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ON GENERAL RESOLUTIONS OF GENERALIZED
METRIC SPACES

T. MIZOKAMI AND F. SUWADA

Abstract. We show that some kinds of generalized metric
spaces are preserved by general resolutions due to Stephen
Watson, under the criterion that a certain set Λ is Fσ-discrete
in a space X.

1. Introduction

All spaces are assumed to be regular T1 topological spaces. The
letter N always denotes all positive integers and R, Q all real, ra-
tional numbers, respectively. For a space X, let τ(X) denote the
topology of X. For a set A, let F(A) be the totality of non-empty
finite subsets of A. For families Uα, α ∈ A, let

∧{Uα | α ∈ A}
be the family of all sets of the form

⋂{Uα | α ∈ A}, where each
Uα ∈ Uα, α ∈ A. For a family U of subsets of X, let ∆(U) be the
totality of finite intersections of members of U and for p ∈ X let
Up = {U ∈ U|p ∈ U}.

In this paper, we study the relation between classes of general-
ized metric spaces and their “general resolutions.” The concept of
general resolutions is due to S. Watson and it naturally generalizes
special resolutions [6]. Especially, we show that some kinds of gen-
eralized metric spaces are preserved by general resolutions under
some criterion. Here, we consider, as generalized metric spaces, the
classes of spaces with a Gδ-diagonal, developable spaces, M3-spaces
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and M3-µ-spaces. As for the definitions and the fundamental prop-
erties of these classes, we refer the readers to [1]. As a study in
the same direction, we note the paper of K. Richardson [4], where
the preservation of metrizable spaces by general resolutions is dis-
cussed under the criterion that Λ, defined below, is Fσ-discrete in a
space X. We show that this criterion also works well for the above
generalized metric properties.

Definition 1.1 ([4, Definition 1]). Let X be a space and A = {Aα |
α ∈ I} be a family of subsets of X. Let {fα | α ∈ I} be a collection
of continuous mappings and {Yα | α ∈ I} a collection of spaces,
where fα : X \ Aα −→ Yα for each α ∈ I. For each x ∈ X, let
I(x) = {α ∈ I | x ∈ Aα} and let Yx =

∏{Yα | α ∈ I(x)}. If I(x)
is empty, then we take Yx to be a singleton. We define a set Z as
follows:

Z =
⋃ {{x} × Yx | x ∈ X

}
.

Let π : Z −→ X be the projection onto X defined by π(x, y) = x for
each (x, y) ∈ Z. For each α ∈ I, define the projection σα : Z −→ Yα

by

σα(x, y) =

{
y(α) if x ∈ Aα,
fα(x) if x /∈ Aα.

The general resolution Z has a topology the base of which con-
sists of all sets of the form

π−1(U) ∩
⋂
{σ−1

α (Vα) | α ∈ J},
where U ∈ τ(X), Vα ∈ τ(Yα) for each α ∈ J , and J ⊂ I is finite.
We represent Z constructed this way as

Z = R(X,A, fα, Yα).

For latter use, we define the following operation ⊗α: Let α ∈ I.
For any subset A of X and B of Yα, we define

A⊗α B = π−1(A) ∩ σ−1
α (B).

Throughout this paper, we let

Λ =
⋃
{Aα | |Yα| > 1}.

Then we call Λ Fσ-discrete in X if Λ =
⋃{Λ(n) | n ∈ N}, where

each Λ(n) is discrete and closed in X.
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Finally, we note that any resolution Z = R(X,A, fα, Yα) of a
regular space X in terms of regular spaces Yα is regular, [5, Theo-
rem 1]. We also note that in the sequel we use I, I(x), Λ, π, σα

without any explanation.

2. Resolutions of generalized metric spaces.

Proposition 2.1. Let Z = R(X,A, fα, Yα) have a Gδ-diagonal,
where A is a family of closed subsets of a space X. Then Λ =⋃{Λ(n) | n ∈ N}, where Λ(n) \ Λ = ∅ for each n ∈ N.

