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THE EXTRARESOLVABILITY HIERARCHY †

W. W. COMFORT AND WANJUN HU ‡

Abstract. A space X = (X, T ) is extraresolvable [strongly
extraresolvable, resp.] if there is a family D of (∆(X))+-many
dense subsets of X such that distinct D0, D1 ∈ D have D0∩D1

nowhere dense in X [have |D0 ∩D1| < nwd(X), resp.]. Here,
∆(X) = min{|U | : ∅ 6= U ∈ T }, and nwd(X) = min{|A| :
A ⊆ X, intX clX A 6= ∅}.

Solving in ZFC a generalized version of a specific problem
(the case κ = ω) posed by W. W. Comfort and S. Garćıa-
Ferreira, in Topology Proceedings, Volume 23, Spring, the au-
thors show for all κ ≥ ω the existence of (many) Tychonoff
spaces X with |X| = nwd(X) = ∆(X) = κ which are ex-
traresolvable and ∆(X)-resolvable, but not strongly extrare-
solvable. The arguments rest on a variant of a technique
developed earlier by the second-listed author for refining (ex-
panding) Tychonoff topologies.

1. Introduction and Historical Perspective

A space X is said to be resolvable [κ-resolvable, resp.] if X admits
two [κ-many, resp.] pairwise disjoint dense subsets. (The terms
were introduced by E. Hewitt [18] and J. G. Ceder [5], resp.) It is
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obvious, denoting by ∆(X) the cardinal number

∆(X) = min{|U | : U 6= ∅, U is open in X},
that if X is κ-resolvable, then κ ≤ ∆(X). A space which is in fact
∆(X)-resolvable is said to be maximally resolvable; it was shown
by Ceder [5], generalizing earlier work of Hewitt [18], that every
metric space X without isolated points, and every locally compact
space X without isolated points, is maximally resolvable.

By any reasonable standard, the empty set may legitimately be
called “small.” Decades following the appearance of the works cited
above, V. I. Malykhin [24] showed that if the requirement (on a
family D of dense subsets of a space X) that the sets be pairwise
disjoint is relaxed to a less restrictive definition of “small,” then
the limitation |D| ≤ ∆(X) might itself be relaxed. (For example,
it might be required only that every pair of elements of D has an
intersection which is finite, or countable, or of first category in X,
or, if X comes equipped with a measure, of measure zero. Other
definitions or interpretations of “small” may occur to the reader.)
In any case, Malykhin explicitly proposed the following definition.

Definition 1.1. [24] A space X is extraresolvable if there is a family
D of dense subsets of X such that |D| ≥ (∆(X))+ and every two
elements of D have an intersection which is nowhere dense in X.

(In addition, Malykhin [23] elsewhere has defined and studied
generalizations of the concept of resolvability in a different direc-
tion. For example, the dense sets which constitute a partition of
the given space might be required to be Baire sets, or Borel sets, or
to be otherwise restricted. We mention [23] for the reader’s interest
only; the dense sets we define and consider in this paper are not
required to satisfy additional topological constraints.)

While investigating the concept of extraresolvability and estab-
lishing the existence of several classes of extraresolvable spaces,
W. W. Comfort and S. Garćıa-Ferreira introduced a stronger prop-
erty, as follows.

Definition 1.2. [9] A space X is strongly extraresolvable if there
is a family D of dense subsets of X such that

(a) |D| ≥ (∆(X))+, and
(b) distinct D0, D1 ∈ D satisfy |D0 ∩D1| < nwd(X).
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Here nwd(X), the nowhere density number of X, is the least
cardinal of the form |A| with A ⊆ X and A not nowhere dense in
X. It is easily seen that nwd(X) coincides with the so-called open
density number of X, sometimes denoted od(X) (see [10]); this by
definition is the least cardinal of the form d(U) with ∅ 6= U ⊆ X,
U open in X.

It is clear for any space X that |X| ≥ ∆(X) ≥ nwd(X). Thus, if
X satisfies |X| = nwd(X) = κ, then ∆(X) = κ. In our search for
spaces X with various (extra)resolvability properties, we arrange
where possible in addition that |X| = nwd(X). This challenge
makes inoperable the naive device of finding, for example, small
spaces X ′ with ∆(X ′) = nwd(X ′) and reverting then simply to
X := X ′ × κ; see Theorem 2.1 below for a brief comparison (taken
from [8]) of the resolvability properties and the cardinal functions
∆ and nwd of a space X ′ with those of X = X ′ × κ.

The foregoing paragraphs suggest these questions.

Question 1.3. (1) Is every ω-resolvable space maximally resolv-
able?

(2) Is every maximally resolvable space (strongly) extraresolv-
able?

(3) Is every extraresolvable space strongly extraresolvable?

Discussion 1.4. Continuing this historical overview, we review the
status of these three questions.

