) satisfies the C ′(1

6) small cancellation condition.
This contradiction proves the lemma. ¤

By Lemma 7.1, no âi contains external vertices. If C has length
at least 5, the arguments of Section 4 provide us with a single
group element w which conjugates the vertices of C appropriately.
We now prove that these arguments extend to circuits of lengths 3
and 4 in case all edges in V have labels exceeding 2.

First, assume that C has length 4. We first show that vi+1,ivi−1,i

cannot appear as a subword of âi. Assume by way of contradiction
that vi+1,ivi−1,i does appear as a subword of âi. We now consider
the quotient map ν which identifies ai+2 to 1 and leaves the other
generators fixed. Then ν(âi) = âi. Also,

ν(âi+1) ∈ {1, ai+1, vi,i+1, vi,i+1ai+1},
ν(âi−1) ∈ {1, ai−1, vi,i−1, vi,i−1ai−1},

ν(âi+2) ∈ {(ai−1ai+1)maε1
i−1, (ai+1ai−1)naε2

i+1|m,n ≥ 0, εj ∈ {0, 1}}.
Now

ν(âi−1)ν(âi)ν(âi+1)ν(âi+2) = ν(âi−1âiâi+1âi+2) = 1,

but one may show that in multiplying the words ν(âj) whose forms
are described above, a freely reduced word is obtained which con-
tains no subword which is more than one half of a relator word
(xy)m from the presentation corresponding to (W,S). This again
contradicts the properties that (ν(W ), {ai, ai+1, ai−1}) enjoys due
to small cancellation theory.

Therefore, vi+1,ivi−1,i cannot appear as a subword of âi. One
may now determine the form of the word w which conjugates every
ai to a′i, just as in Section 4. The argument proceeds almost exactly
as before. The details are left to the reader.

One may argue in a similar fashion in order to prove the corre-
sponding result for circuits of length 3.

We assume now that for every regular circuit C appearing in V
there is an element wC ∈ W so that if x is a vertex on C, then
wCxw−1

C = x′ for x′ ∈ V ′.
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Now an argument exactly like that given in Section 6 (indeed,
easier!) shows that any time two regular circuits C and C ′ intersect,
wC = wC′ . Therefore, there is a single group element w ∈ W which
conjugates each generator of S to the corresponding generator of
S′. W is thus strongly rigid.

8. Conclusion: implications

One of the reasons strongly rigid Coxeter groups are nice is the
fact that their automorphism groups are easy to describe. Suppose
(W,S) is a Coxeter system. We call an element α ∈ Aut(W ) a
diagram automorphism if α is induced by a labeled-graph automor-
phism of the diagram corresponding to (W,S). That is, there is
an invertible map β : V → V so that [xy] is an edge labeled n if
and only if [β(x)β(y)] is an edge labeled n and so that α(x) = β(x)
for every generator x in S. Denote by Diag(W,S) the group of di-
agram automorphisms corresponding to the system (W,S), where
the S is omitted in case W is rigid.

If (W,S) is strongly rigid, then Aut(W ) has a very simple form:
Aut(W ) ∼= Inn(W )×Diag(W ).

The results of this paper therefore allow us to describe immedi-
ately the automorphism group of a large number of Coxeter groups.

Moreover, the “method of regular circuits” described in this pa-
per can be applied to any even rigid Coxeter system (W,S). Given
an automorphism α of W , (W,α(S)) is another system for the group
W . When W is not strongly rigid, there is no single element of W
which conjugates S to α(S). However, the arguments given in this
paper still produce a single conjugating element for each regular
circuit, and by piecing together circuits which have enough “over-
lap,” one can show that often many circuits share a conjugating
element.

Therefore, even when a given even, reflection independent system
(W,S) is not strongly rigid, the fact that it is reflection independent
(and therefore rigid) can still be used to describe the form of an
element of Aut(W ) in terms of the generators S. One needs to
explain how the conjugating elements for different “components”
of regular circuits may be chosen. A semidirect product formula,
much like that which appears in case W is strongly rigid, will obtain
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in the more general setting. These points will be expanded upon
in a later paper.

Finally, methods similar to those used in this paper turn out to
be useful in other settings, too. We call a Coxeter system (W,S) a
large-type system provided every exponent mij associated with the
presentation corresponding to (W,S) is greater than 2. By applying
the same “method of circuits” to the simple circuits which appear
in diagrams corresponding to such systems, one can demonstrate
a great deal of rigidity in the diagram V. In this manner one can
recover a number of the results recently proven by Mühlherr and
Weidmann in [15]. There is some indication that the method of
circuits may be able to slightly generalize this work, by considering
diagrams which have no finite parabolic subgroups of rank 3 (the
so-called 2-dimensional groups), a class which contains the large-
type groups.
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