Proof: Let {U(n) | n ∈ N} be a Gδ-diagonal sequence for Z. For
each x ∈ Λ, take y1, y2 ∈ Yx such that (x, y1) 6= (x, y2). Then there
exists n(x) ∈ N such that

(x, y1) /∈ S ((x, y2),U(n(x))) .

Let
Λ(n) = {x ∈ Λ | n(x) = n}.

Then Λ =
⋃

n Λ(n). Assume that for some n, x ∈ Λ(n) \ Λ. Let
Yx = {a}. Since U(n) covers Z, there exists U ∈ U(n) such that
(x, a) ∈ U . Then there exists p ∈ Λ(n) such that {p} × Yp ⊂ U .
This is a contradiction. ¤

The converse is not true as seen by Alexandroff double circle;
that is, even if X, Yα, α ∈ I, have a Gδ-diagonal and Λ satisfies
the condition above, Z need not have a Gδ-diagonal.

Theorem 2.2. Let X, Yα, α ∈ I, have a Gδ-diagonal and let A be
a point-countable closed cover of X. If Λ is Fσ-discrete in X, then
Z = R(X,A, fα, Yα) has a Gδ-diagonal.

Proof: Let {V(n) | n ∈ N} be a Gδ-diagonal sequence for X,
{W(α,m) | m ∈ N} a Gδ-diagonal sequence for Yα for each α ∈ I.
Let Λ =

⋃{Λ(n) | n ∈ N}, where each Λ(n) is discrete and closed in
X. Let n ∈ N be fixed for a while. Take a family {U(p) | p ∈ Λ(n)}
of open subsets of X such that

U(p) ∩ Λ(n) = {p}, p ∈ Λ(n).

Since A is point-countable, for each p ∈ Λ we can enumerate I(p)
as I(p) = {α(p, i) | i ∈ N}. For each n, m, k ∈ N, define
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U(n,m, k) ={π−1 (X \ Λ(n))}
∪ {U(p)⊗α(p,k) W | W ∈ W (α(p, k),m) , p ∈ Λ(n)}.

Enumerate

{U(n,m, k) | n, m, k ∈ N} ∪ {π−1 (V(n)) | n ∈ N}
as {U(n) | n ∈ N}. We show that this forms a Gδ-diagonal sequence
for Z. To see it, let z1 = (x1, y1), z2 = (x2, y2) be distinct points of
Z. As the first case, let x1 = x2 = x ∈ Λ(n) for some n. Then there
exists k ∈ N such that y1 (α(x, k)) 6= y2 (α(x, k)) ∈ Yα(x,k). Since
{W (α(x, k),m) | m ∈ N} is a Gδ-diagonal sequence for Yα(x,k),
there exists m such that

y1 (α(x, k)) /∈ S (y2(α(x, k)),W(α(x, k),m)) .

These imply
z1 /∈ S (z2,U(n,m, k)) .

As the other case, let x1 6= x2. Then there exists n such that
x1 /∈ S (x2,V(n)), which implies

z1 /∈ S
(
z2, π

−1(V(n))
)
. ¤

The converse does not hold true, as seen by the following exam-
ple:

Example 2.3. There exists a metric space X and a disjoint closed
cover A = {Aα | α ∈ I} of X such that for each α ∈ I there exists
a continuous mapping fα of X \ Aα onto a compact metric space
Yα whose resolution Z = R(X,A, fα, Yα) is metrizable but Λ is not
Fσ-discrete in X.

Proof: Let X = R with the usual topology. We take A = {Aα |
α ∈ I} as follows:

I = {0} ∪ (−∞,−2) ∪ (2,∞)

A0 = [−2, 2], Aα = {α} if α ∈ I \ {0}.
{fα | α ∈ I} is defined as follows: For each α ∈ I \ {0}, fα is a

constant mapping of X \{α} onto Yα = {0} and f0 : X \ [−2, 2] −→
Y0 = [−2, 2] is defined by
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f0(x) =





x− 3 if 2 < x ≤ 5
2 if x > 5
x + 3 if −5 ≤ x < −2
−2 if x < −5.