Question 1.3(1) dates from 1967 [6]. Examples responding in
the negative have been given by A. G. El′kin [13], Malykhin [22],
F. W. Eckertson [12], and W. Hu [19] and [20], but each of these
examples has been considered to be mildly unsatisfactory in that
each is either non-Tychonoff or is a “consistent example,” i.e., a
space defined when ZFC is augmented by some additional axiom(s).
The existence of a Tychonoff example in ZFC has recently been
given by I. Juhász, L. Soukup, and Z. Szentmiklóssy [21].

Concerning 1.3(2) and 1.3(3), it is noted in [8] that if X is an ar-
bitrary space which is extraresolvable [maximally resolvable, resp.]
and A is a discrete space with |A| > (∆(X))+, then Y := X ×A is
an extraresolvable [maximally resolvable, resp.] space which is not
strongly extraresolvable. (With X and A chosen to be topological
groups, Y itself becomes a topological group which witnesses the
failure of the implications suggested in 1.3(2) and 1.3(3).)
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That simple construction sheds no light on questions 1.3(2) and
1.3(3) for countable spaces. The question of the existence of a
countable extraresolvable space which is not strongly extraresolv-
able, left unsettled in [8], was posed explicitly by the authors there.
Subsequently, Garćıa-Ferreira and R. A. González-Silva [16] estab-
lished the existence of such a space. (We comment on the relation
between their construction and ours in Remark 3.11.)

Examples responding to Question 1.3(2) in the negative exist
in profusion. For example, the real line R in its usual topology is
maximally resolvable [5], but it is easily seen that R admits no dense
family D of cardinality c+ whose pairwise intersections are nowhere
dense. (Each member D of a dense family D ⊆ P(R) contains a
countable dense subset CD, and since |[R]ω| = c the map D → CD

from D to [R]ω cannot be injective if |D| > c.) Similar reasoning
is advanced in [8, 2.4] to show that an infinite compact Hausdorff
topological group, while necessarily maximally resolvable, cannot
be extraresolvable; this result is strengthened in [17, 1.5]: Every
space X such that ∆(X) = 2w(X) is maximally resolvable but not
extraresolvable.

In all of the (uncountable) examples cited above, however, the
relation |X| = nwd(X) fails. Our contribution to questions 1.3(2)
and 1.3(3) is given in Theorem 3.10: For every κ ≥ ω there is
a space X = X(κ), simultaneously maximally resolvable and ex-
traresolvable, such that |X| = nwd(X) = κ and X is not strongly
extraresolvable.

When the results of this paper were presented at the Lubbock,
Texas, meeting in March 2003, we raised explicitly Question 1.3(2)
above in this form: Is there a maximally resolvable Tychonoff space
X with |X| = nwd(X) such that X is not extraresolvable? In re-
sponse shortly thereafter, Michael Hrušak indicated in conversation
and e-mail the availability of such a countable space in any model
satisfying i = c; see, for example, [25] or [2] for the definition of the
“small cardinal” i and its relation to other cardinals in the Cichoń
diagram. Subsequently, Juhász, Soukup and Szentmiklóssy [21] de-
veloped new arguments which prove in ZFC for every κ ≥ ω the
existence of a maximally resolvable, 0-dimensional c.c.c. space X
with |X| = ∆(X) = κ such that X is not extraresolvable.
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Notation 1.5. We use η, ξ, and α to denote ordinals, and κ and λ
for cardinals (usually infinite). Of the popular equivalent notations
ω = ℵ0 = N, we use the first; and similarly with ω+ = ℵ1 = ω1.

For X a set and κ a cardinal, we write [X]κ = {A ⊆ X : |A| = κ}.
The symbols [X]≤κ and [X]<κ are defined analogously.

Definition 1.6. A family of dense subsets of a space X is called
simply a dense family. A dense family which witnesses the maximal
resolvability of a space X is called a maximally resolvable family.
Similarly, we use the expressions extraresolvable dense family and
strongly extraresolvable dense family. Note that a maximally re-
solvable family D on X satisfies |D| = ∆(X), while a (strongly)
extraresolvable family D satisfies |D| ≥ (∆(X))+.

Acknowledgment. We are grateful to the referee for a number of
incisive, helpful comments which have improved both our exposi-
tion and our discussion of the historical development.

2. Some Not Strongly Extraresolvable Spaces.

In order to find for κ ≥ ω an extraresolvable, not strongly ex-
traresolvable Tychonoff space of cardinality κ, the following obser-
vations from [8, 4.1] are helpful. In that paper and here a cardinal
number, when treated as a topological space, is understood to carry
the discrete topology.

Theorem 2.1. Let κ ≥ ω and let X be a space. Then
(a) ∆(X) = ∆(X × κ) and nwd(X) = nwd(X × κ);
(b) X is extraresolvable if and only if X × κ is extraresolvable;
(c) if X is not strongly extraresolvable then X×κ is not strongly

extraresolvable; and
(d) if κ > (∆(X))+ then X × κ is not strongly extraresolvable.

Corollary 2.2. If there is a Tychonoff space X such that |X| = λ
and X is extraresolvable and not strongly extraresolvable, then for
every κ ≥ λ the space X(κ) := X × κ is a Tychonoff space such
that |X(κ)| = κ, X(κ) is extraresolvable, and X(κ) is not strongly
extraresolvable.

Of course, the various spaces Y of Theorem 2.1 and Corollary 2.2
will fail in general to satisfy the additional condition |Y | = nwd(Y ).

The facts that the spaceQ is maximally resolvable, is extraresolv-
able, and is strongly extraresolvable were proved in [5], in [17], and
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in [8, 2.3], respectively. (The extraresolvability of Q was achieved
in [17] as a consequence of a general result concerning “countable
nowhere dense tightness” [see [4]].)

Specialized to Q, the argument of [7, 2.2] provides a strongly
extraresolvable family D ⊆ P(Q) such that |D| = ω+; and the
argument of [17, 2.2] provides an extraresolvable family D ⊆ P(Q)
such that |D| = c. Here, in Theorem 2.3, we arrange both features
simultaneously.

As usual, we say that a space is dense-in-itself if it has no iso-
lated points. A π-base for a space X is a family B of nonempty
open subsets such that each nonempty open U ⊆ X contains an
element of B. The π-weight of X, denoted πw(X), is min{|B| : B is
a π-base for X}.
Theorem 2.3. Let X be a countable dense-in-itself Hausdorff space
with a countable π-base. Then there is a dense family D = {Dη :
η < c} ⊆ P(X) such that |Dη0 ∩Dη1 | < ω whenever η0 < η1 < c.

Proof: Let {Bn : n < ω} be a π-base and, using the so-called
Disjoint Refinement Lemma (see, for example, [11, 7.5]), choose
pairwise disjoint sets An ∈ [Bn]ω; write An = {an,k : k < ω}
(faithfully indexed).

Now let {fη : η < c} be a set of c-many injections from ω into ω
such that if η0 < η1 < c then |{n < ω : fη0(n) = fη1(n)}| < ω. (To
find such functions fη it is enough to take a family {Nη : η < c} of
infinite subsets of ω such that if η0 < η1 < c then |Nη0 ∩Nη1 | < ω,
and to choose for η < c an injection fη from ω into Nη; then for
η0 < η1 < c the set where fη0 and fη1 agree is mapped injectively
into the finite set Nη0 ∩Nη1 , and hence is itself finite.) Then with
Dη := {an,fη(n) : n < ω}, the family D = {Dη : η < c} is as
required. ¤

Remark 2.4. A space X as in Theorem 2.3 satisfies |X| = nwd(X)
= πw(X) = ω. Evidently the same argument shows more generally
that if a space X satisfies πw(X) ≤ ∆(X) = nwd(X) = κ and if
there is family N ⊆ [κ]κ such that |N | = λ and the intersection of
any two elements of N has cardinality less than κ, then X admits
a dense family D ⊆ P(X) such that |D| = λ and the intersection
of any two elements of D has cardinality less than κ. Always such
N exists with |N | = κ+; therefore, as shown in [8, 2.3], every
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space X such that ω ≤ πw(X) ≤ ∆(X) = nwd(X) is strongly
extraresolvable.

The space Q × ω, since it is homeomorphic to Q itself, is ex-
traresolvable (and strongly extraresolvable); from Theorem 2.1(b)
and 2.1(d), it then follows that for each cardinal κ > ω+ the space
Q× κ is extraresolvable but not strongly extraresolvable.

The behavior of the “intermediate space” Q× ω+ is determined
by the following result.

Theorem 2.5. The space Q× ω+ is strongly extraresolvable.

Proof: According to the special case α = 0 of Theorem 1 of [14],
there is a family F = {fη : η < ω+} of functions from ω+ to ω
such that no two distinct elements of F agree on an infinite set.
(In symbols: η0 < η1 < ω+ ⇒ |{ξ < ω+ : fη0(ξ) = fη1(ξ)}| < ω.)
(This is the case κ = ω of a more general result exposed by N.
H. Williams [26, 1.2.5]; in that exposition, the notation δ(F) < κ
should be replaced by δ(F) ≤ κ.)

Now fix a countable dense partition {E(n) : n < ω} of Q. Each
E(n) is homeomorphic to Q, so (using ω+ ≤ c) there is, by Theo-
rem 2.3, a dense family {E(n, η) : η < ω+} ⊆ P(E(n)) such that
|E(n, η0) ∩ E(n, η1)| < ω whenever η0 < η1 < ω+. We note that if
n0 < n1 < ω then every two sets of the form E(n0, η0), E(n1, η1)
(with ηi arbitrary, ηi < ω+) satisfy