Then Λ = A0 = [−2, 2], and it is obviously not Fσ-discrete in X.
It is also easy to see that the resolution Z = R(X,A, fα, Yα) has
the base

B =
{
M ((−2, 1) : ε, δ) , M ((2,−1) : ε, δ)

∣∣∣ε, δ > 0
}

∪{
N(z : ε, δ)

∣∣∣ε, δ > 0, z ∈ A0 × Y0 \ {(2,−1), (−2, 1)}}

∪{
L ((x, 0) : ε)

∣∣∣|x| > 2, ε > 0
}
,

where

M ((−2, 1) : ε, δ) = {(p, q) ∈ A0 × Y0

∣∣∣− 2 ≤ p < −2 + ε,

|q − 1| < δ} ∪ {(p, 0) | −2− ε < x < −2},

M ((2,−1) : ε, δ) = {(p, q) ∈ A0 × Y0

∣∣∣2− ε < p ≤ 2, |q + 1| < δ}
∪{(p, 0) | 2 < p < 2 + ε},

L ((x, 0) : ε) = {(p, 0) ∈ Z
∣∣∣ |x− p| < ε, p ∈ X \ [−2, 2]}.

Then Z is metrizable because Z has a countable base

{M
(

(2,−1) :
1
n

,
1
m

)
, M

(
(−2, 1) :

1
n

,
1
m

)
| n, m ∈ N}

∪{
N(z :

1
n

,
1
m

)
∣∣∣ z ∈ Q×Q ∩ (A0 × Y0 \ {(2,−1), (−2, 1)}) ,

n, m ∈ N} ∪ {L
(

(x, 0) :
1
n

) ∣∣∣ |x| > 2, x ∈ Q, n ∈ N}. ¤
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A space X is called a developable space if there exists a sequence
(U(n))n of open covers of X such that for each x ∈ X, {S(x,U(n) |
n ∈ N} is a local base at x in X. Such a sequence is called a
development of X.

Theorem 2.4. Let X, Yα, α ∈ I, be developable spaces and let A
be a point-countable closed cover of X. If Λ is Fσ-discrete in X,
then Z = R(X,A, fα, Yα) is developable.

Proof: Let Λ =
⋃{Λ(n) | n ∈ N}, where each Λ(n) is discrete

and closed in X. For each n, there exists a family {V (p)|p ∈ Λ(n)}
of open subsets of X such that

V (p) ∩ Λ(n) = {p}, p ∈ Λ(n).

Let {U(m) | m ∈ N} be a development of X and for each α ∈ I,
let {V(α, k) | k ∈ N} be a development of Yα. Since A is point-
countable, for each p ∈ Λ, I(p) is enumerated as follows:

I(p) = {α(p, i) | i ∈ N}.
For each n, m ∈ N, let

U(m, n) =
⋃
{U(m)p ∧ {V (p)}|p ∈ Λ(n)} .

For each m, n, i, k ∈ N, define

W(m,n, i, k) = {π−1 (X \ Λ(n))} ∪ {U ⊗α(p,i) V | U ∈ U(m,n),

V ∈ V(α(p, i), k)), p ∈ Λ(n)}.
Then it is an open cover of Z. Enumerate

{W(m,n, i, k) | m,n, i, k ∈ N} ∪ {π−1(U(n)) | n ∈ N}
as {W(n) | n ∈ N}. For each δ ∈ F(N), let

W(δ) =
∧
{W(n) | n ∈ δ}.

We show that {W(δ) | δ ∈ F(N)} is a development of Z.
Let z = (x, y) ∈ G, where G is open in Z. First, we assume the

case x ∈ Λ(n) for some n. There exist subsets O ∈ τ(X), Wα ∈
τ(Yα), α ∈ J with J ⊂ I finite such that

z ∈ π−1(O) ∩
⋂

α∈J

σ−1
α (Wα) ⊂ G.