E(n0, η0) ∩ E(n1, η1) ⊆ E(n0) ∩ E(n1) = ∅.
Now for η < ω+, ξ < ω+, define Dη(ξ) := E(fη(ξ), η), and set
Dη := ∪{Dη(ξ) × {ξ} : ξ < ω+}. We show that {Dη : η < ω+}
is a strongly extraresolvable family for Q × ω+. Note first that
for η0 < η1 < ω+ the relation (Dη0 ∩ Dη1) ∩ (Q × {ξ}) 6= ∅ can
hold (at most) only for those ξ < ω+ such that fη0(ξ) = fη1(ξ).
There are finitely many such ξ < ω+, and for each such ξ, say with
fη0(ξ) = fη1(ξ) = n < ω, we have

(Dη0 ∩Dη1) ∩ (Q× {ξ}) = (Dη0(ξ) ∩Dη1(ξ))× {ξ}
= (E(fη0(ξ), η0) ∩ E(fη1(ξ), η1))× {ξ}
= (E(n, η0) ∩ E(n, η1))× {ξ},

a finite set. ¤
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Remark 2.6. (a) We have included a proof of Theorem 2.5 here for
the following reason. Corollary 2.2 reduces the question of the exis-
tence of an extraresolvable, not strongly extraresolvable Tychonoff
space (of arbitrary cardinality λ ≥ κ) to the case λ = κ. If the ex-
traresolvable space Q× ω+ were not strongly extraresolvable, then
our construction below (of such spaces X of pre-assigned cardinal-
ity, further with |X| = nwd(X)) would lose some of its interest and
urgency. We note that Theorem 2.5 has already been achieved by
Garćıa-Ferreira and González-Silva [16, 2.3] as a consequence of a
more general result proved by recursive methods.

(b) It is well known (see, for example, [26] or [11, 12.19]) that for
κ ≥ ω there is a family of κ+-many functions from κ to κ, every two
of which agree only on a set of cardinality less than κ. The proof
proceeds by an appeal to Zorn’s Lemma: clearly there are such
families of cardinality κ, and it is easily shown that such a family
(of cardinality κ) cannot be maximal. It is interesting to note, in
contrast, that the existence of an uncountable family of functions
from ω+ to ω as in the first paragraph of the proof of Theorem 2.5
is necessarily of a different flavor. Indeed, if fn : ω+ → ω is defined
for n < ω by the rule fn(ξ) = n (all ξ < ω+) then the countable
family F = {fn : n < ω} is already maximal with respect to the
property: distinct elements of F agree (at most) finitely often.

(c) An analysis of the proof of Theorem 2.5 indicates its basic
components: (1) the existence of ω+-many functions from ω+ to
ω, each pair agreeing at most finitely often, and (2) the fact that
Q is strongly extraresolvable; and hence, (3) there is a family D ⊆
P(ω × ω+) of size ω+ such that each D ∈ D and ξ < ω+ has
|D ∩ (ω × {ξ})| = ω, but distinct D, E ∈ D satisfy |D ∩ E| < ω.
Evidently, the proof of Theorem 2.5 yields the following statement.

Corollary 2.7. For κ ≥ ω the following three conditions are equiv-
alent:

(1) There exists a family of κ-many functions from ω+ to ω, each
pair agreeing at most finitely often;

(2) Q×ω+ admits a strongly extraresolvable family of cardinality
κ;

(3) there is a family D ⊆ P(ω × ω+) of size κ such that each
D ∈ D and ξ < ω+ satisfy |D ∩ (ω × {ξ})| = ω, but distinct
D, E ∈ D satisfy |D ∩ E| < ω.
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Discussion 2.8. When the conditions of Corollary 2.7 are satis-
fied, the set ω+ admits κ-many subsets of cardinality ω+, each pair
with finite intersection. It is interesting to inquire, though logi-
cally inessential to our work, whether the cardinal κ = ω+ is best
possible. One may ask, more specifically: Is there such an almost
disjoint family S ⊆ P(ω+) such that |S| = c? |S| = ℵ2? Of course
these questions are settled by CH, affirmatively for |S| = c = ω+ by
the result cited from [14] and [26] and negatively for |S| = ℵ2 = c+

(since each infinite subset of c contains a countably infinite sub-
set, and |[c]ω| = c). In contrast, J. E. Baumgartner [3, §6] has
shown that the existence of an almost disjoint family S ⊆ P(ω+)
with |S| = ℵ2 is independent of the system ZFC + ¬CH. (We are
indebted to István Juhász for reference in this context to [3].)

3. The KID Expansion.

Now we turn to our answers to questions 1.3(2) and (3). The ar-
gument depends on the availability of the KID expansion [19], [20],
defined on suitable spaces as follows. (Here and later, the word
clopen means open-and-closed.)

Definition 3.1. Let κ be an infinite cardinal, and let X = (X, T )
be a space. Let D = {Dη : η < κ} ⊆ P(X) and K = {Kα : α <
2κ} ⊆ P(X), and let I = {Aα : α < 2κ} ⊆ P(κ) be a κ-independent
family on κ (in the sense that if F0,F1 ∈ [I]<ω with F0 ∩ F1 = ∅
then | ∩ {A : A ∈ F0} ∩ ∩{κ\A : A ∈ F1}| = κ). For Aα ∈ I, let
Uα := (∪{Dη : η ∈ Aα})\Kα.

Then TKID, the KID expansion of T , is the smallest topology on
X which contains T and which contains also each set Uα (α < 2κ)
as a clopen subset.

Notation 3.2. Given κ, X, K, I, and D as above, for S ⊆ κ we
write X(S) := ∪{Dη : η ∈ S}.

It is clear that if S = Aα ∈ I and Kα = ∅, then X(S) = Uα ⊆ X.

Remark 3.3. (a) Concerning the hypothesized enumeration in
Definition 3.1 of the families K, I, and D, it is understood that
the indexing I = {Aα : α < 2κ} is faithful; in general, no such
restriction is imposed upon the indexings K = {Kα : α < 2κ} and
D = {Dη : η < κ}.
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(b) That every infinite cardinal κ admits a κ-independent family
I ⊆ P(κ) with |I| = 2κ is well known (see [10] for several relevant
references). In what follows, we need the fact that I may be chosen
so that I = I0 ∪ I1 with I0 ∩ I1 = ∅, |Ii| = 2κ, and so that if
S0, S1 ∈ [κ]<κ with S0 ∩ S1 = ∅ then there is A ∈ I1 such that
either S0 ⊆ A ⊆ κ\S1 or S1 ⊆ A ⊆ κ\S0. (Such a family I1

we here call small-set separating.) The existence of such families
I = I0 ∪ I1 ⊆ P(κ) is given by the following argument, a variant
of a trick devised by Eckertson [12]; see also our work [10]. Begin
with any κ-independent family J on κ such that |J | = 2κ, and
write J = J0 ∪ J1 with |Ji| = 2κ and J0 ∩ J1 = ∅, say with J1 =
{Aα : α < 2κ}. Then using |[κ]<κ| ≤ 2κ, let {〈Sα, Tα〉 : α < 2κ} list
all pairs of disjoint members of [κ]<κ with each such pair appearing
infinitely often, and define I0 := J0 and I1 := {(Aα\Sα)∪Tα : α <
2κ}.

(c) The preceding presentation of the KID expansion TKID of
T is based upon the exposition given in Chapter 3 of [19], a work
prepared by the present second-listed co-author under the guidance
of the first-listed co-author. This method of expansion, which has
variants in several contexts, has been exploited subsequently in [20].

(d) If (X, T ) is a Tychonoff space then for each triple (K, I,D)
of families as above, the expansion TKID is also Tychonoff. Indeed,
TKID is the topology induced on X by the point-separating set
of functions C(X, T ) ∪ {χα : α < 2κ}, with χα the characteristic
function of the set Uα ⊆ X.

Our goal is to show that for suitably restricted Tychonoff spaces
(X, T ) with |X| = nwd(X) = κ, there are families K,D ⊆ P(X)
and I ⊆ P(κ) as in Definition 3.1 such that TKID is maximally re-
solvable and extraresolvable but not strongly extraresolvable, with
nwd(X, TKID) = κ. Theorem 3.6 shows the passage from (X, T ) to
(X, TKID); then, in Theorem 3.7 and Lemma 3.9, we show the exis-
tence of (X, T ) and of K, I, and D as required. In this connection,
see also [7, 4.2(b)].

Definition 3.4. A space X is open-hereditarily irresolvable if each
nonempty open subset of X is irresolvable; such a space X is called
an OHI space.
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Definition 3.5. A subset S of κ is dense for an independent family
I ⊆ P(κ) if from F0,F1 ∈ [I]<ω with F0 ∩ F1 = ∅ it follows that

|S ∩ (∩{A : A ∈ F0}) ∩ (∩{κ\A : A ∈ F1})| ≥ ω.

Theorem 3.6. Let κ be an infinite cardinal, and let I = I0 ∪
I1 = {Aα : α < 2κ} be chosen so that I is κ-independent and
|I0| = |I1| = 2κ with I1 small-set separating.

Let X = (X, T ) be a Tychonoff space such that |X| = κ with
a maximally resolvable family D = {Dη : η < κ} such that X =
∪K and with each Dη an OHI space. Let K = {Kα : α < 2κ}
(repetitions allowed) be the set of all subsets K of X such that
K ∩ Dη is nowhere dense in Dη for each η < κ; and further with
Kα = ∅, when Aα ∈ I1.

Then the following conditions hold:
(a) (X, TKID) is a Tychonoff space with nwd(X, TKID) ≥

nwd(X, T );
(b) if S ⊆ κ and S is dense for I, then X(S) is dense in

(X, TKID);
(c) if S ∈ [κ]<κ, then X(S) is nowhere dense in (X, TKID); and
(d) if nwd(X, T ) = κ, then (X, TKID) is not strongly extrare-

solvable.