Since A is a family of closed subsets of X, without loss of generality
we can assume x ∈ Aα for each α ∈ J . Let J = {α(x, i) | i ∈ N0},
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where N0 ∈ F(N). Since (U(m))m is a development of X, there
exists m ∈ N such that

S(x,U(m)) ⊂ O ∩ V (x).

For each i ∈ N0, there exists k(i) ∈ N such that

S(y(α(x, i)),V(α(x, i), k(i)) ⊂ Wα(x,i).

Let
W(δ) =

∧
{W(m,n, i, k(i)) | i ∈ No}, δ ∈ F(N).

Then we have S(z,W(δ)) ⊂ G. Suppose the remaining case x /∈ Λ.
Then there exists O ∈ τ(X) such that z ∈ π−1(O) ⊂ G. There
exists m ∈ N such that S(x,U(m)) ⊂ O. Then we have

S(z, π−1(U(m)) ⊂ G.

Hence, Z is developable. ¤
Theorem 2.5. Let X, Yα, α ∈ I, be M3-spaces and let A be a
point-countable closed cover of X. If Λ is Fσ-discrete in X, then
Z = R(X,A, fα, Yα) is an M3-space.

Proof: Let Λ =
⋃{Λ(n) | n ∈ N}, where each Λ(n) is discrete and

closed in X. For each n ∈ N, there exists a discrete open expansion
{U(p) | p ∈ Λ(n)} of

{{p} | p ∈ Λ(n)
}

in X. For each p ∈ Λ(n),
there exists a CP(=closure-preserving) closed neighborhood base
B(p) of p in X such that

⋃B(p) ⊂ U(p). Let
⋃{B(n) | n ∈ N} be a

σ-CP closed quasi-base for X. For each α ∈ I, let
⋃{B(α, k) | k ∈

N} be a σ-CP closed quasi-base for Yα. Since A is point-countable,
for each p ∈ Λ, I(p) is written as I(p) = {α(p,m) | m ∈ N}. For
each n, m, k ∈ N, define

B(n,m, k) = {B1 ⊗α(p,m) B2 | B1 ∈ B(p), B2 ∈ B(α(x,m), k),

p ∈ Λ(n)}.
Let

G =
⋃
{B(n,m, k) | n,m, k ∈ N} ∪

(⋃
{π−1(B(n)) | n ∈ N}

)
.

It is easily checked that G is a σ-CP in Z. To see that ∆G is a
quasi-base for Z, let z = (x, y) ∈ O, where O is open in Z. As the
first case, suppose p ∈ Λ(n), n ∈ N. There exist U ∈ τ(X), Wα ∈
τ(Yα), α ∈ J ∈ F(I), such that

z ∈ π−1(U) ∩
(⋂

{σ−1
α (Wα) | α ∈ J}

)
⊂ O.
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Since A is a family of closed subsets of X, without loss of gen-
erality we can assume p ∈ Aα, α ∈ J . So, we can let J =
{α(p,m) | m ∈ N0}, where N0 ∈ F(N). Since

⋃
k B(α(p,m), k) is a

quasi-base for Yα(p,m), for each m ∈ N0 there exists B(α(p,m)) ∈
B(α(p, m), km), km ∈ N, such that

y(α(p,m)) ∈ IntB(α(p,m)) ⊂ B(α(p,m))
⊂ Wα(p,m).

Also, since B(p) is a neighborhood base of p in X, there exists
B0 ∈ B(p) such that

p ∈ IntB0 ⊂ B0 ⊂ U ∩ U(p).

Let
G = π−1(B0) ∩

⋂ {
σ−1

α(p,m)(B(α(p, m)))
∣∣m ∈ N0

}
.

Then obviously we have G ∈ ∆(G) and z ∈ IntG ⊂ G ⊂ O. As
the remaining case, suppose p /∈ Λ. Then obviously we can take
Bo ∈ B(n), n ∈ N, such that

p ∈ Intπ−1(B0) ⊂ π−1(B0) ⊂ O.