Proof: (a) That TKID is a Tychonoff topology on the set X is
noted in Remark 3.3(d). Now let W be a nonempty TKID-basic set,
say W = U ∩ ∩α∈F Vα with ∅ 6= U ∈ T , with F ∈ [2κ]<ω and with,
for α ∈ F , either

Vα = Uα := ∪{Dη : η ∈ Aα}\Kα or Vα = X\Uα.

Since I is a κ-independent family on κ, the set
N(W ) := ∩{Aα : α ∈ F, Vα = Uα} ∩ ∩{κ\Aα : α ∈ F, Vα = X\Uα}
satisfies |N(W )| = κ, and for each η ∈ N(W ) we have

Dη\ ∪α∈F Kα ⊆ ∩α∈F Vα. (1)

The union of finitely many nowhere dense sets is nowhere dense, so
the left hand side of (1) is T -dense in Dη and from (1) it follows
that W = U ∩∩α∈F Vα is T -dense in U . Any TKID-dense subset of
W , being T -dense in W , is then T -dense in U , and (a) follows.

(b) Essentially the same argument applies. Indeed, for each non-
empty TKID-basic open set W = U ∩ ∩α∈F Vα as above, we have,
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choosing η ∈ S ∩N(W ), the relations

X(S) ∩W ⊇ (U ∩Dη)\ ∪α∈F Kα 6= ∅.
(c) The set κ\S is dense for I, and hence the set X(κ\S) =

X\X(S) is dense in (X, TKID) by (b). Further, each set of the
form X(S) with S ∈ [κ]<κ is closed in (X, TKID). To see this, let
x ∈ X\X(S) with S ∈ [κ]<κ, say x ∈ Dη with η ∈ κ\S. Choose
T ∈ [κ]<κ such that η ∈ T ⊆ κ\S. (For example, take T = {η}.)
There is α ∈ I1 such that either S ⊆ Aα ⊆ κ\T or T ⊆ Aα ⊆ κ\S,
and since Kα = ∅ we have X(Aα) = Uα; then Uα is a TKID-clopen
set satisfying either X(S) ⊆ Uα with x /∈ Uα or x ∈ X(T ) ⊆ Uα ⊆
X\X(S).

(d) From |X| = nwd(X, T ) = κ and (c) we have nwd(X, TKID) =
κ, so if (d) fails there is a TKID-strongly extraresolvable family
E = {Eξ : ξ < κ+}. (Topological references in the rest of this
proof are to the original topology T on X [and the topology which
T induces on the sets Dη ⊆ X].) We claim that there is ξ < κ+

such that intDη (Eξ ∩Dη) = ∅ for all η < κ. (Actually, this holds
simultaneously for all but κ-many ξ < κ+, but verification for a
single ξ will suffice for our purposes.) If the claim fails then for
each ξ < κ+ there is η(ξ) < κ such that intDη(ξ)

(Eξ ∩Dη(ξ)) 6= ∅,
so there are A ∈ [κ+]κ

+
and η < κ such that intDη(Eξ ∩Dη) 6= ∅

for all ξ ∈ A. For ξ0 < ξ1 < κ+ we have

intDη (Eξ0 ∩Dη) ∩ intDη (Eξ1 ∩Dη) =
intDη (Eξ0 ∩ Eξ1 ∩Dη) ⊆ Eξ0 ∩ Eξ1 .

Since |Eξ0 ∩Eξ1 | < nwd(X, T ) while Dη is dense, we conclude that
the family {intDη (Eξ ∩ Dη) : ξ ∈ A} is a family of κ+-many of
pairwise disjoint nonempty (open) subsets of the set Dη, contra-
dicting the fact that Dη ⊆ X with |X| = κ. This contradiction
shows the existence of ξ < κ+ as desired. Now (for the only time
in this proof), we use the hypothesis that the spaces Dη are OHI.
From the condition intDη(Eξ ∩ Dη) = ∅ (all η < κ) it follows for
each η < κ that Eξ ∩ Dη is nowhere dense in Dη. Then accord-
ing to the definition of the family K there is α < 2κ such that
Eξ = Kα, but then (reverting now to the topology TKID) we see
that Uα is a nonempty TKID-open set disjoint from the TKID-dense
set Eξ = Kα. This contradiction completes the proof. ¤
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Theorem 3.6 effects a transition from suitably restricted Ty-
chonoff spaces (X, T ) to a larger topology TKID. In order to ensure
that this theorem is non-vacuous, we show now in Theorem 3.7
that spaces (X, T ) with the hypotheses of Theorem 3.6 do exist.
(For related results which construct—by other methods—spaces
with similar strong irresolvability properties, the interested reader
might consult [15] and [1].) Then in Lemma 3.9, we show how to
find a κ-independent family I on κ with additional properties suf-
ficient to ensure that the associated expansion (X, TKID) is both
maximally resolvable and extraresolvable.

Theorem 3.7. Let κ ≥ ω. There is a Tychonoff space (X, T ) such
that |X| = nwd(X) = κ, and X admits a maximally resolvable
family D = {Dη : η < κ} such that X = ∪D and each Dη satisfies
|Dη| = κ and is an OHI space.