Thus ∆(G) is a σ-CP quasi-base for Z, proving that Z is an M3-
space. ¤

A space X is called a µ-space if X is embedded into a countable
product of paracompact Fσ-metrizable spaces. To use a character-
ization of M3-µ-spaces, we repeat the definition of [3]: Let U , F
be a family of subsets of a space X. U is said to be F-preserving
in both sides in X if for each U0 ⊂ U the following two conditions
are satisfied:

(i) If p ∈ X \⋃U0, then p ∈ F ⊂ X \⋃U0 for some F ∈ F ;
(ii) if ∈ ⋂U0, then p ∈ F ⊂ ⋂U0 for some F ∈ F .

It is known in [2] that an M3-space X is a µ-space if and only if
there exists a pair 〈⋃n U(n),

⋃
nF(n)〉 of families of subsets of X

satisfying the following:
: (1) U =

⋃{U(n) | n ∈ N} is a base for X such that each
U(n) is F-preserving in both sides in X;

: (2) F =
⋃{F(n) | n ∈ N} is a network for X such that each

F(n) is a discrete family of closed subsets of X.
In this case, we call the pair an M-structure for X.



ON GENERAL RESOLUTIONS OF GENERALIZED METRIC SPACES 197

Theorem 2.6. Let X, Yα, α ∈ I, be M3-µ-spaces and let A be a
point-countable closed cover of X. If Λ is Fσ-discrete in X, then
Z = R(X,A, fα, Yα) is an M3-µ-space.

Proof: By the preceding theorem, Z is an M3-space. Thus, it
remains to show that Z has an M-structure. Let Λ =

⋃{Λ(n) |
n ∈ N}, where each Λ(n) is discrete and closed in X. For each n,
there exists a discrete open expansion {U(p) | p ∈ Λ(n)} of {{p} |
p ∈ Λ(n)} in X. Let 〈⋃n U(n),

⋃
nF(n)〉 be an M-structure for X

and for each α ∈ I let 〈⋃i V(α, i),
⋃

iF(α, i)〉 be an M-structure
for Yα. For each p ∈ Λ, let I(p) = {α(p, i) | i ∈ N}. For each
n, m ∈ N, p ∈ Λ(n), let

U(m,n : p) = {U ∈ U(m) | p ∈ U ⊂ U(p)}.
Define W(m,n, i, k) and H(m,n, i, k) for each m, n, i, k ∈ N as
follows:

W(m,n, i, k : p) =
{
U⊗α(p,i)V

∣∣U ∈ U(m,n : p), V ∈ V(α(p, i), k)
}
,

p ∈ Λ(n),
H(m, n, i, k : p) =

{{p} ⊗α(p,i) F ′∣∣ F ′ ∈ F(α(p, i), k)
}
, p ∈ Λ(n),

W(m, n, i, k) =
⋃
{W(m,n, i, k : p) | p ∈ Λ(n)},

H(m, n, i, k) =
⋃
{H(m,n, i, k : p)|p ∈ Λ(n)}.

Then it is easily checked that each H(m,n, i, k) is a discrete family
of closed subsets of Z. Define

W(m) = π−1(U(m)), H(m) = π−1(F(m)), m ∈ N.

Enumerate

{W(m,n, i, k) | m, n, i, k ∈ N} ∪ {W(m) | m ∈ N}
as {V(n) | n ∈ N}, and enumerate

{H(m,n, i, k) | m, n, i, k ∈ N} ∪ {H(m) | m ∈ N}
as {L(n) | n ∈ N}. For each δ ∈ F(N), define

V(δ) =
∧
{V(n) | n ∈ δ}, L(δ) =

∧
{L(n) | n ∈ δ}.

Then it is easy to see that
〈 ⋃

{V(δ) | δ ∈ F(N)},
⋃
{L(δ) | δ ∈ F(N)}〉

is an M-structure for Z. ¤
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