Proof: We showed in [10, 5.4] that there is a dense subset E of
the space K := {0, 1}2κ

such that |E| = nwd(E) = κ and E is
even hereditarily irresolvable in the sense that no nonempty subset
of E is resolvable. The subgroup 〈E〉 of K generated by E satisfies
|〈E〉| = κ and hence |K/〈E〉| = 22κ

, so there is a family E = {Eη :
η < κ} ⊆ P(K) of κ-many pairwise disjoint translates of E, each
satisfying |Eη| = nwd(Eη) = κ. The sets Y := ∪E and X := Y are
then as required, except that in some models of set theory for some
κ it may occur that

nwd(Y ) ≤ d(Y ) = d(K) = log(2κ) < κ.

In order to address this difficulty we will replace the points yξ (ξ <
κ) of Y by suitably chosen points xξ, and Eη by Dη := {xξ : yξ ∈
Eη}. Here are the details. We write 2κ = κ ∪ (2κ\κ) and K =
{0, 1}2κ

= {0, 1}κ × {0, 1}2κ\κ, identifying {0, 1}κ with {0, 1}κ ×
{0}2κ\κ ⊆ K. We assume that the indexing Y = {yξ : ξ < κ} is
faithful, indeed that the projection from Y ⊆ K into {0, 1}κ ⊆ K
is injective—that is, for ξ0 < ξ1 < κ there is α < κ such that
yξ0(α) 6= yξ1(α). Let [Y ]<κ = {Yα : α < 2κ} with each set listed
2κ-many times and with Yα = ∅ when α < κ, and define xξ ∈ K by

xξ(α) = yξ(α) if yξ /∈ Yα, xξ(α) = 0, otherwise.

Evidently, the surjection Y ³ X := {xξ : ξ < κ} given by yξ → xξ

is bijective, so it suffices to show
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(i) each Dη is dense in K,
(ii) nwd(X) = κ, and

(iii) each Dη is an OHI space.

For each of these, let U = ∩α∈F0 π−1
α ({0})∩∩α∈F1 π−1

α ({1}) be a
nonempty basic open subset of K; here, Fi ∈ [2κ]<ω, F0 ∩ F1 = ∅.

(i) Since Eη is dense in K and nwd(Eη) = κ we have |Eη∩U | = κ.
For each α ∈ F0 ∪ F1 there are fewer than κ-many ξ < κ such
that xξ(α) 6= yξ(α), so Dη ∩ U contains each point xξ such that
yξ ∈ Eη ∩ U , with fewer than κ-many exceptions.

(ii) Here we let S = {xξ : ξ ∈ A} with |A| = |S| < κ, and we show
that the relation U ⊆ S

K fails. Let T := {yξ : ξ ∈ A} ⊆ Y . There
is α < 2κ such that α /∈ F0 ∪ F1 and T = Yα, and since each α ∈ A
satisfies yξ ∈ Yα (and hence xξ(α) = 0), we have S ∩ π−1

α ({1}) = ∅;
a fortiori S ∩ U ∩ π−1

α ({1}) = ∅, and for x ∈ U ∩ π−1
α ({1}) 6= ∅ we

have x /∈ S
K

.

(iii) From (i) and (ii), it follows that nwd(Dη) = κ. Suppose that
H0 and H1 are complementary dense subsets of Dη ∩U , necessarily
then with |Hi| = κ, and set H ′

i := {yξ : xξ ∈ Hi} ⊆ Eη (i = 0, 1).
We will show that each of the disjoint sets Eη ∩ U ∩H ′

i is dense in
Eη ∩U , contrary to the fact that Eη is an OHI space. If V is open
in K and V ∩U 6= ∅, then, as in (i), Eη ∩V ∩U contains each point
yξ such that xξ ∈ Dη ∩ V ∩U , with fewer than κ-many exceptions.
Then from |Dη ∩ V ∩ U ∩Hi| = κ follows |Eη ∩ V ∩ U ∩H ′

i| = κ,
and the assertion is proved. ¤

The special κ-independent family we find in Lemma 3.9 will be
defined on the carefully chosen set G of cardinality κ given in the
next lemma.

Lemma 3.8. Let κ ≥ ω and let K = {0, 1}2κ
. Then K contains a

dense, maximally resolvable subgroup G such that |G| = nwd(G) =
κ.

Proof: We write K = K0 ×K1 with K0 = {0, 1}2κ\κ and K1 =
{0, 1}κ. As indicated in the proof of Theorem 3.7, there is by [10]
a dense set E ⊆ K0 such that |E| = nwd(E) = κ. As before we
write Y := ∪E , with E a set of κ-many pairwise disjoint translates
(in K0) of E; now set G0 := [Y ], the subgroup of K0 generated by
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Y . Clearly, |G0| = ∆(G0) = κ, and G0, the union of copies of the
κ-resolvable space Y , is itself κ-resolvable (cf. [7, 2.1]).

Next, let G1 := {x ∈ K1 : |{ξ < κ : xξ 6= 0}| < ω}. Then it
is easy to see that G1, the so-called σ-product in K1, is a totally
bounded group such that |G1| = nwd(G1) = ∆(G1) = κ.

The group G := G0 × G1 ⊆ K0 ×K1 = K is as required, since
|G| = ∆(G) = κ and nwd(G) = κ; for this last relation it is enough
to note that if D is dense in a basic open subset U0×U1 of K0×K1

(Ui ⊆ Ki) then π1[D] is dense in U1 and we have

κ = |U0 × U1| ≥ |D| ≥ |π1[D]| ≥ d(U1) ≥ nwd(K1) = κ. ¤

Lemma 3.9. Let κ ≥ ω. There are families I,Smr,Ser ⊆ P(κ)
such that

(i) I = I0 ∪ I1 is κ-independent on κ, I0 ∩ I1 = ∅, |Ii| = 2κ,
and I1 is small-set separating;

(ii) Smr is a family of κ-many pairwise disjoint subsets of κ,
with each S ∈ Smr dense for I; and

(iii) Ser = {Sη : η < κ+} is a family of κ+-many subsets of κ,
each dense for I, with |Sη0 ∩ Sη1 | < κ whenever η0 < η1 < κ.

Proof: Let G be a dense, maximally resolvable subgroup of the
group K := {0, 1}2κ

such that |G| = nwd(G) = κ, as given by
Lemma 3.8. Let J = {π−1

α ({0})∩G : α < 2κ}, note from nwd(G) =
κ that J is κ-independent on G, and replace J by the family
I = I0 ∪ I1 according to the protocol described in Remark 3.3(b);
then I satisfies (i). We claim for S ⊆ κ = G that S is dense for I
if and only if S is dense for J . Indeed, if S is dense for J then for
disjoint F0, F1 ∈ [2κ]<ω we have

|S ∩ ∩η∈F0 π−1
η ({0}) ∩ ∩η∈F1 π−1

η ({1})| ≥ ω (1)

and hence

|S ∩ ∩η∈F0 π−1
η ({0}) ∩ ∩η∈F1 π−1

η ({1})| = κ (2)

(since nwd(G) = κ). Since each element of I differs from an element
of J by a set of cardinality < κ, relation (2) shows that S is dense
for I. Conversely if (1) fails for some disjoint F0, F1 ∈ [2κ]<ω then
with F0,F1 the corresponding disjoint elements of [I]<ω and with

T := ∩{A : A ∈ F0} ∩ ∩{κ\A : A ∈ F1},
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we have S ∩ T ∈ [κ]<κ. In the enumeration of Remark 3.3(b) there
is α < 2κ such that α /∈ F0 ∪ F1 and

〈∅, S ∩ T 〉 = 〈Sα, Tα〉 ∈ [κ]<κ × [κ]<κ.

For this α with Aα ∈ J , we have Aα\Tα ∈ I1 and

S ∩ (Aα\Tα) ∩ T = ∅;
Thus, S is not dense for I. The claim is proved.

The maximally resolvable space G is a totally bounded topolog-
ical group such that |G| = d(G); hence, by [9, 2.4], G is strongly
extraresolvable. For the required families Smr in (ii) and Ser in (iii),
we may choose any families of dense subsets of G which witness,
respectively, the maximal resolvability and the strong extraresolv-
ability of G. ¤

With the details of our arguments established, our principal the-
orem may now be quickly proved.

Theorem 3.10. Let κ ≥ ω. There is a Tychonoff space X such
that |X| = nwd(X) = κ, and X is both maximally resolvable and
extraresolvable but not strongly extraresolvable.

Proof: We begin with a Tychonoff space (X, T ), as given by
Theorem 3.7, and with a κ-independent family I on κ with dense
subfamilies Smr and Ser, as given by Lemma 3.9. According to
Theorem 3.6(a) and (d), the KID modification (X, TKID) satisfies
nwd(X, TKID) = κ and is not strongly extraresolvable; and accord-
ing to Theorem 3.6(b) and (c), the families {X(S) : S ∈ Smr} and
{X(S) : S ∈ Ser} witness, respectively, the maximal resolvability
and the extraresolvability of (X, TKID). ¤
Remark 3.11. (Added April 2003) After our techniques had been
developed (see [19], [10], [20]), but before this paper was submitted
for publication, we learned that in the case κ = ω an affirmative
answer to the question, “Is there in ZFC an extraresolvable Ty-
chonoff space which is not strongly extraresolvable?” has already
been achieved in [16]. We comment on the relation between these
solutions. As we see it, each has an advantage over the other. Our
argument is a trifle complex and detailed, but it dispatches the
countable case as a special instance of an unrestricted phenome-
non. In contrast, the construction of [16] is direct and ad hoc; it
takes a familiar extremally disconnected space (Seq, TA) which is
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well-established in the literature and it demonstrates by a pleas-
ing, direct argument for that space a new, unexpected topological
property.
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